§3.8 Eigenvalues and eigenvectors
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Since by expanding the determinant, we have
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When 
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 is complex, the corresponding eigenvector 
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Example 8.1: For diagonal matrix
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Properties of eigenvalues and eigenvectors:
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Diagonalization of a matrix A:
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Remark 8.1: Not all matrices possess 
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In this case, 
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Now we state without proof the following important fact:
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Example 8.2:
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Remark 8.2: One of the application in biology is to compute 
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Example 8.3: Fibonacci’s Sequence


In 1202, Fibonacci introduced a model of hypothetical rabbit population which illustrates the basic idea of current models of human populations. In this, a single pair of rabbits, one male and one female, starts the population. They will reproduce twice, and at each reproduction produce a new pair, one male and one female. These will go on to reproduce twice, etc. The following diagram summarizes the population’s dynamics.

	NUMBER OF RABBIT PAIRS

	
	Birth
	Reproductive
	
	
	
	
	

	
	Rate
	Ages
	Age
	
	
	

	Time
	↓
	↓
	↓
	
	
	
	
	

	
	0
	1
	2
	3
	4
	5
	6
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	0
	1
	
	
	
	
	
	
	

	1
	1
	1
	
	
	
	
	
	

	2
	2
	1
	1
	
	
	
	
	

	3
	3
	2
	1
	1
	
	
	
	

	4
	5
	3
	2
	1
	
	
	
	

	5
	8
	5
	3
	2
	
	
	
	

	6
	13
	8
	5
	3
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The eigenvalue 
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Hence
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Leslie Model: a age structure model


A time unit 
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 appropriate to the species being modeled and to the data available is selected, and then the age structure of one sex at some time 
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where each component 
[image: image166.wmf]N

i

v

,

 describes the number of individuals at time 
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and the number of individuals having ages less than or equal to 
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A typical model for human populations is to take 
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Here the total population having ages greater than 80 is ignored.


Modeling proceeds as before. A relation between the age structure in time period 
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 and in time period 
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where now the reproduction function is a vector valued function of the components of the vector 
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. However, such models are usually very difficult to determine in practice, and in general, they are quite difficult to analyze. There is one class of reproduction functions that has been successful, both in description of real populations (it has been applied mainly to human populations) and in its mathematical tractability. These are analogs of Malthus’ model, and they employ linear reproduction functions.

Many names are associated with the development of this kind of model, Lotka, McKendrick, Bernardelli and Leslie, to name a few, and many others have extended and applied the basic results. However, Leslie’s work (1944, 1948) has been most widely distributed, and this presentation follows the work of Leslie, McKendrick (1926) and Feller (1968).

A. The Reproduction Matrix


The dynamics of one sex, usually females, will be described. First, a time period 
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 and a number of age classes 
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 are selected. Each age class may lose members through death and may contribute births during one time period. The probabilities of these events depend on the ages. These are specified in the following way: 

Let
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which indicates the number of survivors of the 
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which indicates the total number of births occurring in the population during the time interval.

These data, 
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or in the more concise matrix notation as
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where the reproduction matrix 
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 is given by
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4.
Stable age distribution: The structure of 
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The renewal theory can, of course, be applied directly to the full Leslie model to describe the evolution of the population’s age structure. These details are carried out in references Leslie (19458, 1948), Moran (1962), Keyfits and Flieger (1970) and Keyfitz (1968).


The Leslie model was developed above, and it was shown there that if 
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where the reproduction matrix 
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A complete analysis of the powers of 
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 (see Leslie (1945, 1948)). However, the dominant behavior is easy to determine without any complicated technicalities.
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We say that 
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 is honest if there is a unique positive real root 
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Perron-Frobenius Theorem

Let 
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This calculation shows that for large 
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 the age distribution is growing at a constant rate 
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, but that the distribution between the age classes remains fixed. In fact, the proportion if the population residing in any one age bracket is constant:
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Because of this fact, the vector 
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 is called the stable age vector, and these calculations show that a Malthusian population does approach a stable age distribution. This fact is frequently used in population studies.

Example: Kimura’s Two-Parameter Model


The assumption that all nucleotide substitutions occur randomly, as in the JC model, is unrealistic in most cases. For example, transition are generally more frequent than transversions. To take this fact into account, Kimura (1980) proposed a two-parameter model (Figure). In this scheme, the rate of transitional substitution at each nucleotide site is 
[image: image272.wmf]a

 per unit time, whereas the rate of each of the two types of transversional substitution is 
[image: image273.wmf]b

 per unit time.
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Figure Two-parameter model of nucleotide substitution. In this model, the rate of transition (
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) may not be equal to the rate of each of the two types of transversion (
[image: image276.wmf]b

). From Li and Graur (1991).


As in the one-parameter model, let 
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To derive this equation we need to consider four possible scenarios: First, the nucleotide at the site is 
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 at time 
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To solve the above equations we need to set the initial condition. If the initial nucleotide is 
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, and so on. For the detail of the solution, see Li (1986).
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If we define the vector 
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This equation can be studied by using linear algebra.


The matrix 
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 satisfies the following two conditions: (1) all elements of the matrix are nonnegative and (2) the sum of the elements in each row is 1. Such matrices are called stochastic matrices. The above formulation has in effect assumed that the substitution process is a Markov chain, the essence of which is as follows. Consider three time points in evolution, 
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