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Abstract: A classical chemostat model is considered that models the cycling of one essential abi-

otic element or nutrient through a food chain of three trophic levels. The long-time behavior of the2

model was known to exhibit complex dynamics more than 20 years ago. It is still an open problem

to prove the existence of chaos analytically. In this paper we aim to solve the problem numerically.4

In our approach we introduce an artificial singular parameter to the model and construct singular

homoclinic orbits of the saddle-focus type which is known for chaos generation. From the config-6

uration of the nullclines of the equations that generates the singular homoclinic orbits a shooting

algorithm is devised to find such Shilnikov saddle-focus homoclinic orbits numerically which in8

turn imply the existence of chaotic dynamics for the original chemostat model.

Key Words: Chemostat model, Holling type II predation, Shilnikov’s saddle-focus homoclinic10

orbit, chaos, shift dynamics, singular perturbation, shooting method

Lead Paragraph:Chemostats are relatively easy to set up in laboratory to study microbial12

population interactions. A chemostat model was known for complex dynamics more than

twenty years ago. But researchers have not come up with a mathematical proof for the sus-14

pected chaotic behavior. Reported here in this paper is the next-best solution for the problem,

namely a computer-assisted proof for the existence of chaos outside the margins of numeri-16

cal error. The strategy and method can be used to obtain conclusive proof in silico of chaos

because mathematical proof is almost always next to impossible to construct for all physical18

systems.

1. Introduction. A chemostat is a laboratory device consisting of three connected vessels. The20

first is the feed bottle contains all of the nutrients needed for the growth of a microorganism. The

nutrient is pumped from the feed vessel into the culture vessel where the microorganisms grow and22

are well-mixed with nutrients. The third vessel is the overflow or collection vessel where nutrients,

organisms and product produced pumped from the culture vessel. The chemostat is perhaps the24

best laboratory idealization of nature for population studies ([1, 2]). It is a dynamical system with

continuous material input and output. The input and removalof nutrients mimic the continuous26

turnover of nutrients in nature. The washout of organisms isequivalent to non-age specific death,

predation or emigration which always occurs in nature. The close parallels in nature are planktonic28
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Figure 1: The Smith-Waltman chemostat attractor of Eq.(5) for (a)a3 = 0.24, (b) a3 = 0.2, with
all other parameter values:a1 = 0.08, a2 = 0.23, m1 = 10, m2 = 4, m3 = 3.5.

communities of unicellular algae in lakes and oceans. The multiple species communities receive

nutrient inputs from streams, draining watersheds or continental margins ([3]).30

In this article we consider a three trophic levels food chainmodel in the chemostat with sub-

strate (nutrient), producer (alga), consumer, predator. For the case of substrate-producer system32

one can show that either producer goes extinct (if the input concentration is too small to support

the producer) or it converges to an equilibrium [4]. The survival of the organism satisfies an equa-34

tion which is similar to a logistic equation. For the case of substrate-producer-consumer system,

one can reduce it to a two-dimensional predator-prey system. It was analyzed in [5, 4] that either36

the solution converges to a positive equilibrium or there isa limit cycle. On the other hand, the

predator-prey system with logistic growth for the prey and Holling type functional response for38

the predator satisfies that either the solution converges toa positive equilibrium or it converges to

a unique limit cycle ([6, 7]). For one-prey-two-predator case, interested readers may consult the40

papers [8, 9, 10]. It is well-known ([11, 12, 13, 14, 15]) thatfor a prey-consumer-predator system

with logistic growth for the prey, Holling type-II functional responses for the consumer and preda-42

tor chaos may occur. In this article we study the substrate-producer-consumer-predator system in

chemostat. By conservation of population densities, we reduce the system to producer-consumer-44

predator system. In their book [4](p.75) Smith and Waltman discovered a probable chaos in this

closed system, see Fig.1. Since then researchers have wanted to answer the question whether their46

finds are merely periodic orbits or real chaotic attractors.But the problem remains open because

proving chaos is always hard for differential equations.48

The possibility that the model may only be capable of periodic orbits is not without his-
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torical precedence in dynamical systems. After Smale proved that any arbitrary 3-dimensional50

smooth flow in a bounded region can be imbedded in a 4-dimensional competitive system (x′

i =

xiNi(x), ∂Ni(x)/∂xj ≤ 0 for j 6= i, i = 1, 2, 3, 4, [16]), the classical Lotka-Volterra system of52

competing species ([17, 18, 19]) gained considerable attention. With the discovery of Smale’s

horseshoe dynamics ([20]) that is embedded in the 3-dimensional Cartwright-Littlewood equa-54

tions ([21, 22]), we know 4-dimensional competitive systems can be surely chaotic. That leads

researchers to suspect that 3-dimensional competitive systems may be capable of dynamics more56

complex than periodicity. However, the 3-dimensional competitive LV system has now been

classified into qualitative equivalence classes which can only have periodic cycles and equilib-58

rium solutions, see [23] for more references. Nonetheless most researchers are agreed that the

Smith-Waltman attractor is a chaotic kind because three-trophic food chain models are known to60

behave chaotically as early as 1978 ([12]) and proved so later for singularly perturbed models

([13, 14, 15, 24, 25]). For other types of food-chain and food-web chaos, see [26, 11, 27, 28].62

However, there is a key difference between chemostat modelsand food-chain models. The

former is “closed” in the sense that the total amount of the substrate is a constant. In contrast,64

non-chemostat food chains are open in the sense that the total biomass tracked by the models are

allowed to vary. Because of this “openness” the growth ratesof the interacting species for the66

latter can vary significantly, allowing a multi-time scale,i.e. singular perturbation analysis for

the problem ([29]). The existence of food-chain chaos was indeed obtained by making use of the68

multi-time property of the food-chain model ([13, 14, 15, 24, 25, 28]).

Constrained by their closeness a singular perturbation approach is not known to apply for70

chemostat models. However, the geometric analysis of the nullcline surfaces for singularly per-

turbed systems are equally valid and perhaps more indispensable for general differential equations.72

In addition, as the nutrient works its way through the food chains from lower trophic levels to

higher levels, the growth rates of chemostat species do behave similarly as if they are multi-time74

scaled: from fast to slow. This gives an empirical as well as apractical justification to treat a

chemostat model artificially as an explicit singularly-perturbed system. Our idea is to use the same76

singular perturbation techniques, which are proved to be very effective for food-chain chaos, to

locate first auxiliary singular chaotic attractors, and then to locate real chaotic attractors nearby for78

the chemostat model by continuing the artificial singular parameter value to its chemostat value.

The main theoretical difficulty lies in the continuation problem which remains unsolved. In this80

paper we will demonstrate chemostat chaos numerically instead.

For any mathematical model of a physical process, simple or complex, proving chaos is always82

hard. But one strategy is easier to execute. It only requiresthe existence of a Shilnikov’s saddle-

focus homoclinic orbit ([30, 31, 32, 33, 34]). More specifically, it says that for a 3-dimensional84

system of ordinary differential equationsẋ = f(x), if there exists a homoclinic orbitγ(t) to an

equilibrium pointp of the Shilnikov type, then the dynamics of the system must bechaotic. The86

3



Shilnikov type equilibrium point is a saddle-focus which without loss of generality by time-reversal

if necessary has one negative real eigenvalueλs < 0 and a pair of unstable complex eigenvalues88

λu = α± iβ satisfying

0 < Reλu = α < −λs, Imλu = β > 0. (1)

Obviously, such a homoclinic orbit spirals out from the equilibrium along a tangential direction of90

the 2-dimensional unstable eigenspace and approaches the equilibrium along a tangential direction

of the 1-dimensional stable eigenspace. Inside a small neighborhood of the orbit, the dynamics92

contains at the minimum a Smale’s horseshoe, having infinitely many periodic orbits and uncount-

ably many aperiodic orbits.94

In fact, the most inclusive version ([33]) for the chaoticness of the dynamics is to say that a

sub-dynamics near the orbit is topologically conjugate to aρ-block shift dynamics{σ,Bρ} for96

any 1 < ρ < −λs/Reλu. HereBρ is a subset of doubly infinite sequences of block symbols

s = . . . s̄−1.s̄0s̄1s̄2 . . . with s′ = σ(s) being the same sequences except that the zero coordinate is98

shifted one block to the right if̄s0 is a finite block. More specifically, if a symbolsi ∈ N̄ is a finite

natural number, wherēN is the compactification of the natural numbersN at the infinity∞, then100

s̄i = si · · · si repeats the symbolsi many times. Ifsi = ∞ andi ≥ 0, thens̄i = ∞∞· · · is the

infinite right sequence of the∞ symbol. If i < 0 andsi = ∞, thens̄i = · · ·∞∞ is the infinite102

left sequence of the∞ symbol.Bρ is the subset of doubly block symbol sequences for which each

block sequence satisfiessi+1 ≤ ρsi for all i ∈ Z. It inherits the product topology of the doubly104

infinite product space of the compactified natural numbers,N̄
Z. It is straightforward to show that

this system in fact contains infinitely many copies of the shift dynamics on any finite symbols,106

including infinitely many Smale’s horseshoe maps as a special case. It also includes uncountably

many orbits from the unstable manifolds that remains insidethe neighborhood, corresponding to108

sequences of the typē∞s̄n . . . s̄−1.s̄0s̄1s̄2 . . . with n ≤ −1 andsi+1 ≤ ρsi for i ≥ n. Especially,

it also includes the sequencē∞.∞̄, representing the homoclinic orbit. In precise terms, the result110

of [33] states that there is a compact subsetΛ of any cross-section of a Shilnikov’s saddle-focus

homoclinic orbit of any sufficiently smooth vector field so that the flow-induced Poincaré return112

map onΛ is topologically conjugate to the block shift dynamics{σ,Bρ} for any ρ satisfying

1 < ρ < −λs/Reλu.114

A singularly perturbed food-chain model was proved to have aparameter region for such ho-

moclinic orbits ([14]). Singularly perturbed systems can also be explicitly constructed to have116

such orbits ([35, 36]). The goal of this paper is to demonstrate numerically that near the Smith-

Waltman parameter value the chemostat model has a Shilnikov’s saddle-focus homoclinic orbit,118

hence demonstratingin silico that chaos exits in the sense of the block shift dynamics for the

classical 3-dimensional chemostat model.120
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2. Chemostat Model. Consider a chemostat of a liquid medium of a fixed volumeV with a

substrate solution continuously pumped in at a constant flowrater and a substrate concentrationc.122

The well-mixed liquid is also continuously pumped out at thesame flow rater. The substrate can be

a type of nutrient or an element essential for life as a commoncurrency, such as carbon, or nitrogen,124

or iron etc. LetS denote the amount of the substrate that is present in the chemostat and suppose

there is a producer feeding on the substrate, a consumer of the producer, and a predator of the126

consumer with, respectively,X, Y , andZ amounts of the substrate. Examples of such chemostats

can be a saltwater or freshwater tank or habitat in which the producer is a phytoplankton, the128

consumer is a zooplankton grazing on the plant, and the predator is another zooplankton. If we

assume the Holling Type II functional form ([37]), then the uptake rate ofS per unit ofX is130

u1S

1 + h1u1S

whereu1 is the encounter rate,h1 is the handling time byX. Similarly, the consumption rate ofX

per unit ofY , and the predation rate ofY per unit ofZ are132

u2X

1 + h2u2X
,

u3Y

1 + h3u3Y
,

respectively. Assume these species are microorganisms subject to the washout, then the chemostat

system is modeled by the following system of equations:134















































Ṡ = wN − wS − u1S

1 + h1u1S
X

Ẋ =
u1S

1 + h1u1S
X − wX − u2X

1 + h2u2X
Y

Ẏ =
u2X

1 + h2u2X
Y − wY − u3Y

1 + h3u3Y
Z

Ż =
u3Y

1 + h3u3Y
Z − wZ

(2)

wherew = r/V denotes the volume-metric flow rate, andN = cV the possible maximal amount

of the substrate in the chemostat. LetK = S +X + Y + Z be the total amount of the substrate in136

the system. Then by summing up all the equations above,K satisfies

K̇ = wN − wK

which in turn impliesK(t) converges exponentially fast to the constantN . Therefore, to study the138

longtime behavior of the chemostat we only need to assume thedynamics of the system is already

on the hyperplane140

N = S +X + Y + Z

5



which reduces the dimension of the model by one to becoming































Ẋ =
u1(N −X − Y − Z)

1 + h1u1(N −X − Y − Z)
X − wX − u2X

1 + h2u2X
Y

Ẏ =
u2X

1 + h2u2X
Y − wY − u3Y

1 + h3u3Y
Z

Ż =
u3Y

1 + h3u3Y
Z − wZ.

(3)

By the following change of variables142































t := wt, x =
X

N
, y =

Y

N
, z =

Z

N

a1 =
1

u1h1N
, a2 =

1

u2h2N
, a3 =

1

u3h3N

m1 =
1

h1w
, m2 =

1

h2w
, m3 =

1

h3w

(4)

the dimensional model is transformed to this dimensionlessform































ẋ = x

(

m1(1− x− y − z)

a1 + (1− x− y − z)
− 1− m2

a2 + x
y

)

ẏ = y

(

m2x

a2 + x
− 1− m3

a3 + y
z

)

ż = z

(

m3y

a3 + y
− 1

)

(5)

In this way, the uptake, consumption, and predation rates,miP
ai+P

, are of the Monod form ([1]) with144

mi being the dimensionless maximal rates andai the half-saturation constants. Because of mass

conservation withN −X − Y − Z = S ≥ 0 (correspondingly,1 − x− y − z ≥ 0), the effective146

phase space for the variables is inside the simplex

∆ = {(x, y, z) : x+ y + z ≤ 1, x ≥ 0, y ≥ 0, z ≥ 0}

in the first octant as all population densities are non-negative numbers. Note that each coordinate148

plane is invariant for the model representing the extinction of a species. This is the chemostat

model considered in [4] for the Smith-Waltman attractor.150

A singularly perturbed system of equations is one for which there is a small positive parameter

multiplied to either the left hand or right hand side of some equation. Such a small parameter,152

when multiplied to the left hand side, makes the corresponding variable to change fast relative

to other variables, which in turn makes the system a multi-time scaled process. Although the154

dimensionless form of the chemostat model above is not explicitly a singular-perturbation form,

6



the multi-time scale property is inherent of the chemostat process because as the nutrient element156

works its way up the food chain, its assimilation by a higher trophic consumer becomes slower. It

is very similar to a typical food chain model for which the plant, for example, at the bottom of the158

chain regenerates fast comparing to the herbivores which feed on the plant.

Mathematically, it is usually easier to study singular perturbation problems. One useful feature160

is the fact that many qualitative information remain the same for all values of the singular parameter

because the sign of the right hand side of each equation does not vary with the singular parameter.162

As an auxiliary means we introduce one artificial singular parameter0 < ε ≪ 1 for the producer

X, making the system explicitly a singularly perturbed one:164































εẋ = x

(

m1(1− x− y − z)

a1 + (1− x− y − z)
− 1− m2

a2 + x
y

)

:= xf(x, y, z)

ẏ = y

(

m2x

a2 + x
− 1− m3

a3 + y
z

)

:= yg(x, y, z)

ż = z

(

m3y

a3 + y
− 1

)

:= zh(y)

(6)

This system will be referred to as the auxiliary model, or thesingularly perturbed model. Re-

sults obtained for the singularly perturbed model will be used to guide our search for Shilnikov’s166

saddle-focus homoclinic orbit for the original chemostat model which can be considered as the con-

tinuation of the auxiliary system to the native valueε = 1. The main advantage of using singular168

perturbations lies in its dimension reduction for analysisfor which lower dimensional subsystems

tend to be simpler. By piecing together such lower dimensional structures and properties one can170

build a fairly accurate big picture for the whole system using the limiting structure atε = 0 as an

approximation.172

3. Singular Perturbation Analysis. Our approach in this paper is geometric. It is to analyze the

vector field of the equations by the configurations of the variables nullclines in order to obtain good174

approximations of their solutions for small value of the singular parameter. An approximating orbit

is a so-called singular orbit at the limiting valueε = 0 that is the concatenation of some fast and176

slow orbits connecting between or trekking on some nullclines of the equations.

Fast Producer Dynamics:By rescaling the timeτ = t/ε for Eq.(6), and setting the singular178

parameter at its singular value,ε = 0, we obtain the fast subsystem

x′ = xf(x, y, z), y′ = 0, z′ = 0.

It is a one-dimensional system withy, z being frozen as parameters. This system can be com-180

pletely understood by a simple phase line analysis. Specifically, the dynamics is determined by its

equilibrium points and the signs of the vector field off the equilibrium points. In fact, in the orig-182
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inal xyz-phase space, the set of thex-equilibrium points consists of the trivial coordinate plane

x = 0, corresponding the extinction state of the producer, and the nontrivial nullcline surface184

f(x, y, z) = 0. This surface usually consists of two branches: the capacity branch and the persis-

tent threshold branch. These branches can be understood qualitatively by biological arguments.186

Suppose the consumer and the predator are absent, i.e.y andz are kept aty = z = 0, then

the producer dynamicsx′ = xf(x, 0, 0) is the kind of logistic, with the capacity equilibrium point188

x̄ > 0 solved fromf(x̄, 0, 0) = 0 as

x̄ = 1− a1
m1 − 1

.

Because of the conservation of mass, we must have0 ≤ x ≤ 1 which implies that190

m1 =
1

h1w
> 1.

That is, the handing rate,1/h1, of the producer must be greater than the volume-metric washout

rate,w, in order for it to establish the capacity equilibrium state. Moreover, since192

f(x, 0, 0) =
m1(1− x)

a1 + (1− x)
− 1 < 0 if and only if x > x̄

as determined by the one-point test atx = 1, we know that̄x is indeed a capacity equilibrium. This

capacity equilibrium point will continue for non-zeroy andz. More specifically, for each fixedz194

value, the capacity branch asy changes can be easily understood. In fact, as the strength ofthe

predation increases byy onx, thex-capacity equilibrium must decrease from the largest capacity196

x̄. That is, on anyz-section, the function̄x is a decreasing function ofy.

Two scenarios exists. Asy increases, thex-capacity branch of the nullcline surfacef = 0198

decrease to the extinction branchx = 0 at some predatory strength ofy. The second scenario is, as

y increases above a certain valueȳf , thex-capacity equilibrium ceases to exist beyond a nontrivial200

valuex̄f > 0. In other words, fory < ȳf , there exist thex-capacity equilibrium̄x, but fory > ȳf ,

it induces a population crash on the producerx: all phase lines converge to the extinction state202

x = 0.

As for the persistent or survival threshold branch, we know at y = z = 0, the persistent204

equilibrium branch is the extinction statex = 0, namely, for any trajectory starting with positivex

converges to the capacity equilibrium statex̄, i.e. the equilibrium statex = 0 is unstable. As the206

predation increase iny, x = 0 may continue to have the same repelling property. In the caseof

the existence of the crash capacityx̄f > 0 andȳf > 0, there must be a predation strength smaller208

than the crashing strength so that not all non-zero initial values ofx will develop to approach the

capacity statēx. Denote this critical value byy = ytrn with the subscript standing for ‘transcritical’210
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Figure 2: (a) Typical nullcline surfaces for the variables.(b) The same plot as (a) without the
y-nullcline andz-nullcline surfaces but with their intersections with thex-nullcline surface. The
curve PCF is the projection of the capacity fold to theyz-plane along the fastx-direction. It is
where the population crash lands iny andz from the crash points on the capacity branch and the
threshold branch. TRN is the set of the transcritical pointsfor thex-equation, and PDLS is the
set of Pontryagin’s Delay of Lost Stability. (c) Singular orbits are concatenations of fast orbits
between the attracting branches of the slow manifold of thex-equation and slow orbits on the
extinction branch and on the capacity branch. Crashing fastorbits from the capacity fold can only
rebound at the PDLS points. (d) Phase portrait of the slowyz-system on the capacity branch and
the extinction branch of the slow manifold. Forε = 0, the interval[rCF,1, rCF,2] on the returning
PDLS curve,RPDLS, defines the range of the unstable manifold of the equilibrium pointpf . A
singular homoclinic orbit exists if and only if the[rCF,1, rCF,2] segment ofRPDLS containspf .

to be explained shortly. This means, for any immediate predation strength greater thanytrn, there

exist a nontrivial persistent equilibriumx = x > 0 so that for initial population densityx0 greater212
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thanx > 0 the population grows and converges to the capacity statex̄, and otherwise, ifx0 < x, the

population decreases to the extinction state. That is, thex is the threshold for persistence: above it214

the population persists and below it the population goes extinction. Moreover, as a function of the

y value, this threshold branchx increases, the higher the predation, the greater thresholdrequired216

for persistence. As solutions to the nullcline equationf(x, y, z) = 0, for each fixedz, the survival

threshold branch and the capacity branch approach each other asy increases, until they meet at the218

crash pointx = x̄f andy = ȳf . That is, for each fixedz, the point(x̄f , ȳf) is a fold point of the

nullcline surfacef(x, y, z) = 0. Last, for each pointz, x = 0, y = ytrn is where the threshold220

branchx meets the extinction branchx = 0. Since bothx = 0 andf = 0 are nullclines of the

x-equation, their intersection points are the so-called transcritical bifurcation points, and hence the222

notation. For illustrations of thex-nullcline, the capacity and the threshold branches, the capacity

fold, and the transcritical curve, see Fig.2.224

Algebraically, the nullcline equationf(x, y, z) = 0 can be solved by expressing one variable

as a function of the other two. In particular,x or y can be solved as a root to a quadratic equation,226

but z can be solved as a simpler, linear equation inz. The transcritial curvey = ytrn, x = 0 can

be solved fromf(0, y, z) = 0 for which z can be solved from a simpler linear equation inz. The228

crash-fold curve can be solved from the pair of equations:

f(x, y, z) = 0, fx(x, y, z) = 0

because for eachz the nullcline curvef(x, y, z) = 0 reaches a global maximum iny at the crash-230

fold point (x̄f , ȳf) at whichdy/dx = −fx/fy = 0. As a result, all these curves can be solved

explicitly for plotting.232

As for the singularly perturbed equations, thex-nullcline branches are also referred to as the

slow manifolds. Moreover, the capacity branch of the slow manifold is attracting, the extinction234

branch above the transcritical curveytrn is also attracting, but the threshold branch and the ex-

tinction branch below the transcritical curve are repelling. Furthermore, for every non-equilibrium236

initial point below the slow manifoldf = 0, the solution converges to the capacity branch. For

every non-equilibrium initial point above it, the solutionconverges either to the capacity branch or238

to the extinction branch depending on the initial state. If the initial consumer populationy is below

the crashing valuēyf andx is above its capacity equilibrium̄x, then the solution converges to the240

x-capacity branch, and for all other initials, the solutionsconverge to the extinction branch.

Two more comments are in order for the slow manifold. We note that thex-nullcline f = 0 is242

always inside the definition simplex∆ because of the terms−1 −m2y/(a2 + x). That is, all the

discussions above remain relevant to the chemostat dynamics. Second, thez-section curves of the244

x-nullcline surfacef = 0 is nested asz increases. That is, the crash foldy valueȳf is decreasing

in z as the larger thez a smallery is sufficient to crash thex population as the presence ofz leaves246

fewer resource forx. Also, the higher thez, the lower iny for the capacity branch for a samex
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value, implying thez-sectionalx-capacity curve is nested inward. Similarly, the higher thez the248

lower the persistent thresholdytrn value as it takes a lower predation pressure byy onx for thex

species to develop the survival threshold.250

Slow Consumer-Predator Dynamics:When settingε = 0 in Eq.(6), we obtain the slow dynamics

on the slow manifolds:252

0 = xf(x, y, z),
dy

dt
= yg(x, y, z),

dz

dt
= zh(y).

On either the extinction branchx = 0 or the capacity branchf = 0, x = x̄f , the dynamics is

planar, and therefore can be completely described geometrically. On the extinction branchx = 0,254

the dynamics is simple: without the producer, they population is strictly decreasing (because

dy/dt = yg(0, y, z) = y(−1 − m3/(a3 + z)) < 0). Thez population is slightly less so: If the256

population is above thez-nullcline h(y) = 0, which solves to bey = yzncl = a3/(m3 − 1), the

predator can still manage to grow for awhile, but starts to decline as soon as it crosses the nullcline258

y = yzncl, and then both go towards extinction. Becausey is strictly decreasing onx = 0, it will

be used later as a change of variable for the time variablet.260

On thex-capacity slow manifold, the reduced slow dynamics is a little more involved, but not

too much so. In fact, a similar capacity-threshold type of argument applies because the reduced262

dynamics fory andz is just another predator-prey system except for the constraint that the inter-

action must be confined by thex-capacity fold line as a boundary on thex-capacity branch of the264

slow manifold. Analytically, one can solvex from f(x, y, z) = 0 as the solution of a quadratic

equation, substitute thex-capacity branch solution into the right-hand side of they equation to266

obtain the reducedyz-slow system. For which a phase plane analysis can be carriedout, in partic-

ular, at the equilibrium point. Alternatively, here is a more geometrical and empirical analysis of268

the reduced 2-dimensional predator-prey system. Specifically, for each fixedz value (imagining

an experimenter can hold thez species constant), then the dynamics is only one-dimensional in y,270

determined entirely by its equilibrium statesg = 0 and the sign ofg. In fact, the intersection of

g = 0 andf = 0, x = x̄f is the nontrivial equilibrium points of they-equation, for which it can be272

divided up into its capacity branch and its survival threshold branch asz sweeps from low to high

values, see Fig.2(d). For the parameter regions of interest, it has the survival threshold branch,274

which increases iny asz increases, and is unstable for the reducedy-equation. This threshold may

continue to hit thex-slow manifold’s capacity fold or merge with a capacity foldpoint for they276

species. That is, in the latter case, they-nullcline on thex-capacity slow manifold is a unimodal

curve, and the decreasing branch with increasingz is the stabley-capacity equilibrium states. So278

they-nullcline on thex-capacity slow manifold is either increasing or has one interior maximum

corresponding they crash fold byz. In any case, denote the intersection point of they-nullcline280

on thex-capacity slow manifold with thex-capacity fold byqCF as shown in Fig.2(d). As for

the z-nullcline on the slow manifold, it cannot be simpler because it is only a line parallel with282
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thez-axisy = yzncl. As a result, the reduced slow dynamics on thex-capacity manifold is com-

pletely determined by they-nullcline and thez-nullcline. That is, inside they-nullcline,y always284

increases, either hitting thex-crash fold in finite time or crossing they-capacity branch vertical to

they-axis. Outside they-nullcline,y decreases because the predation pressure fromz is too high.286

As for thez, above its nullcliney = yzncl, z increases as there are sufficiently manyy to sustain its

growth, and below itz declines.288

As thez-nullcline is a straight line, perpendicular to they-axis, it can intersect they-nullcline

only at one point, denoted bypf when existing, which is the unique coexisting population equilib-290

rium of the full system. We will further consider the parameter regions for which thez-nullcline

is through they-species’ survival threshold branch of they-nullcline. This can be achieved by292

lowering thez-nullcline y = yzncl = a3/(m3 − 1) which can be done by either decreasinga3 or

increasingm3.294

Since it lies on the unstable branch of they-nullcline, the equilibrium pointpf is always unsta-

ble. In fact, it is always a source. More specifically, let296

{

u̇ = au− bv

v̇ = cu
(7)

denote the linearization of the reducedyz-system at the equilibrium pointpf . Then, it only takes

a qualitative argument to know that the linearizedu-nullcline au − bv = 0 is tangent to they-298

nullcline at the equilibrium point and so is for thev-nullcline u = 0 to thez-nullcline. Because

u, v mirror the roles of the consumery and the predatorz,respectively, the linearization coefficients300

b, c must be positive. In addition, since the equilibrium pointpf is on they-survival threshold of

they-nullcline, the linearization coefficienta must be positive as well. As a result, the eigenvalues302

of the reduced slow system at the equilibrium point are

λ =
a±

√
a2 − 4bc

2
,

which are either all positive or a pair of complex numbers with positive real part. For the equi-304

librium point to be an unstable focus point with complex eigenvalues, we only need the predator

z to be considerably strong as the linearization coefficientsb andc are strongly depending on the306

efficiency of the predator which in turn can be achieved by increasingm3 and decreasinga3. As

a passing remark, if the equilibrium point is on they-capacity branch for which the linearization308

coefficienta must be negative, then both eigenvalues must have a negativereal part, confirming the

stability of the equilibrium solution.310

One special point for the reduced slow dynamics stands out that will be used later. It is the point

on thex-crash fold curve, which defines the boundary of the reducedyz-slow vector field. Since312

thex-crash fold is decreasing iny asz increases, and since the slow vector field is perpendicular
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to they-direction, pointing outward from the fold at the fold pointqCF when above thez-nullcline,314

and since the vector field is perpendicular toz-nullcline, there must be a point by continuity on the

x-crash fold boundary, denoted byp∗CF , at which the vector field is tangent to the fold boundary.316

See Fig.2(d). As we will see below, this point is instrumental in defining the range of the global

unstable manifold of the equilibrium pointpf .318

Pontryagin’s Delay of Lost Stability:If we follow the slow orbit on thex-capacity manifold staring

at the tangent fold pointp∗CF , we will eventually hit the capacity fold at a point denoted by p0CF , a320

boundary of the capacity manifold on which the reduced slow equations are defined. If we follow

the fastx-equation, the fast orbit will bring it to a point on the extinction surfacex = 0. In fact,322

the fast orbit starting from any point of thex-capacity fold converges to a point on the extinction

surface. The set of all these limiting points is referred to as the projection of the capacity fold324

(PCF as shown in Fig.2). The next concatenation of such an orbit is to follow the slow orbit on

the extinction surface, that must cross the transcritical curvey = ytrn to enter the unstable branch326

of the extinction surface. By the theory of singular perturbation, this slow orbit must not go down

indefinitely iny andz. Instead, somewhere in thex = 0 slow manifold, the fast dynamics arises328

and takes over, concatenating a fast orbit toward thex-capacity surface again. This phenomenon

is referred to as the Pontryagin’s delay of lost stability (PDLS) and here below is how the points in330

(y, z) on the PDLS set is computed.

It is found by first considering orbits for the perturbed fullsystem with0 < ε ≪ 1 and then

taking the limit ε → 0 to find the PDLS points. More specifically, letpCF = (x0, y0, z0) be

a crash fold point withx0 > 0 and let0 < δ < min{x0, a2/(m2 − 1)} be a small constant

and consider the planex = δ. Then consider the solution of the singularly perturbed equations,

φε(t) = (xε(t), yε(t), zε(t)), with the initial pointφε(0) = (δ, y0, z0). By a phase space analysis,

this orbit must decreasing inx andy first because the initial point is above thex-survival surface

and below they-nullcline surfacez = ( m2x
a2+x

− 1)a3+y

m3

asz ≥ 0 if and only if x ≥ a2/(m2 − 1). At

sometime later the orbit crosses thex-survival threshold surface on thex-nullcline. Afterward the

orbit must increase inx because it is below thex-capacity surface withy keeping decreasing. At a

finite time later,t = t̄, the orbit hits the planex = δ again, this time below thex-survival surface.

The timet̄ depends onε obviously given byxε(t̄) = δ. In any case, it is important to note that

the starting and ending points for the orbit over the time interval [0, t̄] are both on the same plane

x = δ. Also, because the planex = δ lies always below they-nullcline, we must haveg < 0 on

the orbit in the same time interval. As a result, the variabley along this orbit is always decreasing

and thus can be used as a change of variable to substitute out the time variable asdt = dy/(yg).
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Thus the following identities must hold

0 = ε(ln xε(t̄)− lnxε(0))

= ε

∫ t̄

0

1

xε(t)

dxε

dt
dt

=

∫ t̄

0

f(xε(t), yε(t), zε(t))dt

=

∫ b(ε)

y0

f(x̃ε(y), y, z̃ε(y))

yg(x̃ε(y), y, z̃ε(y))
dy

whereb(ε) = yε(t̄), x̃ε(y) = xε(t), z̃ε(y) = zε(t) with t being the function ofy by the change of332

variablesy = yε(t) which is strictly decreasing int. Take the limit to the singular valueε → 0,

assume the limit ofb(ε) exists and denote it bylimε→0 b(ε) = ypdls. Thenypdls is a function334

of the initial (y0, z0) but notx0 = δ as any different value ofδ nearby results in the same fast

orbit through(x0, y0, z0) perpendicular to theyz-plane and the same slow orbit on the extinction336

manifold for Eq.(6) withε = 0 andx = 0. The fast orbit has zero contribution to the limit integral

above because it is perpendicular to the integrationy variable. As a result the so-called PDLS point338

ypdls(y0, z0) is determined from the equation below:

∫ ypdls

y0

f(0, y, z̃(y))

yg(0, y, z̃(y))
dy = 0 (8)

wherez̃(y) = z(t) denotes thex = 0 slow solution(y(t), z(t)) with the initial point(y0, z0) from340

the projection of thex-capacity fold for which the time variablet is changed toy throughy = y(t)

because the latter is strictly decreasing on the invariant planex = 0. We also note that the PDLS342

point ypdls must lie below the transcritical curvey = ytrn because above the curve the integrant

above is of one sign and below it it is of the opposite sign. Theresulting PDLS curve corresponding344

to thex-capacity fold is denoted by PDLS in Fig.2(c).

Singular Shilnikov Orbit:Every PDLS point will be projected by thex-fast orbit to a capacity346

point on thex-slow manifold. Denote the set of the projected PDLS points by RPDLS as shown

in Fig.2(c,d). We will consider only those parameters regions for which the tangential crash-fold348

point p∗CF lies above the returningRPDLS curve as shown in Fig.2(d). Then thex-fast orbit from

the tangential pointp∗CF can first go to the extinction branch, then down to its PDLS point, and350

finally return to thex-capacity slow manifold on the curveRPDLS. Denote this returning point

by rCF,2 as shown. Denote also the returning point of the corresponding concatenation of singular352

orbits from p0CF by rCF,1. Then we can conclude that the local unstable manifoldW u
loc of the

equilibrium pointpf returns only to the interval segment betweenrCF,1 andrCF,2 onRPDLS at the354

singular limitε = 0. As a result, we have the following statement.

Theorem 1 For the singularly perturbed model Eq.(6), a singular Shilnikov saddle-focus homo-356
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clinic orbit exits ifpf is inside theRPDLS interval segment betweenrCF,1 andrCF,2 for which the

equilibrium pointpf when restricted to the slow manifold is an unstable focus point andp∗CF is on358

thex-crash fold and lies above theRPDLS curve.

We note that the resulting homoclinic orbit is of the Shilnikov kind because the stable eigenvalue of360

the equilibrium pointpf at the singular value is−∞ with thex-direction being the stable eigenvec-

tor, always satisfying the eigenvalue condition (1) for Shilnikov’s saddle-focus homoclinic orbit.362

The strategic importance of this result lies in the geometric configuration for the singular

Shilnikov’s orbit which we use as a guide to locate first the parameter regions for such config-364

uration, and then through continuation of the auxiliary singular parameterε to its native value

ε = 1 to locate the parameter values at which a Shilnikov’s saddle-focus homoclinic orbit exits for366

the original chemostat model. Proving the theorem for the auxiliary singularly perturbed model

of the chemostat equations for specific parameter regions isto match the singular global unsta-368

ble manifoldRPDLS to the equilibrium point for the parameter regions. It essentially requires a

shooting type of argument in theory and in numerics. The key theoretical difficulty lies in the com-370

putation of the PDLS curve analytically, not only as a function of thex-capacity fold curve but also

of the parameters. In what follows we will only attempt to demonstrate the theorem numerically372

by a shooting algorithm.

4. Numerical Shooting Method. On the nontrivialx-nullcline f = 0, we find the nontrivialy-374

nullcline intersection curvef = 0, g = 0. This curve can be obtained this way. First, solvez as a

function ofx, y from g = 0, substitute it intof = 0 to solvey from an eventual quadratic equation376

as a function ofx, which in turns is back substituted to expressz as a function ofx. The nontrivial

z-nullcline intersection curve with the nontrivialx-nullcline is much easier to find. Thez-nullcline378

h = 0 is solved as ay constant̄y = a3/(m3 − 1), which is substituted intof = 0 to solvez as a

function ofx. As a result, the nontrivial equilibrium point with all non-vanishing populations can380

be numerically solved as the intersection of the these two curves. Denote the equilibrium point as

pf = (xf , yf , zf ) and refer to it sometimes as the coexisting equilibrium point. Numerically, we382

used a discretization step size about the order of10−8 for thex variable for these two curves and

expect the same accuracy for the equilibrium point.384

For the linearization of the vector field at the equilibrium point,

J(p̄) =







x̄fx x̄fy x̄fz

ȳgx ȳgy ȳgz

0 z̄hy 0







we use the first order discretization scheme for the partial derivatives with an increment of10−10.386

The corresponding stable and unstable eigenvector sets aredenoted asλs andλu respectively.

For the parameter values considered, the equilibrium pointpf is a saddle focus withλs < 0 and388
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Figure 3: (a) The local stable and unstable manifolds of the coexisting equilibrium point is approxi-
mated by the linearization of the vector field at the equilibrium point. It is done in aδ-neighborhood
of the equilibrium point withδ ∼ 10−4. (b) A view of the local unstable manifold, for which the
orbit in black shows a Shilnikov’s orbit, which starts at a distance of order10−4 from the equilib-
rium point and returns at a distance of order10−6. (c) For each parametera2, the bisection search
routine for the initial of the target pointpu (diamond) takes place along thez-direction ofW u,
around the vertical linez = zs throughW s. The numbers show the bisection steps in sequence
to locate the unstable manifold orbit whose return is closetto the vertical line. (d) The bisection
search routine for thea2 parameter starts with two values whose corresponding cross-sectionsW u

lie above the stable manifold pointW s for one and below for the other. The numbers show the
bisection steps to locate the parameter value whoseW u crossesW s, e.g. the unstable manifold
orbit (diamond) on the vertical line meets the stable manifold (circle). (EachW s is translocated to
(0, 0) for a common reference for all parameters.)

Reλu > 0 andImλu = ±β 6= 0. Also, it is of the Shilnikov kind with−λs > Reλu. The stable

eigenvector spaceEs and unstable eigenvector spaceEu can also be obtained numerically, and390

they are used to approximate the local stable and local unstable manifolds,W s
loc,W

u
loc, respectively.

All unstable manifold orbits are originated from an Euclideanδ-neighborhood of the equilibrium392

point with δ ∼ 10−4. See Fig.3(a,b). Because the tangent eigenspaces approximate the stable and
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unstable manifolds to higher orders, the complementary direction errors between the eigenspaces394

and the manifolds are of order at leastδ2 ∼ 10−8.

To guarantee no region of the local unstable manifold is overlooked numerically, we start at any396

initial point,a, fromEu, to the left side of the equilibrium point and on thez-nullcline surfacey =

yzncl. We use thez-nullcline surface as a cross-section and find the first return, b, of a to its left side398

sincepf is an outward unstable spiral. This pair is on a full expanding spiral on the local unstable

manifoldW u
loc. We then partition the interval betweena andb onEu andy = yzncl into a set of400

many points, and use them as the initial points of a family of unstable orbits. In this way, the local

unstable manifoldW u
loc is completely bounded by this family of orbits when integrated backwards.402

And, when integrated forward, this family of orbits defines the global unstable manifold. See

Fig.3(b).404

The plane for shooting is defined to be this plane inside the simplex∆:

Σ := {(x, y, z)|2x+ y + z = 1, x ≥ 0, y ≥ 0, z ≥ 0}

going through these axis points:(1/2, 0, 0), (0, 1, 0) and(0, 0, 1). Take any point on the stable406

eigenspaceEs inside theδ-neighborhood, integrate backward to intersect the planeΣ. Denote the

intersection of the global stable manifold with the plane byW s = {(xs, ys, zs)}. It is typically408

a point. Similarly, integrate the family of local unstable manifold orbits forward to intersect the

plane, and denote it byW u. The intersection is the first returning intersection in thesense that the410

orbit hits the plane from behind and toward the capacity branch of thex-nullcline. It is typically a

curve. The goal of the shooting algorithm is to find the parameter values of the system so that the412

stable and unstable manifold intersect:

W s ∈ W u. (9)

Finding homoclinic orbits satisfying the above condition takes two searching routines, both414

are iterative bisections of intervals. The first is a bisection search on the unstable manifoldW u

on the planeΣ. It is to find the initial point on the local unstable manifoldW u
loc whose returning416

point onW u is the intersection ofW u with the linez = zs through the stable manifold point

W s = {(xs, ys, zs)}. Denote this shooting target point onW u by pu = (xu, yu, zu). When a418

parameter permits, this is done by first locate two points onW u, referred to asp1, p2, each is on

one side of the targetpu as shown in Fig.3(c). Since these two points are generated from two points420

from the local unstable manifoldW u
loc on the liney = yzncl and to the left side of the equilibrium

point, we then use the middle point of the initials to create another point onW u, referred to asp3.422

For the right parameter value,p3 is betweenp1 andp2. Depending on which side of the target point

pu thep3 point is, a smaller interval is found to contain the targetpu, and another iteration follows424

to find the next approximation to the targetpu, and so on.
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Not all parameters of a system can permit this bisection search. The condition for this routine426

to run is the existence of pointsp1, p2 onW u that straddlepu, i.e.

z1 ≤ zu ≤ z2 or z2 ≤ zu ≤ z1 (10)

wherezi is thez-coordinate ofpi ∈ W u.428

For this bisection search, we use 25 iterative bisection steps to approximate the targetpu. De-

note the last point bỹp. Obviously, ifp̃ = ps within a preset tolerance, then a numerical homoclinic430

orbit is found and the corresponding initial point fromW u
loc is the sought-after homoclinic point.

The reason to carry out this many bisection steps is because,assuming each search interval is re-432

duced by half, the end search point should be within a distance of 2−25 ∼ 3 × 10−8 of the exact

target.434

Since homoclinic orbit is a co-dimension one bifurcation phenomenon, for almost all parameter

values, there is a gap betweenp̃ andps. The second bisection search routine is carried out for a436

carefully chosen parameter to close this gap. We will explain whya2 parameter is chosen for this

search shortly. For now let us assume it is the case. Then the bisection search for the homoclinic438

parameter for which condition (9) holds works similarly as the first bisection search for̃p. More

specifically, assume two parameter values ofa2 are found so that onẽp is above itsW s on its line440

z = zs and another̃p is below itsW s on its linez = zs. We then generate the next parameter value

as the middle point of the first two and find itsp̃ by the first bisection search routine, and so on, see442

Fig.3(d).

Similar to the bisection condition for̃p above, the bisection condition for the searching pa-444

rametera2 is the existence of twõp of two parameter values that boundW s. That is, whenW s

is translocated to(0, 0) for all parameters, there are two parameter values whose corresponding̃p446

points are denoted bỹp1, p̃2 so that

ỹ1 ≤ 0 ≤ ỹ2 or ỹ2 ≤ 0 ≤ ỹ1 (11)

whereỹi is they-coordinate of̃pi, relative to their ownW s.448

We can either run this hierarchy search routine for a finite number of steps or set it to terminate

if a preset precision is reached betweenp̃ andW s. The maximal number of steps is set to be 25450

and the stoppage search error is set to be10−6. As a result, if the shooting algorithm converges,

the number of steps taken should not exceed the program maximum 25 as2−25 ∼ 3 × 10−8.452

Also the numerical homoclinic orbit found is expected to return to a small neighborhood of the

equilibrium point of radius about10−4, as a conservative ballpark estimate. We will denote it by454

Ee the shortest Euclidean distance of the unstable manifold orbit through the last̃p that first enters

theδ-neighborhood of the equilibrium point. This measures how much the numerical homoclinic456

orbit misses the target equilibrium point. When the shooting algorithm converges, we expectEe to
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be no greater than10−4.458

If one of the conditions (10, 11) does not hold, the shooting algorithm will not converge to find

a homoclinic orbit. The algorithm will also stop working if the model becomes too stiff for the460

ODE solvers employed for the searching routines. Since our singular perturbation analysis will

guide us to a parameter range for which the second search condition (11) hold initially, for all462

searches that we carried out but failed to converge it was because the first search condition (10)

fails or the singular parameterε is too small for the ODE solver used.464

Because for sufficiently smallε the global returnW u of the local stable manifold of the equi-

librium point follows closely the PDLS curve, it is useful tonumerically keep track of the PDLS466

curve to find initial guesses of the parameters to start a shooting search. Numerically, this is done

in the following steps.468

1. Find the crash-fold on thex-capacity surface by finding the maximal points in variabley for

thex-nullclinef = 0 which is solved fory as a function ofx andz. The projected image on470

x = 0 is used as the initial points for the slowyz-equation of Eq.(6) withε = 0 andx = 0.

2. Theyz-slow equation is changed to a first order equation usingy as the independent variable472

andz as the dependent variable:dz/dy = zh/yg, starting at point of the projected capacity

fold (PCF) toy = 0. The 4th order Runge-Kutta method with 150 steps of discretization is474

used to find the solutionz = z(y).

3. The discrete points of the solution above is used to generate the integral of the PDLS equation476

by the Simpson’s rule for integration, and the PDLS pointypdls is solved from the equation.

4. Thez-component of the PDLS curve is obtained by finding the correspondingz-valuez =478

z(ypdls).

Parameter Regions:Plausible initial guesses for parameter values need to yield the following480

configuration for the nullcline surfaces of the system. (1) Thex-nullcline surfacef = 0 must fold

in y. (2) The nontrivialy-nullcline on thex-capacity surfacef = 0 must start with a survival482

threshold branch from its own transcritical point ony = 0. (3) The coexisting equilibrium point

pf needs to be on they-survival threshold branch on thex-capacity surface. (4) The PDLS curve484

needs to move across the equilibrium point as some parametervalue changes. For configuration

(1) we try to make thex-transcritical point,f(0, y, 0) = 0, lower on they-axis whenx = z = 0.486

Assumey is small enough, then1 − y ∼ 1 and we can expressy from f(0, y, 0) = 0 roughly

asy ∼ ( m1

a1+1
− 1) a2

m2

. Therefore, for large enoughm1, we can guaranteeytrn > 0 and more488

importantly we can usea2 as a changing parameter to lower or to raise the TRN curve which in turn

lower or raise the PDLS curve strategically at least at onez-section withz = 0. This choice ina2490

(orm2 similarly) also leads to a realization of (4). Similarly, for configuration (2), they-transcritial

point ony = 0 on thex-capacity surface isg(x, 0, z) = 0, f(x, 0, z) = 0, which can be solved492

19



in z asz = ( m2x
a2+x

− 1) a3
m3

with x ∼ 1. Thus, makinga3 small (orm3 large) enough guarantees

the transcritial point starts they-survival threshold branch. As for (3), since thez-nullcline can be494

solved explicitly asy = a3
m3−1

, similar choices ina3 (respectivelym3) will force the equilibrium

point pf on the unstable branch of they-nullcline, which also make it an unstable spiral for the496

yz-slow dynamics on thex-slow manifold by the slow dynamics analysis above. In conclusion,

one should start out by trying some fair values ofmi and small values ofaj for sufficiently small498

ε. Once a homoclinic orbit is found for smallε we then try to continue it to its native valueε = 1

by varyinga2, which moves the PDLS up and down effectively.500

5. Result. Figure 4 shows the result of one search by the search algorithm. Fig.4(a,b) shows the

result for a small value of the auxiliary singular parameterε = 0.01. The corresponding attraction502

of the coexisting equilibrium point to thex-slow manifold can be gauged from the eigenvalues

of the linearization of the vector field at the equilibrium point. They areλs = −5589.7974 and504

λu = 0.2915 ± 1.5986i respectively, a magnitude of105 folds for the attraction relative to the

expansion. As a result, we can clearly see the singular perturbation effect of the auxiliary system506

for which the global unstable manifold of the equilibrium point returns towards the slow manifold

along the predicted PDLS curve as the turning points. The homoclinic orbit is found by searching508

the a2 parameter interval[0.7, 2] with the following searching parameters: The local stable and

unstable manifolds are originated from aδ = 5×10−4 neighborhood of the equilibrium point. The510

common cross-section where the global stable and unstable manifolds meet is2x + y + z = 1.

The error iny-direction between the global stable and unstable manifoldsW s,W u on the cross-512

section is6.2755× 10−4. The homoclinic orbit’s closest return to the equilibrium point is within a

distanceEe = 9.2883× 10−4. Only 4 search iterations were carried out to obtain the above result.514

The search algorithm stopped by the Matlabode15s solver for stiff systems of ordinary differ-

ential equations because it cannot meet the preset double precision (10−16) requirement for both516

relative and absolute errors because of the extreme stiffness of the auxiliary singularly perturbed

model. (The backward and forward integrations to obtain theglobal stable and unstable manifolds,518

W s, W u on the shooting planeΣ with the given precisions for the numerical ODE solvers takeno

more than9, 000 steps to complete, resulting a total error for each orbit no more than10−8.) At a520

first glance, this failure seems unexpected because the singular parameter value is onlyε = 0.01.

From the eigenvalues of the equilibrium point above we see that the relative stiffness for the system522

is in the order of10−5, a substantial stiffness for most ODE solvers.

The stiffness of the system is abated as the singular parameter ε increases to the native value524

ε = 1 for the chemostat equations Eq.(5). For the same search parameters, the algorithm stopped at

the 17th step because the Euclidean error between the globalstable and unstable manifolds isEs =526

1.7323×10−8, meeting the algorithm’s stoppage search error10−6. The resulting homoclinic orbit

error isEe = 5.5479× 10−6. (If we were to print the homoclinic orbit on a ten by ten meterposter528

to get a sense of the accuracy of the shooting method, the returning homoclinic orbit would miss
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Figure 4: (a) A result of the Shilnikov orbit search algorithm for parameter values of Eq.(5):
ε = 0.01, a1 = 0.08, a2 = 0.110625, a3 = 0.185, m1 = 15, m2 = 5, m3 = 2.5. A view showing
the returning global unstable manifold connecting the unstable manifold of the equilibrium point.
(b) The same phase portrait with a view showing the capacity part of the slow-manifold. (c) With
the same parameter values except for the auxiliary singularparameterε continued to the native
valueε = 1 and a newa2 parameter value0.170834503173828, a Shilnikov’s orbit is found by the
search algorithm also. (d) The phase portrait of the attractor by continuing the numerical Shilnikov
orbit of (c).

the equilibrium point no more than one centimeter. Also, with the homoclinic starting from a point530

about one centimeter to the equilibrium point, it should have about 10 full spirals before returning.)
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Figure 5: Parameter values for Eq.(5) are :ε = 1, a1 = 0.08, a2 = 0.229486083984375, a3 =
0.185, m1 = 15, m2 = 7, m3 = 2.5. (a) The unstable manifold and the Shilnikov orbit with
Ee = 4.8× 10−6. (b) The attractor approximated by continuing the numerical Shilnikov orbit.

The stable and unstable eigenvalues of the equilibrium points are−66.9310, 0.3015 ± 1.4890i532

respectively, giving a moderate stiffness at the order of10−2. The homoclinic orbit and the attractor

are shown in Fig.4(c,d). It shows clearly that the global unstable manifold returns towards the534

x-slow manifold at some distance away from the PDLS curve. This suggests that without the

auxiliary system’s help finding an initial guess of the parameter for a Shilnikov’s homoclinic orbit536

for the original system would be a blind random search.

Using the auxiliary singularly perturbed model is only a sufficient way to locate Shilnikov’s538

orbits. There are such orbits which can be found by the shooting method but is not the result

of a continuation of singular Shilnikov orbits as the auxiliary singular parameterε increases to540

1. The orbit found in Fig.5 is such an example. We first located aparameter region where a

Shilnikov’s orbit might exist for the chemostat model and ran the shooting method to find thea2542

value for such an orbit. But it turns out that this orbit does not persist for the auxiliary singularly

perturbed model with small0 < ε ≪ 1. Comparing to others this orbit and its corresponding544

attractor are further away from the coordinate planes. However, even though the full model is far

away from the singularly perturbed caricature, the attractor does exhibit a feature characteristic546

of singularly perturbed equations. Specifically, as shown in Fig.5(b), the attractor still seems to

occupy a thing sheet near the capacity branch of thex-nullcline surface that attracts orbits quickly548

in thex-direction. It is as if thex-variable is a fast variable of the chemostat model. This feature

seems not too surprising because the equilibrium point pulls in the stable manifold more strongly550
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Figure 6: (a) The family of the unstable manifoldsW u and the stable manifoldW s (marker ‘o’)
on the shooting cross-section, withW s translocated to(0, 0), with a2 ranging from0.1 to 0.25.
Arrow points at the unstable manifold for the Smith-Waltmanparameter values. (b) The same plot
for Eq.(6) for parameter valuesε = 1, a1 = 0.08, a3 = 0.20, m1 = 8, m2 = 3.2, m3 = 2.8 with
a2 ranging from0.08 to 0.23. A numerical Shilnikov orbit is found fora2 = 0.203790740966797
with the equilibrium point shooting errorEe = 1.38 × 10−6. (c) The attractor approximated by
continuing the numerical Shilnikov orbit fort = 400. (d) A numerical Shilnikov attractor for the
same parameter values except forε = 0.01 anda2 = 0.1481640625 andEe = 3× 10−4.

than pushes out the unstable manifold as the corresponding eigenvalues areλs = −55.6448, λu =

0.4700 ± 1.7145i, respectively. The contracting to expanding ratio is of thesecond order10−2 in552

magnitude.

Last, let us consider the Smith-Waltman attractor, whose parameter values for Eq.(5) are as in554

Fig.1(b). We applied our shooting algorithm usinga2 as the searching parameter. The search failed

to find a Shilnikov’s orbit. Fig.6(a) is the result of the search showing that the search condition556
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(10) fails to hold: the shooting targetW s is not in the range of the unstable manifoldW u.

This result implies that to find a Shilnikov’s orbit near the Smith-Waltman parameter values558

we need include one more parameter dimension to our search. The rationale for choosing this

additional parameter is suggested by the result of Fig.6(a). More specifically, it shows the global560

unstable manifold swings to the higher end in thez-direction of the stable manifold. Since the

returning part of the global unstable manifold orbits increases in thez-direction, it is desirable to562

compensate this overshot by decreasing the magnitude of therighthand side of thez-equation, i.e.,

slowing down thez variable. We tried this idea by reducing them3 value without success. Instead,564

we returned to the dimensional model Eq.(3) and considered to change the dimensional param-

eterw. It can be seen from the change of parameters and variables ofEq.(4) that by increasing566

the dimensional washout ratew, we can simultaneously decreasing the dimensionless parameters

m1, m2, m3. It turned out that this choice of the one dimensional parameter worked. The result568

is shown in Fig.6(b), for the same Smith-Waltman parametersexcept that eachmi is scaled by a

factor 0.8, corresponding to scaling the washout ratew by a factor of 1.25. Fig.6(c) shows the570

corresponding chaos attractor. Fig.6(d) shows that the Shilnikov orbit of the neighboring Smith-

Waltman parameter can be the continuation of the artificial singularly perturbed model Eq.(6).572

6. Conclusion Remark. Biological systems are inherently complex. Simple systemswith com-

plex dynamics are attractive for the obvious reasons. Chemostat models are more so because574

experiments can be readily set up in lab and the mathematics needed for modeling the systems are

very simple for both experimentalists and theorists alike.Yet, proving chaos for such seemly sim-576

ple models is never an easy task. Such problems almost alwaysmanaged to become a protracted

quest for theorists. Proving the existence of a Shilnikov’ssaddle-focus homoclinic orbit is a good578

strategy for differential equations. If the systems are singularly perturbed, the problem becomes

easier. For the chemostat model considered in this paper we used the geometric method of singular580

perturbation only as an auxiliary means to locate possible parameter regions and then to find such

chaos generating orbits numerically.582

In fact, our result, c.f. Fig.6(b) can be considered as a computer-assisted proof. Specifically, the

local stable and unstable manifolds are approximated within an error of10−8. The local manifolds584

are globally extended in finite times to the shooting planeΣ to beW s,W u, respectively. Because

the extension times are finite (no more than9, 000 steps with both relative and absolution precisions586

set at10−16 for the numerical solver used), the errors are controlled within a margin no more than

10−4. As can be seen from Fig.6(b) that the family of the stable manifolds parameterized by the588

shooting parametera2 is inside a region filled by the family. Actually, the stable manifold family

W s is all translated to one point on the shooting plane, conveniently at the origin(0, 0), which as590

shown is bounded away from the boundary of the unstable manifold family in distance at least of

the order10−2, a robust zone at least two orders of magnitude greater than the margin of error.592

Therefore, it must be inside the region filled by the unstablemanifold familyW u. As a result,
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by an intermediate value theorem argument, the unstable manifold family must sweep the entire594

region between the top and the bottom boundaries and one member of the family must intersect the

stable manifold, i.e.W s ∈ W u, proving the existence of a Shilnikov’s saddle-focus homoclinic596

orbit outside the margins of numerical error. As a consequence, the chemostat model is chaotic in

the sense of the block shift dynamical systems for the corresponding parameter values. Although598

this is not an analytical proof, it is a computer-assisted proof nonetheless.

As a last note, this methodin silico should be easily adapted for other systems, e.g. [26,600

27] which are resistive to analytical treatment for chaos generation. Also, it is our hope that the

numerical method perhaps some day in the future can be made into an analytical proof. As pointed602

out early, one theoretical difficulty lies in expressing thePontryagin’s delay of lost stability curve

as a function of the parameters in order to show its crossing with the equilibrium point for the604

singular perturbation case. And the other theoretical difficulty lies in the continuation of a singular

homoclinic orbit to the large chemostat value of the singular parameter for the original system.606
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