§3.14 A Mathematical Model for Enzymatic Reactions

The goal of this subsection is threefold. First, we will learn how to model biochemical reactions; second, we will see how mathematical models can be used to understand empirical observation; third, we will introduce an important method, namely by making
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Figure 14.1 A schematic description of an enzymatic reaction.

Appropriate assumptions, the number of variables in a model can sometimes be reduced, which typically facilitates the analysis of the model.


The class of biochemical reactions we will study are enzymatic reactions, which are ubiquitous on the living world. Enzymes are proteins that act as catalysts in chemical reactions by reducing the required activation energy for the reaction. Enzymes are not altered by the reaction; they aid in the initial steps of the reaction and control the rate of the reaction by binding the reactants (called substrates) to the active site of the enzyme-substrate complex that then allows the substrates to react and to form the product. This is illustrated in Figure 14.1.


If we denote the substrate by 
[image: image2.wmf]S

, the enzyme by 
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, and the product of the reaction by 
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, then an enzymatic reaction can be described by
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where 
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 are the reaction rates in the corresponding reaction steps.


We can translate the schematic description of the reaction 
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 into a system of differential equations. We use the following notation.
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Using the mass action law,
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Michaelis and Menten (1913) were instrumental in the description of enzyme kinetics, through both experimental and theoretical work. On the experimental side, they developed techniques that allowed them to measure reaction rates under controlled conditions. Their experiments showed a hyperbolic relationship between the rate of the enzymatic reaction 
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 and the substrate concentration 
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, which they described as
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where 
[image: image25.wmf]m

v

 is the saturation constant and 
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 is the half-saturation constant (that is, if 
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On the theoretical side, they developed a mathematical model for enzyme kinetics that predicted the observed hyperbolic relationship between the substrate concentration and the initial rate at which the product is formed.

In the following, we will analyze 
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, which is a system of four equations. It is not easy to analyze; we will simplify it, and in the end, we will obtain 
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. We will also use 
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 to illustrate that it is sometimes possible to reduce the number of equations in a system.
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where 
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 is a conserved quantity. The advantage of this is that if we know that initial concentrations 
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. This reduces the number of equations from four to three.

To reduce the number of equations even further, we make another assumption. Whereas the existence of a conserved quantity followed from the system of equations, and we could have obtained it without knowing the meaning of these equations, the next assumption requires a thorough understanding of the enzymatic reaction itself, and cannot be deduced from the set of equations 
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. Briggs and Haldane (1925) who had this understanding, proposed that the rate of formation balances the rate of breakdown of the complex, that is, they assumed
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This assumption yields the equation
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which can be rewritten as
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We denote this ratio by 
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Solving 
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, we find
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which allows us to rewrite the equation for the rate t which the product is formed. Since 
[image: image61.wmf]c

k

dt

dp

2

=

, it follows from 
[image: image62.wmf])

6

.

14

(

 that


[image: image63.wmf]s

K

s

e

k

dt

dp

m

+

=

0

2









[image: image64.wmf])

7

.

14

(


We can interpret the factor 
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Equation 
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 is known as the Michaelis-Menten law and describes the velocity of an enzymatic reaction. We see from equation 
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 that the reaction rate 
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 is limited by the availability of the substrate 
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 was derived from fitting a curve to data points that related the measured substrate concentration 
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 to the velocity of the reaction 
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 is derived from a mathematical model. The mathematical model allows us to interpret the constants 
[image: image87.wmf]m

v

 and 
[image: image88.wmf]m

K

 in terms of the enzymatic reaction, and the experiments allow us to measure 
[image: image89.wmf]m

v

 and 
[image: image90.wmf]m

K

.

Microbial Growth in a Chemostat  —  An Application of Substrate-Limited Growth  A rather simplistic view of microbial growth is that microbes convert substrate through enzymatic reactions into products that are then converted into microbial biomass.
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Figure 14.2 A chemostat.

In the following, we will investigate a mathematical model for microbial growth in a chemostat. The growth of microbes will be limited by the availability of the substrate.


A chemostat is a growth chamber in which sterile medium with concentration 
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 of the substrate enters the chamber at a constant rate 
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. Air is pumped into the growth chamber to mix and aerate the culture. To keep the volume in the growth chamber constant, the content of the growth chamber is removed at the same rate 
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 as new medium enters. A sketch of a chemostat can be seen in Figure 14.2.


We denote the microbial biomass at time 
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. Jacques Lucien Monod was very influential in the development of quantitative microbiology; in (1950) he derived the following system of differential equations to describe the growth microbes in a chemostat:
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where 
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 is the substrate concentration of entering medium, 
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Monod (1942) showed empirically that the uptake rate 
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where 
[image: image109.wmf]m

v

 is the substrate level and 
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 is identical to the Michaelis-Menten law 
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, which might suggest that microbial growth is governed by enzymatic reactions.


In the following, we will determine possible equilibria of 
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 and analyze their stability. There is always, of course, the trivial equilibria, which is obtained when substrate enters a growth chamber void of microbes (that is, when 
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Figure 14.3 A graph of 
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to obtain a nontrivial equilibrium 
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We see immediately from Figure 14.3 that 
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, we can compute 
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which is indeed positive, provide that 
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from which we can see that 
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There are no other equibria.

To analyze the stability if the two equilibria 
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, we find the Jacobi matrix 
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We analyze the stability of he trivial equilibrium 
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Since the Jacobi matrix is in upper triangular form, the eigenvalues are the diagonal elements, and we find
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For the nontrivial equilibrium 
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We can now summarize our results. The chemostat has two equilibria, a trivial one in which microbes are absent, and a nontrivial one that allows stable microbial growth. If 
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