Chapter 3
Linear algebra with applications in biology

§3.1 Basic operations of vectors

A vector 
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 is the addition and 
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 is a scalar multiplication. First we introduce the 
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Define the addition of two vectors 
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 and 
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 as following:
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The element 
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Figure 3.1.1

We define the scalar multiplication in 
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[image: image20.wmf]n

R

Î

a

, 
[image: image21.wmf]n

n

R

x

x

x

Î

=

)

,

,

(

1

K

. Define


[image: image22.wmf])

,

,

(

1

n

x

x

x

a

a

a

K

=

.











The geometric meaning of 
[image: image23.wmf]x

a

 is described as following
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Figure 3.1.2

Next we introduce the inner product of two vectors 
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The length of the vector 
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which is the distance between 
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. From law of cosine, we have (see Fig 3.1.3)
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On the other hand, we have
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Hence
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Obviously if 
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Fig 3.1.3

Example 1.1: Find the projection of vector 
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 on the vector 
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