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Numerical Proof For Chemostat Chaos of Shilnikov’s Type
Bo Deng?, Maoan Han ?, Sze-Bi Hsu 3

Abstract: A classical chemostat model is considered that models ttiengyof one essential abi-
otic element or nutrient through a food chain of three tropévels. The long-time behavior of the
model was known to exhibit complex dynamics more than 20s/ago. It is still an open problem
to prove the existence of chaos analytically. In this papeaun to solve the problem numerically.
In our approach we introduce an artificial singular paramgetéhe model and construct singular
homoclinic orbits of the saddle-focus type which is knowndbaos generation. From the config-
uration of the nullclines of the equations that generatessthgular homoclinic orbits a shooting
algorithm is devised to find such Shilnikov saddle-focus bolmic orbits numerically which in
turn imply the existence of chaotic dynamics for the origcteemostat model.

Key Words: Chemostat model, Holling type Il predation, Shilnikovadslle-focus homoclinic
orbit, chaos, shift dynamics, singular perturbation, simgomethod

Lead Paragraph:Chemostats are relatively easy to set up in laboratory to study microbial
population interactions. A chemostat model was known for complex dynamics more than
twenty years ago. But researchers have not come up with a mathematical proof for the sus-
pected chaotic behavior. Reported herein thispaper isthe next-best solution for the problem,
namely a computer-assisted proof for the existence of chaos outside the margins of numeri-
cal error. The strategy and method can be used to obtain conclusive proof in silico of chaos
because mathematical proof isalmost always next to impossible to construct for all physical
systems.

1. Introduction. A chemostat is a laboratory device consisting of three coteoevessels. The
first is the feed bottle contains all of the nutrients neeaedHe growth of a microorganism. The
nutrient is pumped from the feed vessel into the cultureeleglsere the microorganisms grow and
are well-mixed with nutrients. The third vessel is the owevfbr collection vessel where nutrients,
organisms and product produced pumped from the cultureelke$be chemostat is perhaps the
best laboratory idealization of nature for population sad[1, 2]). It is a dynamical system with
continuous material input and output. The input and remo¥alutrients mimic the continuous
turnover of nutrients in nature. The washout of organisnegjisvalent to non-age specific death,
predation or emigration which always occurs in nature. Thsecparallels in nature are planktonic
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Figure 1: The Smith-Waltman chemostat attractor of Eq@b)&) a3 = 0.24, (b) a3 = 0.2, with
all other parameter valueg; = 0.08, a, = 0.23, m; = 10, my = 4, m3 = 3.5.

communities of unicellular algae in lakes and oceans. Thiépleispecies communities receive
nutrient inputs from streams, draining watersheds or ocental margins ([3]).

In this article we consider a three trophic levels food chmodel in the chemostat with sub-
strate (nutrient), producer (alga), consumer, predator.tie case of substrate-producer system
one can show that either producer goes extinct (if the inpatentration is too small to support
the producer) or it converges to an equilibrium [4]. The staMof the organism satisfies an equa-
tion which is similar to a logistic equation. For the case wbstrate-producer-consumer system,
one can reduce it to a two-dimensional predator-prey systewns analyzed in [5, 4] that either
the solution converges to a positive equilibrium or thera Isnit cycle. On the other hand, the
predator-prey system with logistic growth for the prey anallidg type functional response for
the predator satisfies that either the solution convergassitive equilibrium or it converges to
a unique limit cycle ([6, 7]). For one-prey-two-predatoseainterested readers may consult the
papers [8, 9, 10]. Itis well-known ([11, 12, 13, 14, 15]) that a prey-consumer-predator system
with logistic growth for the prey, Holling type-Il functi@i responses for the consumer and preda-
tor chaos may occur. In this article we study the substrateier-consumer-predator system in
chemostat. By conservation of population densities, wagedhe system to producer-consumer-
predator system. In their book [4](p.75) Smith and Waltmetavered a probable chaos in this
closed system, see Fig.1. Since then researchers havedwamsteswer the question whether their
finds are merely periodic orbits or real chaotic attract@wst the problem remains open because
proving chaos is always hard for differential equations.

The possibility that the model may only be capable of pedaatbits is not without his-
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torical precedence in dynamical systems. After Smale prdkiat any arbitrary 3-dimensional
smooth flow in a bounded region can be imbedded in a 4-dimealsammpetitive systemz{ =
x;Ni(x),ON;(z)/0x; < 0forj # i,1 = 1,2,3,4, [16]), the classical Lotka-Volterra system of
competing species ([17, 18, 19]) gained considerable tadten With the discovery of Smale’s
horseshoe dynamics ([20]) that is embedded in the 3-dirmeakiCartwright-Littlewood equa-
tions ([21, 22]), we know 4-dimensional competitive syssecan be surely chaotic. That leads
researchers to suspect that 3-dimensional competititersggsmay be capable of dynamics more
complex than periodicity. However, the 3-dimensional cefiijve LV system has now been
classified into qualitative equivalence classes which aag bave periodic cycles and equilib-
rium solutions, see [23] for more references. Nonethelesst mesearchers are agreed that the
Smith-Waltman attractor is a chaotic kind because threghic food chain models are known to
behave chaotically as early as 1978 ([12]) and proved so fatesingularly perturbed models
([13, 14, 15, 24, 25]). For other types of food-chain and feweb chaos, see [26, 11, 27, 28].

However, there is a key difference between chemostat maselfood-chain models. The
former is “closed” in the sense that the total amount of thestate is a constant. In contrast,
non-chemostat food chains are open in the sense that th®imteass tracked by the models are
allowed to vary. Because of this “openness” the growth rafethe interacting species for the
latter can vary significantly, allowing a multi-time scales. singular perturbation analysis for
the problem ([29]). The existence of food-chain chaos wdseaad obtained by making use of the
multi-time property of the food-chain model ([13, 14, 15, 258, 28]).

Constrained by their closeness a singular perturbatiomoapgp is not known to apply for
chemostat models. However, the geometric analysis of tHeline surfaces for singularly per-
turbed systems are equally valid and perhaps more indiapnfor general differential equations.
In addition, as the nutrient works its way through the foodiok from lower trophic levels to
higher levels, the growth rates of chemostat species doveehmilarly as if they are multi-time
scaled: from fast to slow. This gives an empirical as well ggagtical justification to treat a
chemostat model artificially as an explicit singularlyfpeibed system. Our idea is to use the same
singular perturbation techniques, which are proved to g g#ective for food-chain chaos, to
locate first auxiliary singular chaotic attractors, anditteelocate real chaotic attractors nearby for
the chemostat model by continuing the artificial singulanapeeter value to its chemostat value.
The main theoretical difficulty lies in the continuation plem which remains unsolved. In this
paper we will demonstrate chemostat chaos numericallgauist

For any mathematical model of a physical process, simplemptex, proving chaos is always
hard. But one strategy is easier to execute. It only requiregxistence of a Shilnikov’s saddle-
focus homoclinic orbit ([30, 31, 32, 33, 34]). More speciligait says that for a 3-dimensional
system of ordinary differential equationis= f(z), if there exists a homoclinic orbit(¢) to an
equilibrium pointp of the Shilnikov type, then the dynamics of the system musthastic. The
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Shilnikov type equilibrium point is a saddle-focus whichlwaut loss of generality by time-reversal
if necessary has one negative real eigenvalue: 0 and a pair of unstable complex eigenvalues
A" = « £ i satisfying

0 <ReX'"=a < =)\, Im\* =/ > 0. Q)

Obviously, such a homoclinic orbit spirals out from the diguum along a tangential direction of
the 2-dimensional unstable eigenspace and approacheguifibrium along a tangential direction
of the 1-dimensional stable eigenspace. Inside a smalhbeifpood of the orbit, the dynamics
contains at the minimum a Smale’s horseshoe, having inffmtany periodic orbits and uncount-
ably many aperiodic orbits.

In fact, the most inclusive version ([33]) for the chaotiss@®f the dynamics is to say that a
sub-dynamics near the orbit is topologically conjugate tetdock shift dynamics{o, B,} for
anyl < p < —X°/ReX“. HereB, is a subset of doubly infinite sequences of block symbols
s =...5.1.505152 ... With s’ = o(s) being the same sequencexcept that the zero coordinate is
shifted one block to the right if; is a finite block. More specifically, if a symbs) € N is a finite
natural number, wherl is the compactification of the natural numbg¥st the infinityoco, then
s; = s;- -+ s; repeats the symbal many times. Ifs; = oo andi > 0, thens; = ocooo - - - is the
infinite right sequence of theo symbol. Ifi < 0 ands; = oo, thens; = --- ocooc IS the infinite
left sequence of theo symbol. B, is the subset of doubly block symbol sequences for which each
block sequence satisfies,; < ps; for all : € Z. It inherits the product topology of the doubly
infinite product space of the compactified natural numkfs, It is straightforward to show that
this system in fact contains infinitely many copies of thdtsiynamics on any finite symbols,
including infinitely many Smale’s horseshoe maps as a spegse. It also includes uncountably
many orbits from the unstable manifolds that remains inthi@eneighborhood, corresponding to
sequences of the types,, ... 5 1.505152 ... withn < —1 ands;,; < ps; for i > n. Especially,
it also includes the sequence.co, representing the homoclinic orbit. In precise terms, dsilt
of [33] states that there is a compact subsetf any cross-section of a Shilnikov’s saddle-focus
homoclinic orbit of any sufficiently smooth vector field sathhe flow-induced Poincaré return
map onA is topologically conjugate to the block shift dynamits, B,} for any p satisfying
1 < p<—=X/Re™

A singularly perturbed food-chain model was proved to hapar@meter region for such ho-
moclinic orbits ([14]). Singularly perturbed systems cdsoabe explicitly constructed to have
such orbits ([35, 36]). The goal of this paper is to demomstraumerically that near the Smith-
Waltman parameter value the chemostat model has a Shilsikaddle-focus homoclinic orbit,
hence demonstratinigp silico that chaos exits in the sense of the block shift dynamicsHer t
classical 3-dimensional chemostat model.
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2. Chemostat Model. Consider a chemostat of a liquid medium of a fixed volumevith a
substrate solution continuously pumped in at a constantrib@r and a substrate concentratian
The well-mixed liquid is also continuously pumped out atshme flow rate. The substrate can be
atype of nutrient or an element essential for life as a comouorency, such as carbon, or nitrogen,
or iron etc. LetS denote the amount of the substrate that is present in theadtatrand suppose
there is a producer feeding on the substrate, a consumeeqdrtdducer, and a predator of the
consumer with, respectively, Y, andZ amounts of the substrate. Examples of such chemostats
can be a saltwater or freshwater tank or habitat in which tlelyxer is a phytoplankton, the
consumer is a zooplankton grazing on the plant, and the fmedaanother zooplankton. If we
assume the Holling Type Il functional form ([37]), then thetake rate ofS per unit of X is

uls
1+ hlulS

whereu, is the encounter raté, is the handling time byX. Similarly, the consumption rate of
per unit ofY’, and the predation rate &f per unit ofZ are

UQX U3Y
1+ th2X7 1+ thgY’

respectively. Assume these species are microorganisnecstinthe washout, then the chemostat
system is modeled by the following system of equations:

(
. ulS
S=wN-—wS——2
v ;” Trhus”
1+ h1u15 1+ h2u2X
= - —_ w e —
1+ hQUQX 1+ h3U3Y
U3Y
L =——=J/—ws
\ 1+ h3U3Y

wherew = r/V denotes the volume-metric flow rate, aNd= ¢V the possible maximal amount
of the substrate in the chemostat. lfet= S + X + Y + Z be the total amount of the substrate in
the system. Then by summing up all the equations abveatisfies

K =wN —wKkK

which in turn impliesK (¢) converges exponentially fast to the constantTherefore, to study the
longtime behavior of the chemostat we only need to assumdytii@mics of the system is already
on the hyperplane

N=S+X+Y+7Z7
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which reduces the dimension of the model by one to becoming

;. _ _ _
l+hwu(N-—X-Y - 2) 1+ hyus X
: up X uszY
Y=Y —-wY—-—————7 3
1+ o X 00 T 1 hgusY ®)
U3Y
J=—"5"__7 w2
\ 1+ haugy ©

(t::wt xzi y:Z z:z
' N’ N’ N
1 1 1
= Ulth’ 42 = Ugth’ 4= U3h3N (4)
1 1 1
M T et " T e YT

the dimensional model is transformed to this dimensiorfless

izx(ml(l—x—y—z) M y)

a+(1l—z—y—2) as + x
. TMoXx ms
Y y(a2+a: ag—l—y) ©®)

. msy
z2=z -1
\ (a3+y )

In this way, the uptake, consumption, and predation rz#g% are of the Monod form ([1]) with

m; being the dimensionless maximal rates anthe half-saturation constants. Because of mass
conservation withV — X — Y — Z = S > 0 (correspondingly] — =z — y — z > 0), the effective
phase space for the variables is inside the simplex

A={(z,y,2): 2 +y+2<1,2>0,y>0, >0}

in the first octant as all population densities are non-negaumbers. Note that each coordinate
plane is invariant for the model representing the extimctod a species. This is the chemostat
model considered in [4] for the Smith-Waltman attractor.

A singularly perturbed system of equations is one for whingre is a small positive parameter
multiplied to either the left hand or right hand side of someaion. Such a small parameter,
when multiplied to the left hand side, makes the correspandariable to change fast relative
to other variables, which in turn makes the system a muitetscaled process. Although the
dimensionless form of the chemostat model above is not@ipla singular-perturbation form,
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the multi-time scale property is inherent of the chemostatg@ss because as the nutrient element
works its way up the food chain, its assimilation by a highephic consumer becomes slower. It
is very similar to a typical food chain model for which the miafor example, at the bottom of the
chain regenerates fast comparing to the herbivores whethde the plant.

Mathematically, it is usually easier to study singular pasation problems. One useful feature
is the fact that many qualitative information remain the edon all values of the singular parameter
because the sign of the right hand side of each equation @bvesany with the singular parameter.
As an auxiliary means we introduce one artificial singulaapseter) < ¢ < 1 for the producer
X, making the system explicitly a singularly perturbed one:

) mi(l—z—y—2z) me
ExX =1 —-1- =xf(x,y,z
(a1+(1—x—y—z) CL2+ZL’y J(@,9,2)
. moX ms
= —1- 2| =yg(z,y, 2 6
Y y(aﬁx a3+y) yg(z,y, 2) (6)
. msy
Z=z — 1| :=zh
\ (a3+y ) )

This system will be referred to as the auxiliary model, or sirgularly perturbed model. Re-
sults obtained for the singularly perturbed model will bediso guide our search for Shilnikov’s
saddle-focus homoclinic orbit for the original chemostatd®l which can be considered as the con-
tinuation of the auxiliary system to the native value- 1. The main advantage of using singular
perturbations lies in its dimension reduction for analysrsvhich lower dimensional subsystems
tend to be simpler. By piecing together such lower dimeradistructures and properties one can
build a fairly accurate big picture for the whole system gdime limiting structure at = 0 as an
approximation.

3. Singular Perturbation Analysis. Our approach in this paper is geometric. It is to analyze the
vector field of the equations by the configurations of thealdds nullclines in order to obtain good
approximations of their solutions for small value of thegsitar parameter. An approximating orbit
is a so-called singular orbit at the limiting valae= 0 that is the concatenation of some fast and
slow orbits connecting between or trekking on some nukdiof the equations.

Fast Producer DynamicsBYy rescaling the time- = t/¢ for Eq.(6), and setting the singular
parameter at its singular value= 0, we obtain the fast subsystem

¥ =uxf(xy,z2), Yy =0, 27 =0.

It is a one-dimensional system with z being frozen as parameters. This system can be com-
pletely understood by a simple phase line analysis. Spaltyfithe dynamics is determined by its
equilibrium points and the signs of the vector field off theiggrium points. In fact, in the orig-
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inal xyz-phase space, the set of thesquilibrium points consists of the trivial coordinate pa
x = 0, corresponding the extinction state of the producer, aednitmtrivial nullcline surface
f(z,y,z) = 0. This surface usually consists of two branches: the capbdiinch and the persis-
tent threshold branch. These branches can be understoli@tinely by biological arguments.

Suppose the consumer and the predator are abseny, aed > are kept aty = 2z = 0, then
the producer dynamics = z f(x, 0,0) is the kind of logistic, with the capacity equilibrium point
z > 0 solved fromf(z,0,0) = 0 as

a1

T=1-— .
. m1—1

Because of the conservation of mass, we must haver < 1 which implies that

=—>1
1 hlw
That is, the handing raté,/h,, of the producer must be greater than the volume-metric ash
rate,w, in order for it to establish the capacity equilibrium statoreover, since

mi(l — x)

w00 =iy

—-1<0 if and only if T >T

as determined by the one-point testat 1, we know thatr is indeed a capacity equilibrium. This
capacity equilibrium point will continue for non-zeroandz. More specifically, for each fixed
value, the capacity branch gschanges can be easily understood. In fact, as the strengtie of
predation increases hyon z, the z-capacity equilibrium must decrease from the largest aapac
z. That is, on any-section, the functiom is a decreasing function gf

Two scenarios exists. Ag increases, the-capacity branch of the nullcline surfage= 0
decrease to the extinction branch= 0 at some predatory strengthsfThe second scenario is, as
y increases above a certain vaiye thez-capacity equilibrium ceases to exist beyond a nontrivial
valuez,; > 0. In other words, fory < g, there exist the:-capacity equilibriume, but fory > vy,
it induces a population crash on the producerall phase lines converge to the extinction state
z =0.

As for the persistent or survival threshold branch, we know a&= =z = 0, the persistent
equilibrium branch is the extinction state= 0, namely, for any trajectory starting with positive
converges to the capacity equilibrium stata.e. the equilibrium state = 0 is unstable. As the
predation increase ip, x = 0 may continue to have the same repelling property. In the oase
the existence of the crash capacity > 0 andy; > 0, there must be a predation strength smaller
than the crashing strength so that not all non-zero inigdll@s ofz will develop to approach the
capacity state. Denote this critical value by = .., with the subscript standing for ‘transcritical’



1 Capacity Fo
Y-Nullcline

X-Nullcline

g PCF

'dqu,% 7745
i
/”{’é%%ﬂ%% ':
. 200 0 At e,
Z-Nulcline /7 7 "~’.'/'/""l‘l?"o'4az:¢:{:‘
277

L ’;l'l/'l//' - —

TRN

(a) (b)

~—N SN S
SO
TSN
——

S

(c) (d)

Figure 2: (a) Typical nullcline surfaces for the variablg¢b) The same plot as (a) without the
y-nullcline andz-nullcline surfaces but with their intersections with tha@ullcline surface. The
curve PCF is the projection of the capacity fold to treplane along the fast-direction. It is
where the population crash landsirand z from the crash points on the capacity branch and the
threshold branch. TRN is the set of the transcritical poiatghe z-equation, and PDLS is the
set of Pontryagin’s Delay of Lost Stability. (c) Singulabiis are concatenations of fast orbits
between the attracting branches of the slow manifold ofatteguation and slow orbits on the
extinction branch and on the capacity branch. Crashingfésts from the capacity fold can only
rebound at the PDLS points. (d) Phase portrait of the glevsystem on the capacity branch and
the extinction branch of the slow manifold. Foe= 0, the intervalrcr1, rcr 2] On the returning
PDLS curve,Rpp1s, defines the range of the unstable manifold of the equilibrpointp,. A
singular homoclinic orbit exists if and only if tHecr 1, 7o 2] Segment o pp 15 containgpy.

to be explained shortly. This means, for any immediate gredatrength greater thap,,., there
212 €Xist a nontrivial persistent equilibrium= z > 0 so that for initial population density, greater
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thanz > 0 the population grows and converges to the capacity stated otherwise, if, < z, the
population decreases to the extinction state. That isy iee¢he threshold for persistence: above it
the population persists and below it the population goesetitbn. Moreover, as a function of the
y value, this threshold branchincreases, the higher the predation, the greater thresbgldred
for persistence. As solutions to the nullcline equatfon, y, z) = 0, for each fixed:, the survival
threshold branch and the capacity branch approach eachasthécreases, until they meet at the
crash pointz = 7, andy = y;. That is, for each fixed, the point(z,, 3) is a fold point of the
nullcline surfacef(x,y, z) = 0. Last, for each point, = = 0,y = v, iS where the threshold
branchz meets the extinction branch = 0. Since bothr = 0 and f = 0 are nulliclines of the
zr-equation, their intersection points are the so-calledsicatical bifurcation points, and hence the
notation. For illustrations of the-nulicline, the capacity and the threshold branches, tpadgy
fold, and the transcritical curve, see Fig.2.

Algebraically, the nullcline equatiofi(z, y, z) = 0 can be solved by expressing one variable
as a function of the other two. In particularpr y can be solved as a root to a quadratic equation,
but > can be solved as a simpler, linear equation.ihe transcritial curvg = y,,.,, * = 0 can
be solved fromf (0, y, z) = 0 for which z can be solved from a simpler linear equatiorzinThe
crash-fold curve can be solved from the pair of equations:

f(l',y,Z):()’ fx(x>y7z):O

because for eachthe nullcline curvef(z,y, z) = 0 reaches a global maximum inat the crash-
fold point (z, y;) at whichdy/dx = —f,/f, = 0. As a result, all these curves can be solved
explicitly for plotting.

As for the singularly perturbed equations, thaullcline branches are also referred to as the
slow manifolds. Moreover, the capacity branch of the slowifadd is attracting, the extinction
branch above the transcritical curyg, is also attracting, but the threshold branch and the ex-
tinction branch below the transcritical curve are repeglliRurthermore, for every non-equilibrium
initial point below the slow manifolgf = 0, the solution converges to the capacity branch. For
every non-equilibrium initial point above it, the solutioanverges either to the capacity branch or
to the extinction branch depending on the initial statehéfinitial consumer populationis below
the crashing valug; andz is above its capacity equilibrium, then the solution converges to the
x-capacity branch, and for all other initials, the soluticogverge to the extinction branch.

Two more comments are in order for the slow manifold. We nloé thez-nullcline f = 0 is
always inside the definition simplek because of the termsl — myy/(as + x). That is, all the
discussions above remain relevant to the chemostat dysa®&cond, the-section curves of the
z-nullcline surfacef = 0 is nested as increases. That is, the crash faldvaluey; is decreasing
in z as the larger the a smallery is sufficient to crash the population as the presence:ofeaves
fewer resource fox. Also, the higher the, the lower iny for the capacity branch for a same

10
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value, implying thez-sectionalz-capacity curve is nested inward. Similarly, the higher tlbe
lower the persistent thresholg.,, value as it takes a lower predation pressure loy = for the
species to develop the survival threshold.

Slow Consumer-Predator Dynamicé/hen setting: = 0 in Eq.(6), we obtain the slow dynamics
on the slow manifolds:

dy dz

OZIf(I,y,Z), E:yg(‘rvyuz% E:Zh(y)

On either the extinction branch = 0 or the capacity brancli = 0,z = z;, the dynamics is
planar, and therefore can be completely described gearaklyriOn the extinction branch = 0,
the dynamics is simple: without the producer, th@opulation is strictly decreasing (because
dy/dt = yg(0,y,z) = y(—1 — m3/(az + 2)) < 0). Thez population is slightly less so: If the
population is above the-nulicline i(y) = 0, which solves to bey = y., = a3/(ms — 1), the
predator can still manage to grow for awhile, but starts tide as soon as it crosses the nulicline
Y = Y.net» @and then both go towards extinction. Becayss strictly decreasing om = 0, it will
be used later as a change of variable for the time variable

On thez-capacity slow manifold, the reduced slow dynamics is kelitiore involved, but not
too much so. In fact, a similar capacity-threshold type giuanent applies because the reduced
dynamics fory andz is just another predator-prey system except for the canstizat the inter-
action must be confined by thecapacity fold line as a boundary on thecapacity branch of the
slow manifold. Analytically, one can solvefrom f(x,y,z) = 0 as the solution of a quadratic
equation, substitute the-capacity branch solution into the right-hand side of thequation to
obtain the reducegz-slow system. For which a phase plane analysis can be cauigth partic-
ular, at the equilibrium point. Alternatively, here is a rm@eometrical and empirical analysis of
the reduced 2-dimensional predator-prey system. Spdbyjfitar each fixedz value (imagining
an experimenter can hold thespecies constant), then the dynamics is only one-dimealkiop,
determined entirely by its equilibrium statgs= 0 and the sign of;. In fact, the intersection of
g=0andf =0, x = z is the nontrivial equilibrium points of thg-equation, for which it can be
divided up into its capacity branch and its survival thrddhmanch as: sweeps from low to high
values, see Fig.2(d). For the parameter regions of inteitdsas the survival threshold branch,
which increases i asz increases, and is unstable for the redugedjuation. This threshold may
continue to hit thex-slow manifold’s capacity fold or merge with a capacity f@dint for they
species. That is, in the latter case, {haullcline on thex-capacity slow manifold is a unimodal
curve, and the decreasing branch with increasiigthe stablej-capacity equilibrium states. So
the y-nulicline on thex-capacity slow manifold is either increasing or has oneriatenaximum
corresponding thg crash fold byz. In any case, denote the intersection point of ghaullcline
on thex-capacity slow manifold with the-capacity fold byg-r as shown in Fig.2(d). As for
the z-nullcline on the slow manifold, it cannot be simpler beeaiss only a line parallel with
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the z-axisy = y.,. AS a result, the reduced slow dynamics on theapacity manifold is com-
pletely determined by thg-nullcline and the:-nullcline. That is, inside thg-nulicline,y always
increases, either hitting thecrash fold in finite time or crossing thecapacity branch vertical to
they-axis. Outside thg-nulicline, y decreases because the predation pressurefiigrtoo high.
As for thez, above its nullcling) = y.,,., z iIncreases as there are sufficiently martg sustain its
growth, and below it declines.

As thez-nullcline is a straight line, perpendicular to theaxis, it can intersect thg-nullcline
only at one point, denoted pyy when existing, which is the unique coexisting populationikior
rium of the full system. We will further consider the paraerategions for which the-nullcline
is through they-species’ survival threshold branch of thenullcline. This can be achieved by
lowering thez-nullcline y = y., = a3/(ms — 1) which can be done by either decreasingor
increasingns.

Since it lies on the unstable branch of thaullcline, the equilibrium poinp, is always unsta-
ble. In fact, it is always a source. More specifically, let

{u:au—bv 7)

V= cu

denote the linearization of the reducedsystem at the equilibrium poipt;. Then, it only takes

a qualitative argument to know that the linearizedullcline au — bv = 0 is tangent to they-
nullcline at the equilibrium point and so is for thenullcline v = 0 to the z-nullcline. Because

u, v mirror the roles of the consumegiand the predator,respectively, the linearization coefficients
b, c must be positive. In addition, since the equilibrium pgiptis on they-survival threshold of
they-nullcline, the linearization coefficiemtmust be positive as well. As a result, the eigenvalues
of the reduced slow system at the equilibrium point are

\ = a4+ Va? — 4be
— 5 ’

which are either all positive or a pair of complex numbershwgbsitive real part. For the equi-
librium point to be an unstable focus point with complex ewxgdues, we only need the predator
z to be considerably strong as the linearization coefficiémtsdc are strongly depending on the
efficiency of the predator which in turn can be achieved byaasingmns; and decreasings. As
a passing remark, if the equilibrium point is on thxeapacity branch for which the linearization
coefficienta must be negative, then both eigenvalues must have a negediveart, confirming the
stability of the equilibrium solution.

One special point for the reduced slow dynamics stands atwill be used later. It is the point
on thezx-crash fold curve, which defines the boundary of the reduceslow vector field. Since
the z-crash fold is decreasing imasz increases, and since the slow vector field is perpendicular
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to they-direction, pointing outward from the fold at the fold poipt when above the-nulicline,
and since the vector field is perpendiculartoulicline, there must be a point by continuity on the
x-crash fold boundary, denoted by, at which the vector field is tangent to the fold boundary.
See Fig.2(d). As we will see below, this point is instruméntalefining the range of the global
unstable manifold of the equilibrium poipt.
Pontryagin’s Delay of Lost Stabilityif we follow the slow orbit on the:-capacity manifold staring
at the tangent fold point;, ., we will eventually hit the capacity fold at a point denotgdi. ., a
boundary of the capacity manifold on which the reduced slguagions are defined. If we follow
the fastz-equation, the fast orbit will bring it to a point on the exdiion surfacer = 0. In fact,
the fast orbit starting from any point of thecapacity fold converges to a point on the extinction
surface. The set of all these limiting points is referred gatee projection of the capacity fold
(PCF as shown in Fig.2). The next concatenation of such anisrto follow the slow orbit on
the extinction surface, that must cross the transcritioaley = y;,,, to enter the unstable branch
of the extinction surface. By the theory of singular peratitn, this slow orbit must not go down
indefinitely iny andz. Instead, somewhere in the= 0 slow manifold, the fast dynamics arises
and takes over, concatenating a fast orbit towarditieapacity surface again. This phenomenon
is referred to as the Pontryagin’s delay of lost stabilit[I3) and here below is how the points in
(y, z) on the PDLS set is computed.

It is found by first considering orbits for the perturbed fsjistem with0 < ¢ < 1 and then
taking the limite — 0 to find the PDLS points. More specifically, letr = (xo, y0, 20) be
a crash fold point withzy, > 0 and let0 < § < min{xg,as/(ms — 1)} be a small constant
and consider the plane = 6. Then consider the solution of the singularly perturbeda¢igus,
o°(t) = (2°(t), y°(t), 2°(¢t)), with the initial point¢®(0) = (4, vo, 20). By a phase space analysis,
this orbit must decreasing inandy first because the initial point is above theurvival surface
and below thej-nulicline surface: = (2% — 1)% asz > 0ifandonly ifz > ay/(mq —1). At
sometime later the orbit crosses thsurvival threshold surface on thenulicline. Afterward the
orbit must increase im because it is below the-capacity surface witly keeping decreasing. At a
finite time latert = ¢, the orbit hits the plane = § again, this time below the-survival surface.
The timet depends om obviously given byz©(f) = 4. In any case, it is important to note that
the starting and ending points for the orbit over the timervail [0, ] are both on the same plane
x = J. Also, because the plane= ¢ lies always below thg-nullcline, we must have < 0 on
the orbit in the same time interval. As a result, the varighbdéong this orbit is always decreasing
and thus can be used as a change of variable to substituteeotiine variable adt = dy/(yg).
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Thus the following identities must hold

0 =e(lna®(t) — Inx(0))
B b dxedt
_5/9 z=(t) dt

— [ 0.0,

)
B PO FE ),y (1))
_/yo yg(fa(y),yaée(y))dy

)dt

whereb(e) = y=(t),2°(y) = x°(t), 2°(y) = 2°(t) with ¢ being the function of; by the change of
variablesy = y°(t) which is strictly decreasing ih Take the limit to the singular value — 0,
assume the limit ob(¢) exists and denote it byim._,ob(¢) = vypaus. Theny,qs is a function

of the initial (yo, z0) but notzy = 4 as any different value of nearby results in the same fast
orbit through(zy, yo, 20) perpendicular to thgz-plane and the same slow orbit on the extinction
manifold for Eq.(6) withe = 0 andx = 0. The fast orbit has zero contribution to the limit integral
above because itis perpendicular to the integrajieariable. As a result the so-called PDLS point
Ypais(Yo, z0) IS determined from the equation below:

ypdlsM B
/yo y9(0,y, %(y))dy =0 (8)

wherez(y) = z(t) denotes the = 0 slow solution(y(t), z(t)) with the initial point(yq, zo) from
the projection of the:-capacity fold for which the time variabtas changed tg throughy = y(t)
because the latter is strictly decreasing on the invariemex = 0. We also note that the PDLS
point y,4s must lie below the transcritical curve = v,,,, because above the curve the integrant
above is of one sign and below it it is of the opposite sign. fEsealting PDLS curve corresponding
to thex-capacity fold is denoted by PDLS in Fig.2(c).

Singular Shilnikov Orbit:Every PDLS point will be projected by the-fast orbit to a capacity
point on thex-slow manifold. Denote the set of the projected PDLS poiytsip .5 as shown
in Fig.2(c,d). We will consider only those parameters ragitor which the tangential crash-fold
pointp¢. . lies above the returningpp.s curve as shown in Fig.2(d). Then thefast orbit from
the tangential poinp/., can first go to the extinction branch, then down to its PDLSpa@nd
finally return to thex-capacity slow manifold on the curniBprp. 5. Denote this returning point
by rcr 2 as shown. Denote also the returning point of the corresponebncatenation of singular
orbits fromp?. by rcr1. Then we can conclude that the local unstable manifoy, of the
equilibrium pointp, returns only to the interval segment between; andrcr, on Rpprg at the
singular limite = 0. As a result, we have the following statement.

Theorem 1 For the singularly perturbed model Eq.(6), a singular Skibv saddle-focus homo-
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clinic orbit exits ifp; is inside theRpp1s interval segment betweeq ; andrcr» for which the
equilibrium pointp; when restricted to the slow manifold is an unstable focustpamdpy. . is on
thez-crash fold and lies above theppr s curve.

We note that the resulting homoclinic orbit is of the Shibwlkind because the stable eigenvalue of
the equilibrium poinp, at the singular value is co with thez-direction being the stable eigenvec-
tor, always satisfying the eigenvalue condition (1) forl&kov’s saddle-focus homoclinic orbit.

The strategic importance of this result lies in the georoatanfiguration for the singular
Shilnikov’s orbit which we use as a guide to locate first theapgeter regions for such config-
uration, and then through continuation of the auxiliarygsilar parametet to its native value
¢ = 1 to locate the parameter values at which a Shilnikov’s saftitltas homoclinic orbit exits for
the original chemostat model. Proving the theorem for thaliany singularly perturbed model
of the chemostat equations for specific parameter regiote nsatch the singular global unsta-
ble manifold Rpp s to the equilibrium point for the parameter regions. It esisdlg requires a
shooting type of argument in theory and in numerics. The Repttetical difficulty lies in the com-
putation of the PDLS curve analytically, not only as a fuoctof thez-capacity fold curve but also
of the parameters. In what follows we will only attempt to derstrate the theorem numerically
by a shooting algorithm.

4. Numerical Shooting Method. On the nontrivialz-nulicline f = 0, we find the nontrivialy-
nullcline intersection curvg = 0, ¢ = 0. This curve can be obtained this way. First, sohas a
function ofz, y from g = 0, substitute it intof = 0 to solvey from an eventual quadratic equation
as a function of, which in turns is back substituted to expresas a function ofc. The nontrivial
z-nullcline intersection curve with the nontriviatnulicline is much easier to find. Thenulicline
h = 0 is solved as @ constanty = a3/(ms — 1), which is substituted int¢g = 0 to solvez as a
function of z. As a result, the nontrivial equilibrium point with all naanishing populations can
be numerically solved as the intersection of the these tweesu Denote the equilibrium point as
pr = (zr,ys, z¢) and refer to it sometimes as the coexisting equilibrium pasumerically, we
used a discretization step size about the ordeifof for the  variable for these two curves and
expect the same accuracy for the equilibrium point.

For the linearization of the vector field at the equilibriunirn,

Ife Tfy Zf.
J(P) = |99 Y9y Y9-
0 zh, O

we use the first order discretization scheme for the parégvdtives with an increment afo—1°.
The corresponding stable and unstable eigenvector setdeaed as\, and )\, respectively.
For the parameter values considered, the equilibrium pging a saddle focus with, < 0 and
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Figure 3: (a) The local stable and unstable manifolds of tdexisting equilibrium point is approxi-
mated by the linearization of the vector field at the equitlibr point. It is done in @-neighborhood

of the equilibrium point withy ~ 10=%. (b) A view of the local unstable manifold, for which the
orbit in black shows a Shilnikov’s orbit, which starts at atdince of ordet0—* from the equilib-
rium point and returns at a distance of ordér®. (c) For each parametes, the bisection search
routine for the initial of the target poini* (diamond) takes place along thedirection of W*,
around the vertical line = z* throughWW*. The numbers show the bisection steps in sequence
to locate the unstable manifold orbit whose return is clésehe vertical line. (d) The bisection
search routine for the, parameter starts with two values whose corresponding-s@ssons/V

lie above the stable manifold poiit’® for one and below for the other. The numbers show the
bisection steps to locate the parameter value wht8ecrossedV®, e.g. the unstable manifold
orbit (diamond) on the vertical line meets the stable maaifoircle). (Eachi’¢ is translocated to
(0,0) for a common reference for all parameters.)

ReA, > 0 andIm)\, = +3 # 0. Also, it is of the Shilnikov kind with—\,; > Re),. The stable
eigenvector spac&® and unstable eigenvector spa€Eé can also be obtained numerically, and
they are used to approximate the local stable and local biestaanifoldsJV;? ., W ., respectively.
All unstable manifold orbits are originated from an Eucldé-neighborhood of the equilibrium
point with§ ~ 10~%. See Fig.3(a,b). Because the tangent eigenspaces apptexime stable and
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unstable manifolds to higher orders, the complementagcton errors between the eigenspaces
and the manifolds are of order at led$t~ 1072,

To guarantee no region of the local unstable manifold isloe&ed numerically, we start at any
initial point, a, from E*, to the left side of the equilibrium point and on th@ullcline surface; =
Y.ncet- We use the-nullcline surface as a cross-section and find the firstmebtuof a to its left side
sincep; is an outward unstable spiral. This pair is on a full expagdipiral on the local unstable
manifold W*.. We then partition the interval betweerandb on E* andy = ., into a set of
many points, and use them as the initial points of a familyradtable orbits. In this way, the local
unstable manifoldV}%_ is completely bounded by this family of orbits when integchbackwards.
And, when integrated forward, this family of orbits definég fglobal unstable manifold. See
Fig.3(b).

The plane for shooting is defined to be this plane inside tn@leix A:

Si={(z,y,2) 20 +y+z2=1,2>0,y>0,z>0}

going through these axis pointél/2,0,0), (0,1,0) and (0,0, 1). Take any point on the stable
eigenspacé.® inside thej-neighborhood, integrate backward to intersect the ptan@enote the
intersection of the global stable manifold with the planelgy = {(z*, y*, 2%)}. Itis typically

a point. Similarly, integrate the family of local unstablamifold orbits forward to intersect the
plane, and denote it by *. The intersection is the first returning intersection inskase that the
orbit hits the plane from behind and toward the capacity ¢naosf thez-nullcline. It is typically a
curve. The goal of the shooting algorithm is to find the par@mealues of the system so that the
stable and unstable manifold intersect:

W* e w. (9)

Finding homoclinic orbits satisfying the above conditiakes two searching routines, both
are iterative bisections of intervals. The first is a bisgtsearch on the unstable manifald"
on the plane:. It is to find the initial point on the local unstable manifdld:. whose returning
point onW* is the intersection of//* with the linez = 2° through the stable manifold point
W = {(z%v° 2°)}. Denote this shooting target point é#i* by p* = (z“,y*, z*). When a
parameter permits, this is done by first locate two point$16h referred to a%;, p», each is on
one side of the target' as shown in Fig.3(c). Since these two points are generatedtiro points
from the local unstable manifold’, on the liney = ., and to the left side of the equilibrium
point, we then use the middle point of the initials to createther point oriV*, referred to ap;.
For the right parameter valug; is betweerp, andp,. Depending on which side of the target point
p* theps pointis, a smaller interval is found to contain the targetand another iteration follows
to find the next approximation to the targé&t and so on.
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Not all parameters of a system can permit this bisectiorckedrhe condition for this routine
to run is the existence of points, p, on W* that straddle”, i.e.

27 < 2% <z or 29 < 2" <z (10)

wherez; is thez-coordinate ofp; € W*.

For this bisection search, we use 25 iterative bisectigossie approximate the targgt. De-
note the last point by. Obviously, ifp = p® within a preset tolerance, then a numerical homoclinic
orbit is found and the corresponding initial point frdii". is the sought-after homoclinic point.
The reason to carry out this many bisection steps is becaasaming each search interval is re-
duced by half, the end search point should be within a distafieg=2° ~ 3 x 10~® of the exact
target.

Since homoclinic orbit is a co-dimension one bifurcatioepbmenon, for almost all parameter
values, there is a gap betwegrandp®. The second bisection search routine is carried out for a
carefully chosen parameter to close this gap. We will expheiy a, parameter is chosen for this
search shortly. For now let us assume it is the case. Thenghetion search for the homoclinic
parameter for which condition (9) holds works similarly bs first bisection search fgr More
specifically, assume two parameter values-oére found so that ongis above itdV* on its line
z = 2z® and anothep is below itsWW* on its linez = 2°. We then generate the next parameter value
as the middle point of the first two and find jidy the first bisection search routine, and so on, see
Fig.3(d).

Similar to the bisection condition fgi above, the bisection condition for the searching pa-
rametera, is the existence of twg of two parameter values that bouhld®*. That is, when//#
is translocated t@0, 0) for all parameters, there are two parameter values whosespamding
points are denoted by, p» so that

N <0<y or Y2 <0< 1y (11)

wherey; is they-coordinate ofy;, relative to their owriV».

We can either run this hierarchy search routine for a finit@lper of steps or set it to terminate
if a preset precision is reached betwgeandW*. The maximal number of steps is set to be 25
and the stoppage search error is set td €. As a result, if the shooting algorithm converges,
the number of steps taken should not exceed the program mexigb as2=2 ~ 3 x 1075.
Also the numerical homoclinic orbit found is expected tairatto a small neighborhood of the
equilibrium point of radius about0~*, as a conservative ballpark estimate. We will denote it by
E. the shortest Euclidean distance of the unstable manifdid through the lasp that first enters
the §-neighborhood of the equilibrium point. This measures haweimthe numerical homoclinic
orbit misses the target equilibrium point. When the shapéigorithm converges, we expegt to
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be no greater thatD—*.

If one of the conditions (10, 11) does not hold, the shootiggrthm will not converge to find
a homoclinic orbit. The algorithm will also stop working lié model becomes too stiff for the
ODE solvers employed for the searching routines. Since iogutar perturbation analysis will
guide us to a parameter range for which the second searchtioon@d.1) hold initially, for all
searches that we carried out but failed to converge it waausecthe first search condition (10)
fails or the singular parameteiis too small for the ODE solver used.

Because for sufficiently smadlthe global returri?* of the local stable manifold of the equi-
librium point follows closely the PDLS curve, it is useful mmerically keep track of the PDLS
curve to find initial guesses of the parameters to start atstgpsearch. Numerically, this is done
in the following steps.

1. Find the crash-fold on the-capacity surface by finding the maximal points in variapfer
thex-nulicline f = 0 which is solved fory as a function of andz. The projected image on
x = 0is used as the initial points for the slaw-equation of Eq.(6) witlk = 0 andx = 0.

2. Theyz-slow equation is changed to a first order equation ugiag the independent variable
andz as the dependent variabké: /dy = zh/yg, starting at point of the projected capacity
fold (PCF) toy = 0. The 4th order Runge-Kutta method with 150 steps of discagtn is
used to find the solution = z(y).

3. The discrete points of the solution above is used to gentraintegral of the PDLS equation
by the Simpson’s rule for integration, and the PDLS paijL is solved from the equation.

4. Thez-component of the PDLS curve is obtained by finding the cpoadingz-valuez =
2(Ypdts)-

Parameter RegionsPlausible initial guesses for parameter values need ta yred following
configuration for the nullcline surfaces of the system. (&g Z-nullcline surfacef = 0 must fold

in y. (2) The nontrivialy-nullcline on thez-capacity surface/ = 0 must start with a survival
threshold branch from its own transcritical point o= 0. (3) The coexisting equilibrium point
pr Needs to be on thg-survival threshold branch on thecapacity surface. (4) The PDLS curve
needs to move across the equilibrium point as some parawvedtes changes. For configuration
(1) we try to make the:-transcritical point,f(0,y,0) = 0, lower on they-axis whenx = z = 0.
Assumey is small enough, theih — y ~ 1 and we can expressfrom f(0,y,0) = 0 roughly
asy ~ (% — 1);—22. Therefore, for large enough,, we can guaranteg,., > 0 and more
importantly we can use, as a changing parameter to lower or to raise the TRN curvehwhiturn
lower or raise the PDLS curve strategically at least at ssection withz = 0. This choice inu;
(ormy similarly) also leads to a realization of (4). Similarlyr fnfiguration (2), thg-transcritial

point ony = 0 on thex-capacity surface ig(x,0,z) = 0, f(x,0,z) = 0, which can be solved
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inzasz = (:;—f; — 1)% with z ~ 1. Thus, makingz; small (ormjs large) enough guarantees
the transcritial point starts thesurvival threshold branch. As for (3), since thaullcline can be
solved explicitly agy = -4+, similar choices inu; (respectivelym;) will force the equilibrium
pointp; on the unstable branch of thenullcline, which also make it an unstable spiral for the
yz-slow dynamics on the-slow manifold by the slow dynamics analysis above. In casidn,
one should start out by trying some fair values:ofand small values af,; for sufficiently small

e. Once a homoclinic orbit is found for smallwe then try to continue it to its native value= 1

by varyinga,, which moves the PDLS up and down effectively.

5. Result. Figure 4 shows the result of one search by the search algorfig.4(a,b) shows the
result for a small value of the auxiliary singular parameter 0.01. The corresponding attraction
of the coexisting equilibrium point to the-slow manifold can be gauged from the eigenvalues
of the linearization of the vector field at the equilibriumiqo They are\, = —5589.7974 and
A, = 0.2915 £ 1.5986: respectively, a magnitude df)® folds for the attraction relative to the
expansion. As a result, we can clearly see the singularpbation effect of the auxiliary system
for which the global unstable manifold of the equilibriummmaeturns towards the slow manifold
along the predicted PDLS curve as the turning points. Thedaotimc orbit is found by searching
the a, parameter intervald.7, 2] with the following searching parameters: The local stalve a
unstable manifolds are originated from & 5 x 10~* neighborhood of the equilibrium point. The
common cross-section where the global stable and unstadmgotds meet iz +y + 2z = 1.
The error iny-direction between the global stable and unstable marsfidld, 1/* on the cross-
section i$6.2755 x 10~%. The homoclinic orbit’s closest return to the equilibriuipt is within a
distanceE, = 9.2883 x 10~%. Only 4 search iterations were carried out to obtain the abesult.
The search algorithm stopped by the Mattade 15s solver for stiff systems of ordinary differ-
ential equations because it cannot meet the preset doudtesion (0~'°) requirement for both
relative and absolute errors because of the extreme s#ffokthe auxiliary singularly perturbed
model. (The backward and forward integrations to obtairgtbbal stable and unstable manifolds,
W#, W* on the shooting plang with the given precisions for the numerical ODE solvers taie
more tharf, 000 steps to complete, resulting a total error for each orbit woenthan10-8.) At a
first glance, this failure seems unexpected because thelamgarameter value is onty= 0.01.
From the eigenvalues of the equilibrium point above we setthie relative stiffness for the system
is in the order ofil0~?, a substantial stiffness for most ODE solvers.

The stiffness of the system is abated as the singular paeametcreases to the native value
¢ = 1 for the chemostat equations Eq.(5). For the same searcimptees, the algorithm stopped at
the 17th step because the Euclidean error between the ghalbéd and unstable manifoldshs =
1.7323 x 1078, meeting the algorithm’s stoppage search etfo. The resulting homoclinic orbit
errorisE, = 5.5479 x 107, (If we were to print the homoclinic orbit on a ten by ten metester
to get a sense of the accuracy of the shooting method, thenireguhomoclinic orbit would miss
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Figure 4: (a) A result of the Shilnikov orbit search algomittfior parameter values of Eq.(5):
e =0.01,a; = 0.08,a, = 0.110625, a3 = 0.185,m; = 15, my = 5,mz = 2.5. A view showing
the returning global unstable manifold connecting the alvlst manifold of the equilibrium point.
(b) The same phase portrait with a view showing the capaeityqd the slow-manifold. (c) With
the same parameter values except for the auxiliary singnadeametee continued to the native
values = 1 and a newi, parameter valu@.170834503173828, a Shilnikov’s orbit is found by the
search algorithm also. (d) The phase portrait of the atirdmt continuing the numerical Shilnikov
orbit of (c).

the equilibrium point no more than one centimeter. Alsohwlie homoclinic starting from a point
about one centimeter to the equilibrium point, it shouldéhalsout 10 full spirals before returning.)
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Figure 5: Parameter values for Eq.(5) are = 1,a; = 0.08,as = 0.229486083984375, a3 =
0.185,m; = 15,my = 7,m3 = 2.5. (@) The unstable manifold and the Shilnikov orbit with
E. = 4.8 x 107°. (b) The attractor approximated by continuing the numétalnikov orbit.

The stable and unstable eigenvalues of the equilibriumtpare —66.9310,0.3015 + 1.4890:
respectively, giving a moderate stiffness at the ordéfof. The homoclinic orbit and the attractor
are shown in Fig.4(c,d). It shows clearly that the globaltaible manifold returns towards the
z-slow manifold at some distance away from the PDLS curve.s Bhiggests that without the
auxiliary system’s help finding an initial guess of the pagsen for a Shilnikov’s homoclinic orbit
for the original system would be a blind random search.

Using the auxiliary singularly perturbed model is only afignt way to locate Shilnikov’s
orbits. There are such orbits which can be found by the shgathethod but is not the result
of a continuation of singular Shilnikov orbits as the awatyi singular parameter increases to
1. The orbit found in Fig.5 is such an example. We first locatqutheameter region where a
Shilnikov’s orbit might exist for the chemostat model and the shooting method to find theg
value for such an orbit. But it turns out that this orbit does persist for the auxiliary singularly
perturbed model with small < ¢ < 1. Comparing to others this orbit and its corresponding
attractor are further away from the coordinate planes. Keweven though the full model is far
away from the singularly perturbed caricature, the attradbes exhibit a feature characteristic
of singularly perturbed equations. Specifically, as shawfig.5(b), the attractor still seems to
occupy a thing sheet near the capacity branch ofthellcline surface that attracts orbits quickly
in the z-direction. It is as if thec-variable is a fast variable of the chemostat model. Thitufea
seems not too surprising because the equilibrium poins paithe stable manifold more strongly
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Figure 6: (a) The family of the unstable manifold$* and the stable manifoltd’* (marker ‘0’)

on the shooting cross-section, wikhi* translocated td0, 0), with a, ranging from0.1 to 0.25.
Arrow points at the unstable manifold for the Smith-Waltnpamameter values. (b) The same plot
for Eq.(6) for parameter values= 1,a; = 0.08,a3 = 0.20,m; = 8,my = 3.2, m3 = 2.8 with

ay ranging from0.08 to 0.23. A numerical Shilnikov orbit is found foti, = 0.203790740966797
with the equilibrium point shooting errdt, = 1.38 x 10~%. (c) The attractor approximated by
continuing the numerical Shilnikov orbit far= 400. (d) A numerical Shilnikov attractor for the
same parameter values exceptder 0.01 anda, = 0.1481640625 andE, = 3 x 1072,

than pushes out the unstable manifold as the corresponjegvalues are, = —55.6448, \, =
0.4700 + 1.71454, respectively. The contracting to expanding ratio is ofg¢beond ordet0—2 in
magnitude.

Last, let us consider the Smith-Waltman attractor, whosarmater values for Eq.(5) are as in
Fig.1(b). We applied our shooting algorithm usingas the searching parameter. The search failed
to find a Shilnikov’s orbit. Fig.6(a) is the result of the sgashowing that the search condition
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(10) fails to hold: the shooting targ#t® is not in the range of the unstable manifdid‘.

This result implies that to find a Shilnikov’s orbit near theigh-Waltman parameter values
we need include one more parameter dimension to our searcé.rafionale for choosing this
additional parameter is suggested by the result of Fig.®{@ye specifically, it shows the global
unstable manifold swings to the higher end in thdirection of the stable manifold. Since the
returning part of the global unstable manifold orbits irases in the-direction, it is desirable to
compensate this overshot by decreasing the magnitude aftitband side of the-equation, i.e.,
slowing down the: variable. We tried this idea by reducing thg value without success. Instead,
we returned to the dimensional model Eq.(3) and considerathange the dimensional param-
eterw. It can be seen from the change of parameters and variableg.@f) that by increasing
the dimensional washout rate we can simultaneously decreasing the dimensionless péeasn
my, ma, ms3. It turned out that this choice of the one dimensional patameorked. The result
is shown in Fig.6(b), for the same Smith-Waltman parametrcept that each; is scaled by a
factor 0.8, corresponding to scaling the washout ratéy a factor of 1.25. Fig.6(c) shows the
corresponding chaos attractor. Fig.6(d) shows that thimi8bv orbit of the neighboring Smith-
Waltman parameter can be the continuation of the artifiongjdarly perturbed model Eq.(6).

6. Conclusion Remark. Biological systems are inherently complex. Simple systeuitls com-
plex dynamics are attractive for the obvious reasons. Ck@ahonodels are more so because
experiments can be readily set up in lab and the mathematexdea for modeling the systems are
very simple for both experimentalists and theorists al¥et, proving chaos for such seemly sim-
ple models is never an easy task. Such problems almost alwagaged to become a protracted
guest for theorists. Proving the existence of a Shilnikesaddle-focus homoclinic orbit is a good
strategy for differential equations. If the systems argularly perturbed, the problem becomes
easier. For the chemostat model considered in this papes&gethe geometric method of singular
perturbation only as an auxiliary means to locate possiftampeter regions and then to find such
chaos generating orbits numerically.

In fact, our result, c.f. Fig.6(b) can be considered as a eaaargassisted proof. Specifically, the
local stable and unstable manifolds are approximated wihierror ofl0~%. The local manifolds
are globally extended in finite times to the shooting plane belVs, W, respectively. Because
the extension times are finite (no more tan00 steps with both relative and absolution precisions
set at10~1¢ for the numerical solver used), the errors are controllgtiwia margin no more than
10~*. As can be seen from Fig.6(b) that the family of the stableifolis parameterized by the
shooting parameter, is inside a region filled by the family. Actually, the stablamifold family
W= is all translated to one point on the shooting plane, coraretlyi at the origin0, 0), which as
shown is bounded away from the boundary of the unstable widrfdmily in distance at least of
the order10~2, a robust zone at least two orders of magnitude greater trmmargin of error.
Therefore, it must be inside the region filled by the unstabmifold family W*. As a result,
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by an intermediate value theorem argument, the unstabl&afdhfamily must sweep the entire
region between the top and the bottom boundaries and one enafihe family must intersect the
stable manifold, i.e/* € W*, proving the existence of a Shilnikov’s saddle-focus holnac
orbit outside the margins of numerical error. As a consegegiie chemostat model is chaotic in
the sense of the block shift dynamical systems for the cpomeding parameter values. Although
this is not an analytical proof, it is a computer-assistembpnonetheless.

As a last note, this methoih silico should be easily adapted for other systems, e.g. [26,
27] which are resistive to analytical treatment for chaosegation. Also, it is our hope that the
numerical method perhaps some day in the future can be midanranalytical proof. As pointed
out early, one theoretical difficulty lies in expressing Bentryagin’s delay of lost stability curve
as a function of the parameters in order to show its crossitig thve equilibrium point for the
singular perturbation case. And the other theoreticaladiffy lies in the continuation of a singular
homoclinic orbit to the large chemostat value of the singpéaameter for the original system.
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