§1.4 Logistic equation

The simplest population model of single species is the Malthusim model. Let 
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 is called the intrinsic growth rate of the species. Model 
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 is called the Malthusim model. It is used for the growth of species like bacteria in a nutrient-unlimited supplied environment. Verhulst (1804-1849) introduced the following logistic equation


[image: image12.wmf]2

bN

rN

dt

dN

-

=













[image: image13.wmf]0

)

0

(

N

N

=











[image: image14.wmf])

2

.

4

(


In 
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 the inter specific competition between the members of the species in the population is considered. It can be rewritten as


[image: image16.wmf])

1

(

K

N

rN

dt

dN

-

=













[image: image17.wmf]0

)

0

(

N

N

=











[image: image18.wmf])

3

.

4

(


By separation of variable
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Taking exponential on both sides we find that
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Then for any 
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It is easy to see that if 
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, then we consider the following model due to Gilpin:
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Figure 1.4.1

The one-dimensional flow of 
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EXAMPLE 4.1: Levin’s metapopulation model
The ecological importance of spatially structured populations was pointed out by Andrewartha and Birch (1954) based on studies of insect populations. They observed that local populations become frequently extinct and subsequently recolonized. Fif​teen years later, in 1969, Richard Levins introduced the concept of metapopulations (Levins 1969). This was a major theoretical advance; this concept provided a the​oretical framework for studying spatially structured populations. Over the last ten years, the use of spatially structured population models has been firmly established in population biology.
A metapopulation is a collection of subpopulations. Each subpopulation occu​pies a patch, and different patches are linked via migration of individuals between patches.  In this setting, one only keeps track of what proportion of patches are occupied by subpopulations. Subpopulations go extinct at a constant rate, denoted by 
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 stands for mortality). Vacant patches can be colonized at a rate that is proportional to the fraction of occupied patches; the constant of propor​tionality is denoted by 
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The first term on the right hand-side describes the colonization process. Note that an increase in the fraction of occupied patches occurs only if a vacant patch becomes occupied, hence the product 
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in the first term on the right-hand side. The minus sign in front of 
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 shows that an extinction event decreases the fraction of occupied patches.
We will not solve 
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. Instead, we will analyze its equilibria. We set
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Figure 1.4.2

Then we have equilibria
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We call the solution 
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 a trivial solution because it corresponds to the situation in which all patches are vacant. Since individuals are not created spontaneously, a vacant patch can be recolonized only through migration from other occupied patches. Therefore, once a metapopulation is extinct, it stays extinct. The other equilibrium 
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That is, the nontrivial equilibrium 
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. We illustrate this in Figures 1.4.3 and 1.4.4, looking at the figures, it is easy to analyze the stability of the equilibria.
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Figure 1.4.3 The case 
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Figure 1.4.4 The case 
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There is only the trivial equilibrium 
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There are two equilibria, namely 0 and 
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The other equilibrium, 
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We can also analyze the stability of the equilibria. In addition, this will allow us to obtain information on how quickly the system returns to the stable equilibrium. We set
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To linearize this function about the equilibrium values, we must find
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Now, if 
[image: image105.wmf]0

1

=

p

, then

[image: image106.wmf]m

c

f

-

=

¢

)

0

(













whereas, if 
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Example 4.2: The Allee Effect

In a sexually reproducing species, individuals may experience a disproportionately low recruitment rate when the population density falls below a certain level, due to lack of suitable mates. This is called an Alice effect (see Allee 1931). A simple extension of the logistic equation incorporates this effect. We denote by 
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where 
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 is a threshold population size, below which the recruitment rate is negative, meaning that the population will shrink and ultimately go to extinction.
The equilibria of 
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Figure 1.4.5 The graph of 
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A graph of 
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We can compute 
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We see from Figure 1.4.5 if 
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In the following example we consider the evolution DNA sequence, the nucleotide substitution in a DNA sequence ([9] p.59).

Example 4.3: Jukes and Cantor’s one-parameter model
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Assume that the nucleotide at certain site in a DNA sequence is 
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We may also write
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Remark: We may model nucleotide substitution in difference equation
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