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Theories for species coexistence often emphasize niche differentiation and temporal segregation of

recruitment to avoid competition. Recent work on mutualism suggested that plant species sharing

pollinators provide mutual facilitation when exhibit synchronized reproduction. The facilitation on

reproduction may enhance species persistence and coexistence. Theoretical ecologists paid little

attention to such indirect mutualistic systems by far. We propose a new model for a two-species

system using difference equations. The model focuses on adult plants and assumes no resource

competition between these well-established individuals. Our formulas include demographic para-

meters, such as mortality and recruitment rates, and functions of reproductive facilitation. Both

recruitment and facilitation effects reach saturation levels when flower production is at high levels. We

conduct mathematical analyses to assess conditions of coexistence. We establish demographical

conditions permitting species coexistence. Our analyses suggest a ‘‘rescue’’ effect from a ‘‘superior’’

species to a ‘‘weaker’’ species under strong recruitment enhancement effect when the later is not self-

sustainable. The facilitation on rare species may help to overcome Allee effect.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Species coexistence and mechanisms maintaining species diver-
sity have been the major focus in ecology. It was traditionally assu-
med that, species utilizing the same resource are subject to compe-
titive exclusion (Connell et al., 2004; Fargione and Tilman, 2006).
Major hypotheses explaining species coexistence involve avoidance
of competition. For example competing species may coexist in a com-
munity through spatial segregation or resource partitioning (Harpole
and Tilman, 2007; Huchingson, 1959). In addition, segregated recruit-
ment events also reduce strength of competition. Temporally variable
reproduction among species allows recruitment and establishment of
the inferior competitors in the time of low inter-specific competition
(Chesson, 2003). The mechanism is especially important in sessile
organisms which face strong competition for space (Chesson, 2003;
Warner and Chesson, 1985). Despite the popularity of mechanisms
reducing inter-specific competition, these mechanisms may not be
sufficient to explain the maintenance of biodiversity in all systems.

Insufficient supply of recruits is an important constraint for
forest species and may impact biodiversity. Empirically, densities
of natural populations upon recruitment may not be high enough
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to cause significant density-dependent mortality (Augspurger and
Kitajima, 1992). Competition among recruits thus may not be as
influential as recruitment limitation for species persistence. Seed
addition experiments in a neotropical forest demonstrated enhanced
seedling recruitment and survival when reducing seed limitation
(De Steven and Wright, 2002; Wright et al., 2005). Understanding
mechanisms that lessen recruitment limitations and how they affect
demographic dynamics of species are therefore crucial for the un-
derstanding of species coexistence.

Recruitment limitation could be reduced via positive interactions
such as mutualism and other indirect facilitations. In plants, facil-
itation may occur directly, such as nutrient enrichment (Bronstein,
2009), or indirectly, such as provision of nesting sites for pollinators
(Hansen et al., 2007). A less discussed form of indirect plant–plant
mutualism is enhanced pollination via shared pollinators. Previous
studies suggested a positive relationship between flowering magni-
tude and the success of pollination (Kelly and Sork, 2002). Large
floral display (Moeller, 2004) and high levels of pollen and nectar
resources attract nomadic pollinators as well as increase recruit-
ment of residential pollinators (Appanah, 1993; Isagi et al., 1997;
Sakai, 2002), thus enhances pollination success. Theoretical models
demonstrated evolution of synchronized flowering at the population
level via enhanced reproduction (Isagi et al., 1997; Satake and Iwasa,
2000). The models, however, did not provide flexibility to discuss
demographical dynamics at the community level.
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Fig. 1. Correlation between reproductive period and index of marginal increase of

recruitment rate (u/k) when s¼1. We show three cases with adult survival rate

b¼0.7, 0.8, and 0.9, respectively.
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In addition to enhancement of pollination efficiency, recruitment
rate may also increase via increased seed and seedling survival
rates. Janzen (1974) suggested that seeds facing predation may
enhance survivorship by two means: extensive length of time with
no reproduction, which causes decreased populations of seed
predators, and massive production of seeds in a short time inter-
mittently. In consequence, seeds produced in synchronous repro-
duction collectively increase the efficiency to satiate predators and
facilitate seed survival of the population (community) as a whole.
Cases of massive flower and seed production and predator satiation
were evident at both the population and the community level
(Curran and Leighton, 2000; Numata et al., 2003; Sakai et al., 1999).

To understand the role of the reproductive enhancement on
species persistence and species coexistence, we construct models
to explore demographical performance in two sympatric and
spatially well-mixed species. These species are assumed to rely
solely on sexual reproduction for future recruitment and share
the same guild of pollinators. Reproductions of both species are
periodic as often seen in natural systems (Sakai, 2001). The assump-
tion of periodic reproduction led us to the construction of difference
equations (see models below). In the intervening interval between
reproductive events, all individuals acquire resources in order to
recover its reserve level for the next reproductive event. During this
non-reproduction time, a population may decrease in size due to
mortality. If the intervening period is too long, decrease of popula-
tions during non-reproductive season may go beyond tolerable
degrees and cause a collapse of populations. We intend to discuss
conditions that allow and disapprove coexistence of the two species.
2. Models and stability analysis

In this study, all models focus on individuals that are capable of
reproduction. We assume that such individuals have reached matur-
ity and that resource competition has little influence on such indi-
viduals. Two species on focus (populations x and y) reproduce at
periods p1 and p2. Adult survival rates of the two species are b1 and
b2, respectively. The sympatric species may reproduce asynchro-
nously when a lag in flowering time is involved. This leads to little
inter-specific interaction and the two-species model may be con-
sidered as an one-dimensional model. When no time lag is involved
for flowering, species may reproduce synchronously at the common
multiples of the species’ periods. We discuss the demographical
dynamics of two sympatric species for asynchronous and occasional
synchronous reproduction in Sections 2.1 and 2.2, respectively. The
models do not include spatial context thus we do not describe immi-
gration and emigration of individuals.

2.1. Asynchronous reproduction

We begin our model construction with a simple case when no
reproductive synchrony of the two species occurs. The discrete
map for the dynamics of one species is written as

xnþ1 ¼ bxn na0ðmodpÞ

xnþ1 ¼ bxnþhðxnÞ n¼ 0ðmodpÞ

( )
ð1Þ

where xn + 1 and xn are the abundances of population x at time n+1
and n, respectively and 0obo1, and n denotes the time step on
focus. For the focal population, pollination efficiency and fruit pro-
duction reach an upper limit at high flowering magnitude (large
population size) due to resource availability and saturated pollina-
tion service. Thus we assume that the recruitment function h(xn)
follows a Michaelis–Menten kinetics such that h(xn)¼uxn/(k+xn),
where the maximum recruitment rate (u) and the half-saturation
constant k are positive values.
We conduct routine computation on (1) and obtain the periodic
map (p-map, hereafter) xnþp ¼ bpxnþhðbp�1xnÞ for the focal species.
For convenience, we rewrite the p-map as x¼ f ðxÞ ¼ bpxþ hðbp�1xÞ.
By taking the derivative of f(x), we obtain f uðxÞ ¼ bpþ bp�1huðbp�1xÞ,
where h0(x)¼uk/(k+x)240. Stability of fixed points of the system
could be examined with the derivative of f(x). For the fixed point of
x¼0, we obtain the net population growth rate s defined as f uð0Þ ¼
bpþbp�1u=k. When so1, indicating a negative net population
growth rate, the fixed point x¼0 is asymptotically stable. On the
other hand, s41 indicates the fixed point at x¼0 is unstable and
there exists a stable and unique fixed point xn40 (Appendix,
Theorem 1). By reformulating s41 we obtain bp�1u=k41�bp,
where 1�bp is the cumulative mortality rate and bp�1u/k is the
recruitment rate at the time of reproduction. The focal population
persists when the recruitment rate is higher than its cumulative
mortality rate. The persisting population size is predicted to be
x� ¼ ½ubp�1�kð1�bpÞ�=½ð1�bpÞbp�1� at the time of reproduction
when s41.

We explore the influence of reproductive and demographical
properties on persistence. We first examine the relationship between
u/k and p. Under the assumption of s¼1, we obtain a positive
relationship between u/k and periodicity p (Fig. 1). The upper half of
the curve of s¼1 is the parameter space which allows persistence of
the species. As p increases, a higher value of recruitment rate u/k is
required for persistence. An increased p also indicates a decreased
population size for the focal species. In Fig. 1 we also examine the
effect of adult survival rate b on the above correlation. A higher
survival rate (b) reduces the slope of the curves, indicating a lower
requirement of recruitment rate for species persistence when adult
survival rate is high. The difference in the requirement of recruitment
rate for persistence increases with higher p-values (Fig. 1).

2.2. Synchronous reproduction

In the case of synchronized reproduction, the two species
reproduce at periods of p1 and p2, respectively. Synchrony of two
reproductive events takes place at a period of the least common
multiples (p) of p1 and p2, where p¼m1p1¼m2p2 and m1 and m2

are positive integers. Parameters m1 and m2 are the frequencies of
flowering events of species x and y, respectively, between any two
synchronized reproductive events.

When two species reproduce simultaneously, the community
exhibits a large floral display and presents a large quantity of
resources for pollinators thus enhances pollination rates (Callaway,
1995). Massive flowering is then followed by enhanced mast fruiting.



Fig. 2. Phase diagram. This case contains two reproductive periods p1 and p2. The

condition of s1o1 and s2o1 leads to extinction of both species (Region A). The

condition of s141 and s241 leads to the coexistence of two species (Region D).

Under the condition that s141 and s2o1, species x becomes the sole existence

for the system if sxo1 (Region B1). When s141 and s2o1, species y could

invade the system if sx41 (Region B2). Under the condition that s241 and

s1o1, species y becomes the only survivor when syo1. Species x could only

invade the system when sy41 (under the condition that s241 and s1o1).
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Flower and seed numbers of each species may reach an upper limit
due to resource limitation, hence the saturated recruitment function.
Seed germination and subsequent recruitment often drop to a lower
level due to predation, results in a low recruitment rate while repro-
ducing asynchronously. Synchronized seeding, which may satiate
seed/seedling predators, often leads to higher seed/seedling survival
(Sun et al., 2007). We describe this enhancement on recruitment by
using the Michaelis–Menten kinetics, which allows enhancement at
each level of community participation yet concerns resource limita-
tion on facilitation at high level of reproduction. The recruitment
enhancement functions are written as l1¼1+v1yn/(a1+yn) and
l2¼1+v2xn/(a2+xn), where v1 and v2 are maximum enhancement
rates for species x and y, respectively. Parameters a1 and a2 are the
half-saturation sizes of the populations.

The model for the case of synchronized reproduction is as the
following:

f ðn,xn,ynÞ ¼

FðxnÞ na0ðmodp1Þ

FðxnÞþh1ðxnÞ n¼ 0ðmodp1Þ, na0ðmodp2Þ

FðxnÞþh1ðxnÞl1ðynÞ n¼ 0ðmodp1Þ, n¼ 0ðmodp2Þ

8><
>:

9>=
>; ð2Þ

gðn,xn,ynÞ ¼

GðynÞ na0ðmodp2Þ

GðynÞþh2ðynÞ n¼ 0ðmodp2Þ, na0ðmodp1Þ

GðynÞþh2ðynÞl2ðxnÞ n¼ 0ðmodp1Þ, n¼ 0ðmodp2Þ

8><
>:

9>=
>;
ð3Þ

where F(xn)¼b1xn and G(yn)¼b2yn, 0ob1, b2o1. Recruitment
functions are h1(xn)¼u1xn/(k1+xn) and h2(yn)¼u2yn/(k2+yn),
where u1 and u2 are recruitment rates for species x and y,
respectively, when each species reproduces alone.

With routine computations on (2) and (3), we obtain the
following p-map:

x¼ Fðx,yÞ ¼ bp1

1 f ðm1�1ÞðxÞþh1ðb
p1�1
1 f ðm1�1ÞðxÞÞl1ðb

p2�1
2 gðm2�1ÞðyÞÞ

y¼ Gðx,yÞ ¼ bp2

2 gðm2�1ÞðyÞþh2ðb
p2�1
2 gðm2�1ÞðyÞÞl2ðb

p1�1
1 f ðm1�1ÞðxÞÞ

8<
:

9=
;
ðA2Þ

where f ðxÞ ¼ bp1

1 xþh1ðb
p1�1
1 xÞ, f ðm1�1ÞðxÞ ¼ f ðf ðf � � � ðf ðxÞÞÞÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

m1�1 times

,

gðyÞ ¼ bp2

2 yþh2ðb
p2�1
2 yÞ, and gðm2�1ÞðyÞ ¼ gðg � � � ðgðxÞÞÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

m2�1 times

. In appendix

(Lemma 2) we show that every positive orbit Oþ
ðx0 ,y0Þ

¼ fðxn,ynÞg
1
n ¼ 0,

provided x0, y040, is bounded.
There exists three fixed points (Appendix) for the system (A2):

(0, 0), (xn, 0), and (0, yn). Stability of these fixed points indicates
possibilities of species persistence and coexistence. We explore
demographical and reproductive requirement for sustainability of
the system with stability analysis. We first obtain the Jacobian of
the discrete map (A2) at (x, y)

Jðx,yÞ ¼

@F
@x

@F
@y

@G
@x

@G
@y

2
4

3
5 ð4Þ

where

@F

@x
¼ ðbp1

1 þbp1�1
1 h1u ðb

p1�1
1 f ðm1�1ÞðxÞÞl1ðb

p2�1
2 gðm2�1ÞðyÞÞÞ

d

dx
f ðm1�1ÞðxÞ

� �
@F

@y
¼ h1ðb

p1�1
1 f ðm1�1ÞðxÞÞbp2�1

2 l1u ðb
p2�1
2 gðm2�1ÞðyÞÞ

d

dy
gðm2�1ÞðyÞ

� �
@G

@x
¼ h2ðb

p2�1
2 gðm2�1ÞðyÞÞbp1�1

1 l2u ðb
p1�1
1 f ðm1�1ÞðxÞÞ

d

dx
f ðm1�1ÞðxÞ

� �
@G

@y
¼ ðbp2

2 þbp2�1
2 h2u ðb

p2�1
2 gðm2�1ÞðyÞÞl2ðb

p1�1
1 f ðm1�1ÞðxÞÞÞ

d

dy
gðm2�1ÞðyÞ

� �
ð5Þ
We then conduct stability analysis for the fixed points in the
following sections.

2.2.1. Stability of (0, 0)

From (5) we obtain eigenvalues of J(0,0): l1 ¼ ðb
p1

1 þbp1�1
1 u1=k1Þ

m1

and l2 ¼ ðb
p2

2 þbp2�1
2 u2=k2Þ

m2 . Let s1 ¼ ðb
p1

1 þbp1�1
1 ðu1=k1ÞÞ and

s2 ¼ ðb
p2

2 þbp2�1
2 ðu2=k2ÞÞ. We obtain local asymptotical stability for

the fixed point (0,0) when s1o1 and s2o1 (Theorem 3, appendix).

We restate s1o1 and s2o1 as bp1�1
1 u1=k1o1�bp1

1 and

bp2�1
2 u2=k2o1�bp2

2 . Terms on the left hand side of the two restated

formulas are recruitment rates of the two populations at the time
of reproduction while the terms on the right hand sides are the
cumulative mortality rates. When both cumulative mortality
rates exceed the recruitment rates, the two populations become
extinct at the steady state (Theorem 3, appendix). In this case,
recruitment facilitation has no effect on the extinction of both
species (Region A, Fig. 2). On the other hand, when recruitment
rates are higher than mortality rates, i.e. s141 and s241, both
populations persist in the community and could reach a steady
state with population sizes of xc and yc (Theorem 7, appendix;
Region D, Fig. 2). We will discuss on the species coexistence in
region D again in later sections.

The first eigenvalue l1 is enlarged by m1 power and the second
eigenvalue l2 by m2 power in the case of synchronous reproduction
compared to the eigenvalue in the one-dimension case. The para-
meters m1 and m2 are positive integers indicating frequencies of
reproduction during the interval of two synchronous flowering
events. The frequencies of reproduction do not affect the stability
for the equilibrium (0, 0). Yet the speed of convergence of trajec-
tories towards the equilibrium is faster when m1 and m2 are large.

2.2.2. Stability of (xn, 0)

When s141, there exists a unique fixed point (xn, 0). The
equilibrium population size xn is the unique positive root of f(x)¼x
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(Theorem 4, appendix) and x� ¼ ½u1bp1�1
1 �k1ð1�bp1

1 Þ�=½ð1�bp1

1 Þ

bp1�1
1 �40. From the stability analysis (Theorem 4(i), appendix)

we obtain eigenvalues from the Jacobian of map (A2) at
ðx�,0Þ: l1 ¼ ðf uðx

�ÞÞ
m1 o1 and l2 ¼ ðb

p2

2 þb p2�1
2 ðu2=k2Þ � l2ðb

p1�1
1 x�ÞÞ�

ðb p2

2 þb p2�1
2 ðu2=k2ÞÞ

m2�1 :¼ sx. The later can be reformulated as

sx ¼ s2
m2�1 s2þb p2�1

2

u2

k2

k1ðs1�1Þ

a2ð1�b p1

1 Þþk1ðs1�1Þ
v2

 !
:¼H2 v2ð Þ

ð6Þ

where H2ðv2cÞ ¼ 1 is satisfied, i.e. sx¼1, we obtain the critical
strength of recruitment enhancement v2c.

Formula (6) describes the dynamical performance of popula-
tion y in the existence of population x. A sx41 indicates existence
of population y. By definition, the enhancement function l2 is
greater than one, thus s241 always leads to sx41 (Remark 1,
appendix). This confirms our conjecture in the previous section
that in the case of s141 and s241, species x and y co-occur in
the community (Region D, Fig. 2).

Under the condition of s141 and 0os2o1, two outcomes
are possible. When considering a small recruitment enhancement
(a small v2), we observe sxo1 and (xn, 0) is asymptotically stable.
Thus population y could not persist in the system (Region
B1, Fig. 2). On the other hand, a sufficiently large enhancement
(a large v2) leads to sx41 and the fixed point (xn, 0) becomes
unstable. The high recruitment facilitation provided by species x

enables species y to remain in the community (Region B2, Fig. 2).
In this case, the two species coexist in the system even though
species y does not persist alone.

The enhancement function l2 is a function of the net popula-
tion growth of species x, i.e. s1 and the recruitment enhancement
rate provided by species x, i.e. v2. For a fixed sx we observe a
negative correlation between s1 and v2. Hence, when population
x grows slowly, a higher recruitment enhancement rate is needed
in order to maintain population y (Fig. 3).

2.2.3. Stability of (0, yn)

Using similar skill used in the previous section, we examine
the stability of (0, yn) and obtain sy that describes the dynamic
behavior of species x in the presence of species y: sy ¼ ðb

p1

1 þbp1�1
1
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x
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v2
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v2c(2.9) v2c(1.4) v2c(1.1)

Fig. 3. Correlation between parameters sx and v2. The three inclining lines and the

line of sx¼1 intersect at v2c, the lower bound of v2c needed so that population y

may persist in the community. We obtain these relations under of: b2¼0.9, p2¼2,

u2/k2¼0.01, b1¼0.9, p1¼1, and (1) u1/k1¼2, (2) u1/k1¼0.5, and (3) u1/k1¼0.2 for

lines of high, medium and low s1 values.
ðu1=k1Þl1ðb
p2�1
2 y�ÞÞðbp1

1 þbp1�1
1 ðu1=k1ÞÞ

m1�1 (Appendix). With similar
underlying principles described in the previous section, we
distinguished region C1 and C2 of Fig. 2. The region C1 is the
parameter space where species x is not able to invade the system
of species y. When sy41, species x can successfully invade the
system. Again, invasion of species x is possible because a sufficiently
strong reproductive facilitation on population x increases sy, even
though x is not self-sustainable. Similar to the case of (xn, 0), it
requires a higher recruitment enhancement rate (n1) to maintain
population x when net population growth of the facilitating species
(y) is low (a small s2).

2.2.4. Species coexistence and reproductive frequency

Coexistence of two species is possible when both species are self-
sustainable (s141 and s241). However, it is also possible for the
two species to coexist even when one of the species has a negative
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k2, and a2. Species x and y have the same adult survival rates b1¼b2¼0.9 and their

reproductive periods are p1¼1, p2¼2. Initial conditions for all three cases are

x0¼100, and y0¼100. All three cases showed species coexistence.
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net population growth (s1o1 or s2o1) and is unable to persist
alone. We reformulate sx41 and sy41 as the following:

sm2�1
2 bp2�1

2 ðu2=k2Þl2ðb
p1�1
1 x�Þ41�sm2�1

2 bp2

2 ð7Þ

sm1�1
1 bp1�1

1 ðu1=k1Þl1ðb
p2�1
2 y�Þ41�sm1�1

1 bp1

1 ð8Þ

where parameters m1 and m2 are frequencies of flowering for
species x and y during the interval between two synchronous
events, respectively. Flowering frequencies m1 and m2 not only
affects the speed of convergence but also the invasion of species y to
the system of species x (Region B2, Fig. 2) and vice versa (Region
C2, Fig. 2). In region B2, described by (7), a large m2 (i.e. a small p2),
which implies a higher frequency of reproduction for species y,
lowered the requirement of v2 so that (7) holds. The same principle
applies for the invasion by species y.
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from x0¼10, and y0¼100 and simulations (d)–(f) x0¼100, and y0¼10. All three cases s

values.
We conjecture that the uniqueness of the positive fixed point
holds for the parameter regions B2, C2, and D. For all cases of
coexistence (B2, C2, and D), there exists a unique positive fixed
point which is asymptotically stable and both population sizes
fluctuate periodically (Fig. 4). We demonstrated that the equili-
brium points for regions B2, C2, and D in Fig. 2 are independent
from the initial conditions (x0, y0) (Fig. 5).
3. Discussion

Species coexist in a community interact constantly. Previous
literature recognizing relations among sympatric species greatly
focused on direct interactions such as predation and competition.
These interactions may lead to species exclusion if no mechanisms
lessening the negative effect on one another intervene. Reports on
non-trophic, indirect interactions, such as interference competition
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All conditions follows Fig. 4 except the initial conditions: simulations (a)–(c) start

howed species coexistence and (xN, yN) are the same despite the different initial
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and facilitation suggested complexity and diversity of inter-specific
interaction (Strauss, 1991). Recently, work on indirect facilitation
and mutualism brought about more discussion on its importance for
species coexistence (Callaway and Walker, 1997).

Plants exhibit several indirect mutualistic interactions such as
shading (Callaway, 1998), nursing and provision of nesting sites
(Bronstein, 2009). These positive interactions rely on differen-
tiated requirement of resources for success. Earlier work suggested
that species sharing the same pollinators compete for these agents
and evolve character displacement to partition the utilization of
pollinators (Ashton et al., 1988; Stone et al., 1998). However,
Moeller (2004) observed no character displacement in flowering
time of several Clarkia species. Moreover, tropical studies reported
synchronized plant reproductive events in many occasions (Sakai
et al., 1999; Curran and Leighton, 2000; Chen, 2007). These evi-
dences may suggest mutualism rather than competition for species
sharing the same resource. A recent study on plant pollination
reported improved pollination success of the focal species from
mixing with several other species (Moeller, 2004; Ghazoul, 2006).
Experimental tests to investigate benefits of synchronized reproduc-
tion for multiple plant species are rare due to difficulties in data
collection across large temporal and spatial scales (Andersen, 1989;
Augspurger, 1981; Crawley and Long, 1995).

We describe here a hypothetical system of two species that
reproduce periodically with difference equations. Periodic repro-
duction is widely observed in many forests (Sakai, 2001) yet
rarely included in theoretical models (Holland and DeAngelis,
2010). This model differs from the Feldman et al. (2004) model in
the use of discrete time approach and considers periodic produc-
tions of progenies. We focus more on the periodic reproductive
behavior of the two species. The assumption of periodicity leads
to intermittent facilitation. We assumed saturation function for
recruitment with the consideration of resource limitation, both
biotic and abiotic. For example, flower number may be limited by
resource and fruit number by pollination service. Following
fruiting, recruitment may be further lowered by seed/seedling
predation. Yet the level of seed/seedling mortality is lowered due
to predator satiation. We assumed a saturation function for repro-
ductive facilitation to reflect such effect as the community presents
more seeds. However, this saturation function still take into the
consideration the upper limit set by resource limitation. Although
Feldman et al. (2004) suggested that the sigmoid curve for pollinator
response to resource for facilitation models, we demonstrate that a
saturation curve allows the effect. Our models allow us to analyti-
cally assess the importance of reproductive and demographic para-
meters on species coexistence under periodic patterns.

From the analysis on the model of synchrony, we found that
reproductive facilitation is in aid for species coexistence when at
least one species could persist alone and when the effect of
facilitation from the persisting species to the other is large enough.
The relations of the two populations fall into three types: (1) neither
species can persist (Region A of Fig. 2), (2) only the one species
persists (Regions B1 and C1 of Fig. 2), and (3) two species coexist
(Regions B2, C2, and D of Fig. 2). The first case of extinction of both
species occurs when neither of the net population growth rates is
sufficient to maintain the populations, due to high mortality or low
recruitment. In forest communities, recruitment rates for species are
usually low (De Steven and Wright, 2002). Thus adult survival and
reproductive periodicity is important for population persistence.
When periods of reproduction is extremely long or when adult
survival rates are low, net growth rate may be greatly reduced and
lead to extinction. This is particularly evident in disturbed area and
often lead to loss of species.

In the case of species coexistence, two sources can be identi-
fied. (I) When both species exhibit high net population growth
rates (s141 and s241), coexistence is evident. Because the
model assumes no competition, these two conditions alone are
sufficient for coexistence. (II) Coexistence is possible via strong
reproductive facilitation when s1o1 or s2o1. The ‘‘weaker’’
species with a net population growth (e.g. s1o1) could be
‘‘rescued’’ by the ‘‘superior’’ species, which has a high net popula-
tion growth (e.g. s241). In the rescue regions (Region B2: s141
and s2o1 and region C2: s1o1 or s241), inequalities (7)
and (8) demonstrate increased cumulative mortality rate by the
factor sm2�1

2 . The inequality also implies decreased recruitment
that could be boosted by facilitation function l2. In simulations,
the ‘‘weaker’’ population increases due to reproductive facilitation
from the other species before it goes to extinction due to morta-
lity. The rescue effect is independent from initial values, which
suggest a benefit for rare species. In many natural systems, rare
species suffer from Allee effect with which the species encounter
little mates and face extinction risk. However, mating problem of
rare species may be solved by shared pollinators when these
pollen transmitting agents are attracted or recruited by the other
species (Moeller, 2004). Our result implies that rare species might
benefit from synchronized masting events due reproductive
facilitation.

Although our model did not include cases of non-periodic
flowering, it implies coexistence of episodic masting species through
reproductive facilitation (Appanah, 1985; Corlett, 1990; Numata
et al., 2003; Sakai et al., 1999). Moreover, the positive effect on
recruitment via synchrony may become forces driving the evolution
of inter-specific synchronization (Donaldson, 1993; Janzen, 1974;
Kelly and Sork, 2002). Synchrony of seed production increases seed
availability (Chen, 2007; Metz et al., 2008; Sun et al., 2007) for
species participating in the events. Thus species inhabiting the same
community, though competing for resources, may become mutua-
listic to each other. Our model suggested that the unpredictable and
long intervening interval between mast events requires high recruit-
ment or low adult mortality to sustain the populations. In addition,
with long non-reproductive intervals, higher reproductive enhance-
ment rates are needed to facilitate species coexistence. Further
investigations, both empirically and theoretically, are needed to
explore the evolution of the episodic events.

Our model of synchronized reproduction assumes a system of
adult plants and neglects ecological processes such as resource
competition. However, we do not mean to imply the unimpor-
tance of these processes. Indeed, in the years of high progeny
density, negative density dependence may be in action and count-
eract with reproductive facilitation. However, in systems with
severe seed limitation, important recruitment events may still
depend on enhancement of progeny production and survival.
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Appendix A. Mathematical analysis of the asymptotic
behavior of the maps (A1), (A2)

A.1. One-dimensional dynamics

Consider the following one-dimensional map:

x ¼ FðxÞ : ¼ bpf ðm�1ÞðxÞþhðbp�1f ðm�1ÞðxÞÞ, x40 ðA1Þ
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where m is a positive integer,

f ðxÞ ¼ bpxþhðbp�1xÞ, hðxÞ ¼
ux

kþx
, 0obo1, u,k40

f ðkÞðxÞ ¼ f 3f 3 � � � 3f ðxÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
k�times

Theorem 1. Let fxng
1
n ¼ 1,x040 be the iterates generated by the

map (A1) and s : ¼ bpþbp�1ðu=kÞ. Then
(i)
 If so1, then limn-1 xn ¼ 0.

(ii)
 If s41, then limn-1 xn ¼ x� where xn is the unique positive fixed

point of the map (A1).
Moreover, xn satisfies x� ¼ ðubp�1�kð1�bpÞÞ=ðð1�bpÞbp�1Þ,

xn
¼ f(xn), 0o f 0(xn)o1.

Proof. It is easy to verify the following: huðxÞ ¼ ðuk=ðkþxÞ2Þ40,
h00ðxÞ ¼ �2ðuk=ðkþxÞ3Þo0, f uðxÞ ¼ bpþhuðbp�1xÞbp�140, f 00ðxÞ ¼

h00ðbp�1xÞðbp�1Þ
2o0,

d

dx
ðf ðm�1ÞðxÞÞ ¼ f uðf ðm�2ÞðxÞÞf uðf ðm�3ÞðxÞÞ � � � f uðxÞ40

d2

dx2
ðf ðm�1ÞðxÞÞ ¼ f 00ðf ðm�2ÞðxÞÞ

d

dx
f ðm�2ÞðxÞ

� �
f uðf ðm�3ÞðxÞÞ � � � f uðxÞ

þ � � � þ f uðf ðm�2ÞðxÞÞf uðf ðm�3ÞðxÞ � � � f 00ðxÞÞo0 ðA1:1Þ

f uð0Þ ¼ bpþbp�1 u

k
, f ðkÞð0Þ ¼ f ð0Þ ¼ 0

Fuð0Þ ¼
d

dx
f ðm�1ÞðxÞ

� �����
x ¼ 0

ðbpþhuð0Þbp�1Þ

¼ ðf uð0ÞÞðm�1Þ bpþ
u

k
bp�1

� �
¼ sm

Next we claim that there exists at most one positive fixed point

of the map (A1). Suppose there are two positive fixed points x̂1,x̂2

with 0o x̂1o x̂2. Then F(0)¼0, x̂1 ¼ Fðx̂1Þ and x̂2 ¼ Fðx̂2Þ. By Rolle’s

Theorem, there exists x̂3, x̂4, 0o x̂3o x̂1o x̂4o x̂2 such that

Fuðx̂3Þ ¼ 1 and Fuðx̂4Þ ¼ 1. Apply Rolle’s Theorem again, there exists

x̂5, x̂3o x̂5o x̂4 such that F 00ðx̂5Þ ¼ 0. However, from (A1.1) for any

x40, FuðxÞ ¼ ðbpþhuðbp�1f ðm�1ÞðxÞÞbp�1Þððd=dxÞf ðm�1ÞðxÞÞ40,

F 00ðxÞ ¼ h00ðbp�1f ðm�1ÞðxÞÞ bp�1 d

dx
f ðm�1ÞðxÞ

� �2

þðbpþhuðbp�1f ðm�1ÞðxÞÞbp�1Þ
d2

dx2
ðf ðm�1ÞðxÞÞo0

This leads to a contradiction.

If so1 then F0(0)o1. From the uniqueness of positive fixed

point, the monotonicity of F(x) and F(x)ox for x large, it follows

that the curve y¼F(x) is below the line y¼x. Thus limn-1 xn ¼ 0. If

s41 then F0(0)41. Then there exists a unique positive fixed

point xn. The monotonicity of F(x) implies that limn-1 xn ¼ x�. We

note that x� ¼ Fðx�Þ ¼ f ðf ðm�1Þðx�ÞÞ ¼ f ðmÞðx�Þ. From the uniqueness

of positive fixed point, we have xn
¼ f(xn). It is easy to verify that

f uðx�Þ ¼ bp1

1 þðk1ð1�bp1

1 Þ=k1þbp1�1
1 x�Þo1. &

A.2. Two-dimensional dynamics

Consider the following two-dimensional p-map

x¼ Fðx,yÞ ¼ bp1

1 f ðm1�1ÞðxÞþh1ðb
p1�1
1 f ðm1�1ÞðxÞÞl1ðb

p2�1
2 gðm2�1ÞðyÞÞ

y¼ Gðx,yÞ ¼ bp2

1 gðm2�1ÞðyÞþh2ðb
p2�1
2 gðm2�1ÞðyÞÞl2ðb

p1�1
1 f ðm1�1ÞðxÞÞ

ðA2Þ
where 0ob1, b2o1, m1, m2, p1, and p2 are positive integers,
m1p1¼m2p2¼p,

f ðxÞ ¼ bp1

1 xþh1ðb
p1�1
1 xÞ, gðxÞ ¼ bp2

2 yþh2ðb
p2�1
2 yÞ

h1ðXÞ ¼
u1X

k1þX
, h2ðYÞ ¼

u2Y

k2þY
, ui,ki40, i¼ 1,2

l1ðYÞ ¼ 1þ
v1Y

a1þY
, l2ðXÞ ¼ 1þ

v2X

a2þX
, vi,ai40, i¼ 1,2 ðA2:1Þ

Lemma 2. Every positive orbit Oþ
ðx0 ,y0Þ

¼ fðxn,ynÞg
1
n ¼ 0 of the

map (A2) with x0, y040 is bounded.

Proof. From the map (A2) and (A2.1), we have

Fðx,yÞr ~F ðxÞ : ¼ bp1

1 f ðm1�1ÞðxÞþð1þv1Þh1ðb
p1�1
1 f ðm1�1ÞðxÞÞ

Gðx,yÞr ~GðyÞ : ¼ bp2

2 gðm2�1ÞðyÞþð1þv2Þh2ðb
p2�1
2 gðm2�1ÞðyÞÞ ðA2:2Þ

Let f ~xng, ~x0 ¼ x0,fyng, ~y0 ¼ y0 be the iterates generated by the

maps x¼ ~F ðxÞ, y¼ ~GðyÞ, respectively. Claim: xnr ~xn, ynr ~yn,

n¼ 1,2. . .. From the monotonicity of ~F ðxÞ and (A2.2), we have

x1 ¼ Fðx0,y0Þr ~F ðx0Þ ¼ ~x1

x2 ¼ Fðx1,y1Þr ~F ðx1Þr ~F ð ~x1Þ ¼ ~x2

^

xn ¼ Fðxn�1,yn�1Þr ~F ðxn�1Þr ~F ð ~xn�1Þ ¼ ~xn

Similarly we can prove that ynr ~yn, for n¼ 1,2,. . .,n. By

Theorem 1, either limn-1 ~xn ¼ 0 or limn-1 ~xn ¼ ~x
�

n40. Hence

fxng
1
n ¼ 0 is bounded. Similarly, we have that fyng

1
n ¼ 0 is bounded.

Thus we complete the proof of Lemma 2. &

Theorem 3. Let s1 : ¼ bp1

1 þbp1�1
1 ðu1=k1Þ, s2 : ¼ bp2

2 þbp2�1
2 ðu2=k2Þ.
(i)
 If s1o1 and s2o1, then the fixed point (0, 0)is asymptotically

stable.
(ii)
 If ~s1 ¼ bp1

1 þbp1�1
1 ðu1ð1þv1Þ=k1Þo1, then limn-1 xn ¼ 0 .
(iii)
 If ~s2 ¼ bp2

2 þbp2�1
2 ðu2ð1þv2Þ=k2Þo1, then limn-1 yn ¼ 0 .
Proof.
(i)
 The local stability of (0, 0) is established in Section 2.2.

(ii)
 From the proof of Lemma 2 and Theorem 1, we have xnr ~xn

and limn-1 ~xn ¼ 0. Hence ~s1o1 implies limn-1 xn ¼ 0.

(iii)
 Similarly, ~s2o1 implies limn-1yn ¼ 0.
Let

sx : ¼ bp2

2 þbp2�1
2

u2

k2

� �m2�1
bp2

2 þbp2�1
2

u2

k2
l2ðb

p1�1
1 x�Þ

� �
sy : ¼ bp1

1 þbp1�1
1

u1
k1

� �m1�1
bp1

1 þbp1�1
1

u1
k1

l1ðb
p2�1
2 y�Þ

� �
&

ðA2:3Þ

Theorem 4. Let 0os2o1,s141.
(i)
 If sxo1, then the fixed point (xn, 0) of the map (A2) is asym-

ptotically stable, where xn is the unique fixed point of x¼ bp1

1

f ðm1�1ÞðxÞþh1ðb
p1�1
1 f ðm1�1ÞðxÞÞ.
(ii)
 If sxo1 and ~s2 ¼ bp2

2 þbp2

2 ðu2ð1þv2Þ=k2Þo1, then (xn, 0) is

globally asymptotically stable.
(iii)
 If sx41, then there exists a positive fixed point (xc, yc) of the

map (A2) satisfying xc4xn.
Proof. (i) From (5) and (8) we have @G=@xðx�,0Þ ¼ 0. Hence
from Theorem 1 (ii) and (5) the eigenvalues of J(xn, 0) are

l1 ¼
@F

@x
ðx�,0Þ ¼ ðbp1

1 þbp1�1
1 h11u ðb

p1�1
1 x�ÞÞðf uðx�ÞÞm1�1

¼ ðf uðx�ÞÞm1 o1



Y.-Y. Chen, S.-B. Hsu / Journal of Theoretical Biology 274 (2011) 136–144 143
l2 ¼
@G

@y
ðx�,0Þ ¼ ðb2

p2þb2
p2�1h2u ð0ÞÞl2ðb

p1�1
1 x�Þðguð0ÞÞm2�1

¼ l2ðb
p1�1
1 x�Þðguð0ÞÞm2 ¼ : sx

Thus if sxo1 then (xn, 0) is asymptotically stable.
(i)
 The local stability of (xn, 0) is established in the Section 2.2.

(ii)
 From Theorem 3 (iii), it follows that limn-1yn ¼ 0. Then the

asymptotic stability of (xn, 0) implies that limn-1ðxn,ynÞ

¼ ðx�,0Þ.

(iii)
 For any fixed yZ0, from Theorem 1 and the hypothesis

s141, there exists a unique positive fixed point j(y) of
x¼ Fðx,yÞ. Obviously j(0)¼xn and j(y) is strictly increasing
in y. Consider the map y ¼ GðjðyÞ,yÞ. It is easy to verify that
ðd=dyÞGðjðyÞ,yÞ9y ¼ 0 ¼ sx. Thus the condition sx41 implies
the existence of a unique positive fixed point yc of the map
y¼ GðjðyÞ,yÞ.
Thus a positive fixed point (xc, yc) exists with xc¼j(yc)4

j(0)¼xn. &

Remark 1. Since ~s2o1 implies sxo1, it is impossible that ~s2o1
in case (iii) of Theorem 4.

Similarly, we have the following Theorem.

Theorem 5. Let 0os1o1,s241, then
(i)
 if syo1, then the fixed point (0, yn) of the map (A2) is asymp-

totically stable where yn is the unique positive fixed point of

y¼ bp2

2 gðm2�1ÞðyÞþh2ðb
p2�1
2 gðm2�1ÞðyÞÞ .
(ii)
 If syo1 and ~s1 : ¼ bp1

1 þbp1�1
1 ðu1ð1þv1Þ=k1Þo1 , then (0, yn)

is globally asymptotically stable.

(iii)
 If sy41, then there exists a positive fixed point (xc, yc) of the

map (A2) satisfying yc4yn.
Remark 2. Since ~s1o1 implies syo1, it is impossible that
~s1o1 in case (iii) of Theorem 5.

Theorem 6. If s141 and s241, then there exists a positive fixed

point (xc, yc) of the map (A2) with xc4xn and yc4yn.

Proof. From (A2.3) we note that s141 implies sy41 and s241
implies sx41. For any fixed xZ0, from Theorem 1 the map
y ¼ Gðx,yÞ has a unique positive fixed point j(x). Obviously
j(0)¼yn and j(x) is strictly increasing in x. Consider the map
x¼ Fðx,jðxÞÞ. It is easy to verify that ðd=dxÞFðx,jðxÞÞ9x ¼ 0 ¼ sy41.
Hence by Theorem 1, there exists a unique positive fixed point xc

of F(x, j(x)) satisfying xc4xn. Thus there exists a positive fixed
point (xc, yc) with yc¼j(xc)4yn.

In the following we shall state the results about the global

behavior of iterates of the map (A2), provided that the uniqueness

of the positive fixed point (xc, yc) holds. &

Definition. Consider a discrete map x¼ f ðxÞ where f : Rn
þ-Rn

þ ,
f ¼ ðf1. . .fnÞAC1, Rn

þ ¼ fðx1. . .xnÞ, xiZ0, i¼ 1,2,. . .,ng. We say the
discrete system x¼ f ðxÞ is cooperative if ð@fi=@xjÞðxÞZ0 for all ia j

and for all xARn
þ .

Theorem A. (Jiang, 1994). Let p be a fixed point of the cooperative

system x¼ f ðxÞ. Assume that for each xARn
þ , the positive orbit O+(x)

is bounded. If p is a unique fixed point then p is globally asympto-

tically stable in Rn
þ .

Remark 3. In his paper, Jiang prove Theorem A for a cooperative
system x0 ¼ f(x). It is easy to verify that the Theorem A also holds
for a cooperative map x¼ f ðxÞ. For the mathematical properties of
cooperative map the reader may consult the review paper by
Hirsch and Smith (2005).

Let XARn
þ , X0 ¼ IntðRn

þ Þ, @X0 ¼ bdryðRn
þ Þ.

Definition. A discrete map x¼ f ðxÞ, f : X-X is said to be uni-
formly persistent with respect to X0, and qX0 if there exists Z40
such that limn-1 Inf dðf nðxÞ,@X0ÞZZ for all xAX0.

The following is a uniform persistence Theorem for discrete
map x¼ f ðxÞ.

Theorem B. (Freedman and So, 1989). Let the following (1)–(7)
hold:
(1)
 f:X-X is a continuous function.

(2)
 f(qX0)CqX0
(3)
 f(X0)DX0
(4)
 O+(x) is a bounded positive orbit for all xAX
(5)
 f9qX0 is dissipative
(6)
 f9qX0 has an acyclic covering p¼ M1. . .MRf g
(7)
 There is no positive orbit fxngnAZþ such that fxngnAZþ �W þ ðMiÞ

for some i. Then the map x¼ f ðxÞ is uniformly persistent with

respect to qX0.
Applying Theorems A and B to the map (A2) yields the
following results:

Theorem 7. Let
(i)
 s141 and s241,

(ii)
 s141, 0os2o1, and sx41,
(iii)
 s241, 0os1o1, and sy41.
If one the (i)–(iii) holds then the map (A2) is uniformly persistent.

Furthermore if the positive fixed point (xc, yc) is unique then (xc, yc) is

globally asymptotically stable in R2
þ .

Proof. We only prove the theorem for case (i). The case (ii) and
(iii) can be proved using similar arguments. Let sx41 and sy41.
Then (xn, 0) and (0, yn) are repellers with respect to IntðR2

þ Þ. Thus
by Theorem B, the map (A2) is uniformly persistent. From
Theorem A, if the positive fixed point (xc, yc) is unique then (xc,
yc) is globally asymptotically stable in IntðR2

þ Þ. &

Remark 4. We conjecture that under either of the assumptions
(i), (ii), (iii), the positive fixed point (xc, yc) of the map (A2) is
unique.
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