Chapter 2
ONE-DIMENSIONAL MAPS

§2.1 Introduction

This chapter deals with a new class of dynamical systems in which time is discrete, rather than continuous. These systems are known variously as difference equa​tions, recursion relations, iterated maps, or simply maps.
For instance, suppose you repeatedly press the cosine button on your calculator, starting from some number 
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, and so on. Set your calculator to radian mode and try it. Can you ex​plain the surprising result that emerges after many iterations?
The rule 
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, is an example of a one-dimensional map, so-called be​cause the points 
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 belong to the one-dimensional space of real numbers. The se​quence 
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 is called the orbit starting from 
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Maps arise in various ways:
1. As models of population growth. In the study of certain animal populations where suc​cessive generations do not overlap. We assume that the parent generation reproduces and that, before the offspring reach reproduce age, the parents have all died.

2. As simple examples of chaos. Maps are interesting to study in their own right, as mathematical laboratories for chaos. Indeed, maps are capable of much wilder behavior than differential equations because the points 
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 hop along their orbits rather than flow continuously (Figure 2.1.1).
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Figure 2.1.1

The study of maps is still in its infancy, but exciting progress has been made in the last twenty years, thanks to the growing availability of calculators, then com​puters, and now computer graphics. Maps are easy and fast to simulate on digital computers where time is inherently discrete. Such computer experiments have re​vealed a number of unexpected and beautiful patterns, which in turn have stimu​lated new theoretical developments. Most surprisingly, maps have generated a number of successful predictions about the routes to chaos in semiconductors, con-vecting fluids, heart cells, lasers, and chemical oscillators.
We discuss some of the properties of maps and the techniques for analyzing them in Sections 1-4. The emphasis is on period-doubling and chaos in the logistic map.
As usual, our approach will be intuitive. For rigorous treatments of one-dimen​sional maps, see Devaney (1989) and Collet and Eckmann (1980).

Fixed Points and Cobwebs

In this section we develop some tools for analyzing one-dimensional maps of the form 
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where 
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 is a smooth function from the real line to itself. 
Fixed Points and Linear Stability

Suppose 
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 is a fixed point, for if 
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; hence the orbit remains at 
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 for all future iterations. 

To determine the stability of 
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, we consider a nearby orbit 
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 and ask whether the orbit is attracted to or repelled from 
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. That is, does the deviation 
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 grow or decay as 
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 increases? Substitution yields
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But since 
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Suppose we can safely neglect the 
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 terms. Then we obtain the linearized map 
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 with eigenvalue or multiplier 
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. The solution of this linear map can be found explicitly by writing a few terms: 
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 is linearly stable. Conversely, if 
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 the fixed point is unstable. Although these conclusions about local stability are based on linearization, they can be proven to hold for the original nonlinear map. But the linearization tells us nothing about the marginal case 
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 terms determine the local stability.
EXAMPLE 1.1

Find the fixed points for the map 
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and determine their stability.
Solution: The fixed points satisfy 
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. The multiplier is 
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Cobwebs (Figure 2.1.1)
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Figure 2.1.1

Given 
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 and an initial condition 
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, draw a vertical line until it inter​sects the graph of 
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; that height is the output 
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 At this stage we could return to the horizontal axis and repeat the procedure to get 
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, but it is more convenient simply to trace a horizontal line till it intersects the diagonal line 
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, and then move vertically to the curve again. Repeat the process 
[image: image56.wmf]n

 times to generate the first 
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 points in the orbit.
Cobwebs are useful because they allow us to see global behavior at a glance, thereby supplementing the local information available from the linearization. Cobwebs become even more valuable when linear analysis fails, as in the next example.
EXAMPLE 1.2:

Consider the map 
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. Show that the stability of the fixed point 
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 is not determined by the linearization. Then use a cobweb to show that 
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 is stable—in fact, globally stable.

Solution: The multiplier at 
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, which is a marginal case where linear analysis is inconclusive. However, the cobweb of Figure 2.1.3 shows that 
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 is locally stable; the orbit slowly rattles down the narrow chan​nel, and heads monotonically for the fixed point. (A similar picture is obtained for 
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To see that the stability is global, we have to show that all orbits satisfy 
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. The cobweb in that interval looks qualitatively like Figure 2.1.3, so convergence is assured. (
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Figure 2.1.3

EXAMPLE 1.3:

Given 
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Solution: If you tried this on your calculator, you found that 
[image: image73.wmf]K

739

.

0

®

n

x

, no matter where you started. What is this bizarre number? It's the unique solution of the transcendental equation 
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Figure 2.1.4

The spiraling motion implies that 
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 converges to 
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 through damped oscilla​tions. That is characteristic of fixed points with 
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. In contrast, at stable fixed points with 
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the convergence is monotonic.
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