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Abstract. In this paper we focus on a patch occupancy 4-dimensional model of barnacle-algae-mussel interac-

tions with external periodic seasonal forcing proposed by Benincà et al. [PNAS-2015]. In order to

understand the mechanism of the species fluctuation sustained by a cyclic succession at the edge of

chaos, we investigate the corresponding system without seasonal forcing. When the mussel is absent,

we give a complete description of the global asymptotic behavior of the solutions. If the mussel is

present, we provide an amenable sufficient and necessary condition for the uniform persistence for

the 4-dimensional system. Our analytic results on the uniform persistence provide useful necessary

information for the chaotic dynamics of the periodically forced system in [1].
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1. Introduction and the model. It is a challenge to test the chaos in a natural ecological

system, although there are many mathematical models ( [3, 10, 15, 25, 26, 29]) and laboratory

experiments ( [2, 7]) for which species interactions can generate chaotic behavior. In a recent

paper [1], Benincà et al. have reported the recorded data of 20-year time series of popula-

tions of barnacle, crustose algae and mussel in a rocky intertidal community located in the

Cape Rodney-Okakari Point Marine Reserve on the North Island of New Zealand. The data

displays a complex cycle succession for many years at the edge of chaos. First, bare rock was

colonized by barnacles and crustose algae, then they were overgrown by mussel and subse-

quent detachment of the mussels returned bare rock again. The data exhibits irregular species

fluctuation.

According to the data, Benincà et al. [1] constructed a patch occupancy model based
on the species interaction in the intertidal community. Let B0 be the fraction of the patches
occupied by barnacles without crustose algae, and let BA be the fraction occupied by barnacles
overgrown with crustose algae. Furthermore, let A be the fraction occupied by crustose algae,
which includes crustose algae on barnacles BA and crustose algae on bare rock, let M be the
fraction occupied by mussels, and R be the fraction of bare rock. The model takes form as
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follows (see [1, p.6391]):

(1.1)



Ḃ0 = cBR(B0 +BA)R− cABAB0 − cMMB0 −mBB0 + F (t)mABA,

ḂA = cABAB0 − cMMBA −mBBA − F (t)mABA,

Ȧ = cARAR+ cABAB0 − cMMA− F (t)mAA,

Ṁ = cMM(B0 +A)− F (t)mMM,

R = 1−B0 −A−M,

where

• cBR: the colonization rate of barnacles on bare rock;

• cAB: the colonization rates of crustose algae on barnacles;

• cAR: the colonization rates of crustose algae on bare rock;

• cM : the colonization rate of mussels on barnacles and crustose algae;

• mB,mA,mM : mortality rates of barnacles, crustose algae, and mussels, respectively;
• F (t): seasonal temperature fluctuations as

F (t) = 1 + α · (Tmax − Tmean) cos(
2π(t− 32)

365
). (F∗)

It is observed that crustose algae and mussels are sensitive to the temperature fluctuation

and their mortality rate were forced by seasonal temperature variation with high mortality

in summer and low mortality rate in the winter. In the expression of F (t), α represents the

strength of seasonal forcing, Tmean is the mean annual sea surface temperature 17.1◦C and

Tmax = 20.5◦C measured at the warming day of the year, namely February 1 with delay 32

days. However, barnacle mortality is not affected by seasonal temperature variation.

In the B0-equation of (1.1), the first term cBR(B0 + BA)R represents the colonization of

barnacles on bare rock; in the second term cABAB0 describes the overgrowth of barnacles by

crustose algae; the third term cMMB0 is the overgrowth of barnacles by mussels; while the

fourth term mBB0 is the mortality of barnacles; and the last term F (t)mABA is the mortality

of crustose algae growing on barnacles. In BA-equation of (1.1), the first term cABAB0 and

fourth term F (t)mABA have already been introduced above. They describe the colonization

and mortality of crustose algae on barnacles; the second term cMMBA is the overgrowth of

barnacles and their crustose algae by mussel population; the third term mBBA is the mortality

of barnacles covered by crustose algae. In the A-equation of (1.1), the first and second term

cARAR, cABAB0 describe the colonization of crustose algae on bare rock and on barnacles,

respectively; the third term cMMA is the overgrowth of crustose algae by mussel; and the

last term F (t)mAA is the mortality of crustose algae. In the M -equation of (1.1), we note

that the mussel cannot settle on bare rock, only settle on top of barnacles and crustose algae.

The first term cMM(B0+A) represents the colonization of mussels on barnacles and crustose

algae, and second term F (t)mMM is mussel mortality. For more detail of the model (1.1), we

refer to the SI Appendix in the supplemental material of [1].

To the best of our knowledge, Benincà et al. [1] is perhaps the first article to present

evidences that, for the real-world ecological community, erratic fluctuations in an intertidal
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rock-pool ecosystem are caused by competitive interactions that cause chaotic dynamics. In

fact, the extensive numerical simulations in [1] illustrated that a complex cycle succession for

many years at the edge of chaos is indeed possible for the model (1.1) under some parameters

ranges.
To understand the mechanism of the species fluctuation sustained by a cyclic succession at

the edge of chaos, the first step appears to be the study of the corresponding system without
seasonal forcing, that is, α = 0 (hence F (t) = 1),

(1.2)



Ḃ0 = cBR(B0 +BA)R− cABAB0 − cMMB0 −mBB0 +mABA,

ḂA = cABAB0 − cMMBA −mBBA −mABA,

Ȧ = cARAR+ cABAB0 − cMMA−mAA,

Ṁ = cMM(B0 +A)−mMM,

R = 1−B0 −A−M.

The present paper is devoted to investigating the global dynamics of system (1.2). Our

work turns out to be the first attempt to initiate the research on rigorously analyzing this new

model (1.1) of barnacle-algae-mussel interactions.
For this purpose, we first consider the crucial case of (1.2) for which mussel is absent, i.e.,

M = 0. System (1.2) is then reduced to the following three-dimensional system:

(1.3)


Ḃ0 = cBR(B0 +BA)R− cABAB0 −mBB0 +mABA,

ḂA = cABAB0 −mBBA −mABA,

Ȧ = cARAR+ cABAB0 −mAA,

R = 1−B0 −A.

In the first part of this paper, we will give a complete description of the global dynamics of

system (1.3). Based on this, we will present in the second part of this paper an amenable

sufficient and necessary condition for the uniform persistence, i.e., the coexistence of the

species, for the 4-dimensional barnacle-algae-mussel system (1.2).

The paper will be organized as follows. In Section 2, we state our main results, mention

the main difficulties for the proofs and give the biological interpretations of the results. We

defer to Section 3 all the detailed proofs. Section 4 is the Discussion Section.

2. Main Results. We mainly focus on the autonomous system (1.2) of Barnacle-Algae-
Mussel interactions. For this purpose, we rewrite (1.2) as the following new system

Ḃ0 =B0[cBR(1−B0 −A−M)− cABA− cMM −mB]

+BA[cBR(1−B0 −A−M) +mA],

ḂA =cABAB0 − (cMM +mB +mA)BA,

Ȧ =A[(cAR −mA)− cARA− (cAR + cM )M + (cAB − cAR)B0],

Ṁ =M [cM (B0 +A)−mM ].

(BAM)

Let B = B0 +BA be the total barnacles. Then B satisfies

(2.1) Ḃ = B[cBR(1−B0 −A)− (cBR + cM )M −mB].
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Since B,A,M are the fractions of the patches occupied by barnacle, crustose algae and

mussel in a rocky intertidal community, biologically, it is reasonable to see that 0 ≤ B,A,M ≤
1. Note also that BA is the fraction occupied by barnacles overgrown with crustose algae.

Then it is biologically reasonable to expect BA(t) ≤ A(t) for all t ≥ 0. Motivated by this, we

define in the present paper our working domain Σ as

(2.2) Σ = {(B0, BA, A,M) ∈ R4
+ : B0 +A+M ≤ 1, and BA ≤ A},

where R4
+ is the first orthant in R4. The following proposition confirms the validity of the

choice of Σ from mathematical point of view.

Proposition 2.1. Σ is positively invariant with respect to system (BAM). Moreover, let

(B0(t), BA(t), A(t),M(t)) be a solution of (BAM) in Σ. If A(0) > 0,M(0) > 0 and B(0) =

B0(0) +BA(0) > 0, then B0(t), BA(t), A(t) and M(t) are all positive for all t > 0.

Next we present our standing assumption throughout this paper:

(H1) cAB > cAR and cBR > mB.

Here, cAB > cAR is due to the biological observation that the crustose algae settle more

firmly on barnacles than on the bare rock; while cBR > mB indicates that the colonization

rate of barnacles on the bare rock is greater than the mortality rate of barnacles. Note that if

cBR ≤ mB, then from (2.1) the total population of barnacles becomes extinct as time becomes

large.

In order to investigate the dynamics of system (BAM) arising from barnacle-algae-mussel
interactions, one needs to analyze a crucial case for which mussel is absent, i.e., M = 0. For
such particular case, (BAM) turns out to be

Ḃ0 = B0[cBR(1−B0 −A)−mB − cABA] +BA[cBR(1−B0 −A) +mA],

ḂA = cABAB0 − (mB +mA)BA,

Ȧ = A[(cAR −mA)− cARA+B0(cAB − cAR)].

(BA)

Clearly, system (BA) is equivalent to system (1.3). Moreover, (2.1) is reduced to

(2.3) Ḃ = B[cBR(1−B0 −A)−mB ].

Σ in (2.2) is then reduced to

(2.4) Γ = {(B0, BA, A) ∈ R3
+ : B0 +A ≤ 1, BA ≤ A},

which is positively invariant with respect to system (BA).
In the first part of this paper, we will give a complete description of the global dynamics

of the 3-dimensional system (BA). More precisely, let

Ẽ0 = (0, 0, 0), ẼB = (B∗
0 , 0, 0), ẼA = (0, 0, A∗),

4



SIAM J. APPL. MATH. c⃝ xxxx Society for Industrial and Applied Mathematics
Vol. xx, pp. x x–x

where B∗
0 = 1− mB

cBR
, A∗ = 1− mA

cAR
. Under assumption (H1), Ẽ0, ẼB always exist, while ẼA

may or may not exist in Γ.

Theorem 2.2. Assume (H1). Let λ∗ = (cAR − mA) + B∗
0(cAB − cAR). Then, for system

(BA),

(i) When λ∗ < 0, ẼB is globally asymptotically stable (G.A.S.) with respect to Γ \ Ẽ0;

(ii) When λ∗ > 0,

(a) if mB
cBR

> mA
cAR

(i.e., B∗
0 < A∗), then ẼA exists and is G.A.S.with respect to Γ\{A =

0};
(b) if mB

cBR
< mA

cAR
(i.e., B∗

0 > A∗), there is a unique positive equilibrium Ẽc that is

G.A.S. with respect to Γ ∩ IntR3
+. Moreover, Ẽc = (B̄0, B̄A, Ā) satisfying

cARĀ = (cAR −mA) + B̄0(cAB − cAR),(2.5)

cBR(B̄0 + Ā) = cBR −mB,(2.6)

B̄A =
cAB

mA +mB
ĀB̄0.(2.7)

Remark 1. (i). Theorem 2.2(i) says if the mortality rate mA of crustose algae is too large

such that λ∗ < 0, then only barnacles survive.

(ii). Theorem 2.2(ii) says if λ∗ > 0, only crustose algae survives if its mortality rate in

comparison with colonization rate on the bare rock, mA
cAR

is smaller than that of barnacles.

However, if on the contrary, the species B0, BA and A will coexist.

Among others, the most difficult part in proof of Theorem 2.2 is the global asymptotic

stability of Ẽc. For this purpose, it is known that the Lyapunov function approach is frequently

used in ecology systems with mostly terms of mass action form (see, e.g. [17, 18] or [14] and

references therein). Unfortunately, several typical types of Lyapunov functions do not work for

the system (BA). As a consequence, one has to try some alternative approach. Motivated by

the definition of Γ, we present our approach by introducing some new variables and transform

the original system (BA) to a new 3-dimensional system that is of so-called K-competitive

(see [8,9,12,23,31,32] and references therein). Since 3-dimensionalK-competitive systems have

the Poincaré-Bendixson Property (c.f. [12, Theorem 3.23], see also [11,30,31]), the challenging

task of the global asymptotic stability of Ẽc can be reduced to show the orbital stability of

any possible positive periodic solutions in Γ. We accomplish this approach by constructing

a Lyapunov function and utilizing the stability criterion in term of the second compound

equations which was developed by Muldowney [27,28] (see also [20–22]).

Based on Theorem 2.2, we will provide in the second part of this paper an amenable

sufficient and necessary condition for the uniform persistence for the 4-dimensional barnacle-

algae-mussel system (BAM).

More precisely, let

σ , cM
mM

cAR + cM
cAB

(M∗ − M̂),
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where

M∗ =
cBR(cM −mM )− cMmB

cM (cM + cBR)
and M̂ =

cAR(cM −mM )− cMmA

cM (cM + cAR)
.

Then, we have the following

Theorem 2.3. Assume (H1). Then, for system (BAM),
(i) The positive equilibrium Ec ∈ Σ ∩ IntR4

+ exists if and only if

0 < σ < 1 and
mB

cBR
+

mM

cM
< 1.

Moreover, if Ec exists, then it must be unique.

(ii) (BAM) is uniformly persistent if and only if Ec exists. In other words, system (BAM)

is uniformly persistent if and only if 0 < σ < 1 and mB
cBR

+ mM
cM

< 1.

Remark 2. (i) According to the data reported in Benincà et al. [1], cBR = 0.018 day−1,

cAB = 0.049 day−1, cAR = 0.021 day−1, cM = 0.078 day−1,mA = 0.011 day−1,mB =

0.003 day−1,mM = 0.017 day−1, one has σ ≈ 0.561388 and mB
cBR

+ mM
cM

≈ 0.384615, which

entails that Ec exists and (BAM) is uniformly persistent.
(ii) Actually, we will give in Subsection 3.3 a tedious explicit expression of Ec as

Ec = (
mM

cM
σ,

m2
McABσ(1− σ)

c2M (cMM∗ +mA +mB)
,
mM

cM
(1− σ), M∗).

Clearly, M∗ > 0 if and only if mB
cBR

+ mM
cM

< 1. Moreover, if σ = 1 then Ec is reduced to

E1(
mM
cM

, 0, 0,M∗); while if σ = 0 (hence M∗ = M̂) then Ec is reduced to E2(0, 0,
mM
cM

, M̂). As

we will see (3.23) in Subsection 3.3, E1, E2 are two important extinction equilibria (with mussel

non-vanishing) on the boundary of Σ. Furthermore, we will also show that the quantity “σ”

essentially describes the biological invasion from E1 and E2; while the quantity “mB
cBR

+ mM
cM

”

characterizes the biological invasion from Ēc. We will discuss this, as well as the biological

meaning of uniform persistence, in details in the Discussion Section.

3. Proof of the Main Results.

3.1. Invariant Domain Σ. In this subsection, we will prove Proposition 2.1 that describes

the positively invariant domain Σ ⊂ R4
+, defined in (2.2), which is motivated from biological

point of view.

Proof of Proposition 2.1: Let (B0(t), BA(t), A(t),M(t)) be any solution of (BAM) with the
initial value (B0(0), BA(0), A(0),M(0)) ∈ Σ. By the form of (A,B,M)-equations in (BAM)
and (2.1), it is not difficult to see that (B(t), A(t),M(t)) ∈ R3

+ for any t ≥ 0. The form of
(B0, BA)-equations in (BAM) also implies that (B0(t), BA(t)) ∈ R2

+ as long as (A + B0 +
M)(t) ≤ 1. Furthermore, we note that

d

dt
(A+B0 +M) = cARAR+ cBRBR−mBB0 −mA(A−BA)−mMM,(3.1)

d

dt
(A−BA) = cARAR+mBBA −mA(A−BA)− cM (A−BA)M,(3.2)

where R = 1− (A+B0 +M).
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In order to show (A+B0 +M)(t) ≤ 1 and BA(t) ≤ A(t) for all t ≥ 0, it suffices to show

that (A+B0 +M)(t) < 1 and BA(t) < A(t) for all t ≥ 0 provided that (A+B0 +M)(0) < 1

and BA(0) < A(0).

To this end, we first note that if B(0) = 0 then we have done. In fact, for such situation,

we have B0(t) = BA(t) = 0 for all t ≥ 0. Moreover, due to A-equation in (BAM), it is

clear that A(t) > 0 = BA(t), because A(0) > BA(0) = 0; and hence, from (3.1), one has

(A + B0 + M)′(t0) ≤ −mAA(t0) < 0 whenever (A + B0 + M)(t0) = 1 for some t0 > 0.

Consequently, we have obtained (A+B0 +M)(t) < 1 for all t ≥ 0.

So, we now assume that B(0) > 0. By (2.1) and A-equation in (BAM) again, one has

B(t) > 0 and A(t) > 0 for all t ≥ 0, Since (A + B0 + M)(0) < 1 and BA(0) < A(0), we

define t1 = sup{t > 0 : (A + B0 + M)(t) < 1} and t2 = sup{t > 0 : BA(t) < A(t)}. Let
t∗ = min{t1, t2}. Clearly, t∗ > 0. If t∗ = +∞, then we have done. Suppose that t∗ < +∞.

Then, we will have the following three alternatives, respectively.

Case (i): t∗ = t1 < t2. Then one has R(t∗) = 0 and (A − BA)(t∗) > 0; and moreover,

B0(t∗) ≥ 0 (since (A + B0 + M)(t) ≤ 1 for all t ∈ [0, t∗]). It then follows from (3.1) that

(A+B0+M)′(t∗) ≤ −mA(A−BA)(t∗) < 0. Hence, (A+B0+M)(t) > (A+B0+M)(t∗) = 1,

for any t < t∗ close to t∗, contradicting the definition of t∗(= t1).

Case (ii): t∗ = t2 < t1. Then one has (A − BA)(t∗) = 0 and R(t∗) > 0; and moreover,

BA(t∗) ≥ 0 (since (A + B0 + M)(t) ≤ 1 for all t ∈ [0, t∗]). It then follows from (3.2)

that (A − BA)
′(t∗) ≥ cARA(t∗)R(t∗) > 0 (because A(t∗) > 0 as well). So, (A − BA)(t) <

(A−BA)(t∗) < 0 for any t < t∗ close to t∗, a contradiction to the definition of t∗ again.

Case (iii): t∗ = t1 = t2. Then (A − BA)(t∗) = 0 and R(t∗) = 0. Noticing that A(t∗) > 0

and B(t∗) > 0 (hence, either B0(t∗) > 0 or BA(t∗) > 0), it again follows from (3.1) and (3.2)

that either (A + B0 +M)′(t∗) < 0 or (A − BA)
′(t∗) > 0. So either (A + B0 +M)(t) > 1 or

(A−BA)(t) < 0, hfor any t < t∗ close to t∗, a contradiction to the definition of t∗(= t1 = t2).

Thus, we have proved t∗ = +∞, that is, (A+B0 +M)(t) < 1 and BA(t) < A(t) for all t ≥ 0.

Therefore, we have proved the positive invariance of Σ with respect to system (BAM).

Finally, assume further that A(0) > 0,M(0) > 0 and B(0) = B0(0) + BA(0) > 0. Then

A(t),M(t), B(t) are clearly positive for all t > 0. If BA(t) = 0 for some t > 0, we let t̃ be

the first time such that BA(t̃) = 0. Then B′
A(t̃) ≤ 0 and B0(t̃) = B(t̃) > 0; and hence, from

the BA-equation in (BAM) one has B′
A(t) > 0, a contradiction. Similarly, if B0(t̃) = 0 then

B′
0(t̃) ≤ 0 and BA(t̃) = B(t̃) > 0; and hence, from B0-equation in (BAM) one has B′

0(t̃) > 0,

a contradiction. Thus, B0(t), BA(t), A(t) and M(t) are all positive for all t > 0. �

3.2. Global Dynamics for System (BA) without Mussels. In this subsection, we will

focus on the 3-dimensional system (BA) for which mussel is absent. We will prove Theorem

2.2 which describes the global dynamics of system (BA) on Γ ⊂ R3
+ defined in (2.4).

3.2.1. Preliminary. As in Section 2, we denote the boundary equilibria for system (BA)
by

Ẽ0 = (0, 0, 0), ẼB = (B∗
0 , 0, 0), ẼA = (0, 0, A∗),
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on Γ ∩ ∂R3
+, with B∗

0 = 1− mB
cBR

, A∗ = 1− mA
cAR

, and denote the positive equilibrium

Ẽc = (B̄0, B̄A, Ā) ∈ Γ ∩ IntR3
+,

with (B̄0, B̄A, Ā) satisfies (2.5)-(2.7). Here, ∂R3
+ and IntR3

+ denote the boundary and interior

of R3
+, respectively.

Due to the assumption (H1), Ẽ0, ẼB always exist; while ẼA exists if and only if cAR > mA.
In order to guarantee the existence of Ẽc, we introduce

λ∗ = (cAR −mA) +B∗
0(cAB − cAR),(3.3)

∆1 = cBRA
∗ − (cBR −mB).(3.4)

Remark 3. Obviously, ∆1 < 0 if and only if mB
cBR

< mA
cAR

.

Lemma 3.1. Ẽc exists if and only if λ∗ > 0 and ∆1 < 0. Moreover, if Ẽc exists, then it is

unique and satisfies (2.5)-(2.7).

Proof. Necessity. Let Ẽc = (B̄0, B̄A, Ā) ∈ Γ be a positive equilibrium of (BA). Then

the right hand side of (BA) must vanishes at Ẽc. By (2.3) and the A-equation in (BA), we

obtain (2.5)-(2.6); and hence obtain (2.7) by BA-equation. This implies that Ẽc must be

unique. Moreover, by (2.6), we have B̄0 + B̄A = B∗
0 , and hence, B̄0 < B∗

0 , which implies that

λ∗ > (cAR −mA) + B̄0(cAB − cAR). By (2.5), one has λ∗ > cARĀ > 0. Furthermore, again by

(2.5)-(2.6), we have 0 < B̄0 = (mA
cAR

− mB
cBR

) · cAR
cAB

. Thus, mB
cBR

< mA
cAR

, that is, ∆1 < 0.

Sufficiency. If λ∗ > 0 and mB
cBR

< mA
cAR

, then we consider the function g(B0) :=
cAB
cAR

B0 −
(mA
cAR

− mB
cBR

). Clearly, g(0) < 0 and g(B∗
0) =

λ∗
cAR

> 0. Then there is a unique B̄0 ∈ (0, B∗
0) such

that g(B̄0) = 0, so back to formula (2.5), we can obtain Ā by defining cARĀ = (cAR −mA) +

B̄0(cAB − cAR). Together with g(B̄0) = 0, one can easily check that the obtained (B̄0, Ā)

also satisfies (2.6). Finally, we use (2.7) to obtain B̄A so that (B̄0, B̄A, Ā) ∈ IntR3
+ ∩ Γ is the

unique positive equilibrium. We have completed the proof.

Before going further, we note that the Jacobian of the vector field for (BA) is as

(3.5)

(
L1 cBR(1 − B0 − A) + mA −cABB0 − cBR(B0 + BA)

cABA −(mB + mA) cABB0

(cAB − cAR)A 0 L2

)
,

where L1 = [cBR(1−2B0)−mB ]−cBRBA−(cAB+cBR)A and L2 = [cAR(1−2A)−mA]+B0(cAB−cAR).

The following two lemmas give a complete classification of the stability of the equilibria

of (BA) according to the sign of λ∗ and ∆1.

Lemma 3.2. (i) If λ∗ < 0, then ẼB is globally asymptotically stable (G.A.S.) for Γ \ Ẽ0;

(ii) If λ∗ > 0 and ∆1 > 0, then ẼA exists and is G.A.S. for Γ \ {A = 0}.
Proof. (i). Together with Lemma 3.1 and (H1), λ∗ < 0 implies that neither Ẽc nor ẼA

exists; and moreover, the Jacobian (3.5) at ẼB is(
−cBRB∗

0 mB + mA −cABB∗
0 − cBRB∗

0
0 −(mB + mA) cABB∗

0
0 0 λ∗

)
,

8
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with all the eigenvalues are negative. We now show the global stability of ẼB for Γ \ Ẽ0. In
fact, by virtue of (2.3), we have Ḃ ≤ B(cBR(1 − B) − mB). So, for any small ε > 0, there
exists a Tε > 0 such that B(t) ≤ B∗

0 + ε for t ≥ Tε. Then, the A-equation in system (BA)
implies that

1
A Ȧ ≤ (cAR −mA) +B0(cAB − cAR)

≤ (cAR −mA) + (B∗
0 + ε)(cAB − cAR) = λ∗ + ε(cAB − cAR) < 0,

for t ≥ Tε and ε sufficiently small. Consequently, A(t) → 0; and hence, BA(t) → 0 and

B0(t) → B∗
0 , as t → +∞. Thus, ẼB is G. A. S. for Γ \ Ẽ0.

(ii). If λ∗ > 0 and ∆1 > 0, then (H1) and Lemma 3.1 implies that ẼA exists, but Ẽc does
not exist. We now show the global stability of ẼA for Γ \ {A = 0}. Note that

A′ = A[(cAR −mA)− cARA+B0(cAB − cAR)] ≥ A[(cAR −mA)− cARA].

Then, for any small η > 0, there exists a Tη > 0 such that A(t) ≥ A∗ − η, for t ≥ Tη. Since
∆1 > 0, one has mB

cBR
> mA

cAR
by Remark 3. Hence, B∗

0 < A∗. Therefore,

B′ ≤ B[cBR(1− (A∗ − η))−mB ] ≤ cBRB[B∗
0 − (A∗ − η)] < 0,

for t ≥ Tη and η sufficiently small. Hence, B(t) → 0 and A(t) → A∗, as t → +∞. Thus, ẼA

is G.A.S..

Lemma 3.3. If λ∗ > 0 and ∆1 < 0 (i.e., Ẽc exists by Lemma 3.1), then

(i) Ẽc is always locally asymptotically stable (L.A.S);

(ii) ẼA is always unstable, whenever it exists. Furthermore, any orbit with initial value in

Γ \ (A-axis) will move away from ẼA.

Proof. If λ∗ > 0 and ∆1 < 0, then Lemma 3.1 implies that Ẽc always exists; while ẼA

may exist or not.

(i). The Jacobian (3.5) at Ẽc is

(3.6)

(
−cBRB̄0 − cBRB̄A − cABĀ mB + mA −cABB̄0 − cBR(B̄0 + B̄A)

cABĀ −(mB + mA) cABB̄0

(cAB − cAR)Ā 0 −cARĀ

)
.

We will prove local asymptotic stability of Ẽc by Routh-Hurwitz approach (c.f. [6,13]). In fact,
a direct calculation yields that the characteristic equation of (3.6) is λ3+ a2λ

2+ a1λ+ a0 = 0
with

a2 = cARĀ+mB +mA + cBRB̄0 + cBRB̄A + cABĀ > 0,

a1 = (mB +mA)cBR(B̄0 + B̄A) + cARĀ(mB +mA + cBRB̄0 + cBRB̄A + cABĀ)

+(cAB − cAR)Ā(cABB̄0 + cBR(B̄0 + B̄A)) > 0,

a0 = (mB +mA)ĀcABcBR(B̄0 + B̄A) > 0.

A direct insight (by noticing the product of the last term of a2 and the first term of a1) yields

that a1a2 − a0 > 0. This then implies all the eigenvalues of (3.6) are negative, which entails

that the locally asymptotic stability of Ẽc.

9
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(ii). When ẼA exists, the Jacobian (3.5) at ẼA is

(3.7)

(
(cBR − mB) − (cAB + cBR)A∗ cBR(1 − A∗) + mA 0

cABA∗ −(mB + mA) 0

(cAB − cAR)A∗ 0 −cARA∗

)
.

So, ẼA possesses three eigenvalues µ1, µ2 and −cARA
∗, where µ1µ2 = ∆1 · (mA +mB + cABA

∗)

and µ1 + µ2 = −cABA
∗ − (mA + mB) − ∆1. Since ∆1 < 0, one has µ1µ2 < 0 (hence, ẼA is a

saddle). We may assume without loss of generality that µ1 < 0 < µ2. Clearly, the vector

(0, 0, 1) is the corresponding eigenvector with respect to −cARA
∗. We further assert that the

eigenvector associated with µ1 < 0 has the component-sign as (+,−, 0). Indeed, it is not

difficult to see that (a, b, 0) is the eigenvector associated with µ1 < 0; and moreover, we have

b[µ1 + (mA +mB)] = acABA
∗

a[µ1 − (cBR −mB − cABA
∗ − cBRA

∗)] = (cBR(1−A∗) +mA)b.

Suppose that ab > 0. Then one has

0 > µ1 > cBR −mB − cABA
∗ − cBRA

∗ and µ1 > −(mA +mB).

Together with (3.7), one has µ1+µ2 = [cBR−mB − cABA
∗− cBRA

∗]− (mA+mB) < 2µ1. So,

µ2 < µ1 < 0, a contradiction (because µ2 > 0). Thus, one has ab < 0. Thus, we have proved

the assertion, which implies that any initial value in Γ \ (A-axis) will move away from ẼA.

Remark 4. By Lemma 3.2(ii) and the Jocobian (3.5) at Ẽ0 and ẼB, it is easy to see that

if Ẽc exists (i.e., λ∗ > 0 and ∆1 < 0), then none of Ẽ0, ẼB, ẼA can be the omega limit point

of any orbit starting in Γ ∩ IntR3
+.

By virtue of Lemma 3.3, it is now clear that Ẽc is always L.A.S. whenever it exists.

However, it is a challenging task to prove the global asymptotic stability of Ẽc. This will be

done in the next Subsection 3.2.2.

3.2.2. An alternative viewpoint with K-competitive property . Now, we will focus on

the global asymptotic stability of Ẽc. Our approach is essentially motivated from the biological

point of view. More precisely, based on this model, we will introduce several new variables

and transform the original system (BA) to a new system which is of so-called K-competitive

systems (see [8, 9, 12, 23, 31, 32] and references therein) with respect to the partial ordering

defined by a convex cone K in R3. It is well-known that 3-dimensional K-competitive systems

have the Poincaré-Bendixson Property (see [12, Theorem 3.23] or [11, 30, 31]). So, in order

to prove the global asymptotic stability of Ẽc, one needs to show the orbital stability of

any possible periodic solutions in Γ ∩ IntR3
+. We will accomplish this approach by utilizing

the stability criterion in term of the second compound equations which was developed by

Muldowney [27,28] (see also [20–22]).

We start with introducing new variables T := A−BA and S := A+B0 for (B0, BA, A) ∈
Γ. Clearly, 0 ≤ T ≤ A ≤ S ≤ 1, and

B0 = S −A; BA = A− T ; B = S − T ; R = 1− S.

10
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Let Λ = {(S,A, T ) : 0 ≤ T ≤ A ≤ S ≤ 1}. Then, the original system (BA) on Γ is transformed

to a new system on Λ as
Ṡ = cARA(1− S) + cBR(S − T )(1− S)−mB(S −A)−mAT,

Ȧ = cARA(1− S) + cABA(S −A)−mAA,

Ṫ = cARA(1− S) +mB(A− T )−mAT.

(SAT)

Denote by F the vector field of (SAT). Then the Jacobian matrix DF (T,A, S) is

(3.8)

 a11 cAR(1 − S) + mB −cBR(1 − S) − mA

(cAB − cAR)A a22 0

−cARA cAR(1 − S) + mB a33

 ,

where

a11 = −cARA+ cBR(1− S)− cBR(S − T )−mB,

a22 = cAR(1− S)− 2cABA+ cABS −mA,

a33 = −(mB +mA).

Due to the standing assumption (H1), we have cAB > cAR. So, our key viewpoint from (3.8)

is that system (SAT) is a K-competitive system with respect to the partial ordering defined

by the special convex cone K = {S,A, T ) ∈ R3 : S ≥ 0, A ≤ 0, T ≥ 0}. So, system (SAT) has

the Poincaré-Bendixson Property (see, e.g. [12, Theorem 3.23]), i.e., any compact limit set of

system (SAT) that contains no equilibrium points is a periodic orbit.

We will show that any possible periodic orbit of (SAT) is orbitally stable. This will be

done by utilizing the stability criterion in term of the second compound equations.
Based on such insight, we consider the second compound matrix DF [2](S,A, T ) of (3.8)

as

(3.9) DF
[2]

(S,A, T ) =

 a11 + a22 0 cBR(1 − S) + mA

cAR(1 − S) + mB a11 + a33 cAR(1 − S) + mB

cARA (cAB − cAR)A a22 + a33

 ,

where

a11 + a22 = [−cARA+ cBR(1− S)− cBR(S − T )−mB] + [cAR(1− S)− 2cABA+ cABS −mA];

a11 + a33 = [−cARA+ cBR(1− S)− cBR(S − T )−mB]− (mB +mA);

a22 + a33 = [cAR(1− S)− 2cABA+ cABS −mA]− (mB +mA).

One may refer to more details on compound matrices and differential equations in [20,21,27,28]

and references therein.
For the sake of convenience, we rewrite

a11 + a22 = −cARA− cBR(S − T ) + γ1 + γ2 − cABA;(3.10)

a11 + a33 = −cARA− cBR(S − T ) + γ1 −mB −mA;(3.11)

a22 + a33 = γ2 − cABA−mB −mA,(3.12)

with γ1 = cBR(1− S)−mB and γ2 = cAR(1− S) + cAB(S −A)−mA.

11
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Lemma 3.4. Both γ1 and γ2 have average 0 along any periodic-solution of (SAT).

Proof. By (2.3), we have Ḃ = B[cBR(1 − S) −mB]. Moreover, the A-equation in (SAT)

entails that Ȧ = A[cAR(1− S) + cAB(S −A)−mA]. This concludes the proof.

The main result in this subsection is the following:

Proposition 3.5. Any nonconstant periodic solution of (SAT) is, if it exists, asymptotically

orbitally stable.
Proof. Given any periodic solution (S(t), A(t), T (t)) to (SAT) with a least period ω > 0,

we consider the ω-periodic linear equation

(3.13)
dX

dt
= DF [2](S,A, T )X

along the ω-periodic solution (S(t), A(t), T (t)), where X = (X1, X2, X3)
T and DF [2](S,A, T )

is as in (3.9).

Now we introduce the function W (S,A, T ;X) =
∑3

i=1 pi(S,A, T ) · |Xi|, where pi(S,A, T )
for i = 1, 2, 3, are auxiliary positive smooth functions, which will be determined later. Let
W (t) := W (S(t), A(t), T (t);X(t)). Then, the right-hand derivative D+W (t) of W (t) with
respect to t exists (see, e.g. [21, 24]), and has the form

(3.14) D+W (t) =

3∑
i=1

p′i(t)|Xi(t)|+ pi(t) ·D+(|Xi(t)|),

where pi(t) = pi(S(t), A(t), T (t)) and p′i(t) is the derivative of pi(t). Note thatDF [2](S,A, T )ij ≥
0 for i ̸= j. Then a direct calculation yields that D+(|Xi(t)|) ≤

∑3
j=1DF [2](S,A, T )ij · |Xj(t)|,

for i = 1, 2, 3. For brevity, we write the element Qij = DF [2](S,A, T )ij of the matrix
DF [2](S,A, T ). Then, together with (3.14), we have

D+W (t) ≤
3∑

i=1

p′i|Xi(t)|+
3∑

i,j=1

Qij · pi · |Xj(t)|

=
3∑

i=1

p′i + 3∑
j=1

Qji · pj

 · |Xi(t)| =
3∑

i=1

p′i/pi + 3∑
j=1

Qji · pj/pi

 · (pi|Xi(t)|).

(3.15)

By (3.9) and (3.10)-(3.12), one can obtain that

3∑
j=1

Qj1 · pj/p1 = γ1 + γ2 − CABA− cBR(S − T )

+[cAR(1− S) +mB ] · p2/p1 + cARA(p3/p1 − 1),
3∑

j=1

Qj2 · pj/p2 = [γ1 − cARA− cBR(S − T )−mB −mA] + [(cAB − cAR)A] · p3/p2,

3∑
j=1

Qj3 · pj/p3 = [γ2 − cABA−mB −mA]

+[γ1 +mB +mA] · p1/p3 + [cAR(1− S) +mB] · p2/p3.
12
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Now, by choosing p1 = p3 := p > 0, where p = p(S,A, T ) is a positive smooth function of the
state variables. Then we have

3∑
j=1

Qj1 · pj/p1 = γ1 + γ2 − cABA− cBR(S − T ) + [cAR(1− S) +mB] · p2/p,

3∑
j=1

(Q)j2 · pj/p2 = [γ1 − cARA− cBR(S − T )−mB −mA] + [(cAB − cAR)A] · p/p2,

3∑
j=1

(Q)j3 · pj/p3 = (γ1 + γ2 − cABA) + [cAR(1− S) +mB] · p2/p.

Therefore, combining with (3.15), we have

D+W (t) ≤ [g1(t)− cBR(S − T )] · p|X1(t)|+ g2(t) · p2|X2(t)|+ g1(t) · p|X3(t)|,

where

g1(t) = p′/p+ γ1 + γ2 − cABA+ [cAR(1− S) +mB ] · p2/p,
g2(t) = p′2/p2 + γ1 + [−cARA− cBR(S − T )−mB −mA] + [(cAB − cAR)A] · p/p2.

Consequently, it entails that

(3.16) D+W (t) ≤ max{g1(t), g2(t)} ·W (t).

Note that along the ω-periodic solution (S(t), A(t), T (t)), t ∈ [0, ω], one has
∫ ω
0

p′

p dt =∫ ω
0

p′2
p2
dt = 0; and moreover, by Lemma 3.4,

∫ ω
0 γidt = 0, i = 1, 2. So, in order to estimate

D+W (t) in (3.16), it suffices to choose some p and p2 such that

[cAR(1− S) +mB ] · p2/p ≤ cABA

and
[(cAB − cAR)A] · p/p2 ≤ cARA+ cBR(S − T ) +mB +mA.

In other words, it suffices to choose some positive functions p(S,A, T ) and p2(S,A, T ) such
that

(3.17)
(cAB − cAR)A

cARA+ cBR(S − T ) +mB +mA
≤ p2

p
≤ cABA

cAR(1− S) +mB
.

For this purpose, by recalling that A∗ = 1 −mA/cAR ≤ A ≤ S along any periodic solution,

one has (cAB−cAR)
cARA+cBR(S−T )+mB+mA

≤ (cAB−cAR)
cARA∗+mB+mA

and cAB
cAR(1−A∗)+mB

≤ cAB
cAR(1−S)+mB

. In the

following, we will show that

(3.18)
(cAB − cAR)

cARA∗ +mB +mA
<

cAB

cAR(1−A∗) +mB
.

Indeed, this can be easily done by plugging A∗ = 1−mA/cAR into this inequality and simply
noticing the fact that cABmA/cAR < cAB +mA +mB. As a consequence, one only needs to
choose p, p2 such that

(3.19)
(cAB − cAR)A

cAR +mB
≤ p2

p
≤ cABA

mA +mB
.

13
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To this end, let p =

√
mA +mB

cAB − cAR
· A
S

and p2 =

√
cAB

cAR +mB
· A

2

S
; which satisfies (3.19), and

hence, satisfies (3.17) automatically.

By virtue of (3.16)-(3.17), we have obtained that W (t) → 0 as t → ∞. Consequently, the

linear system (3.13) is asymptotically stable; and hence, the periodic solution (S(t), A(t), T (t))

is asymptotically orbitally stable by [28, Theorem 4.2] (see also [21, Theorem 3.1]).

Proposition 3.6. Ẽc is globally asymptotically stable in Γ ∩ IntR3
+.

Proof. First, let Ω be an omega-limit set of (BA) with initial value in Γ∩ IntR3
+. We first

claim that Ω is a locally asymptotically stable periodic orbit if it contains no equilibrium.

Indeed, by the transformation (B0, BA, A) 7→ (S,A, T ), Ω is transformed to the limit set Ω′

of the K-competitive system (SAT) and Ω′ does not contain any equilibrium of (SAT). Then,

the Poincaré-Bendixson Property for (SAT) (see, e.g. [12, Theorem 3.23]) implies that Ω′ is

a periodic closed orbit. It then follows from Proposition 3.5 that Ω′ is locally asymptotically

stable. As a consequence, we obtain that Ω is a periodic closed orbit of (BA) that is locally

asymptotically stable. Thus, we have proved the claim.

Now, we will prove Ẽc is globally asymptotically stable in Γ ∩ IntR3
+. Recall that Ẽc is

locally asymptotically stable (see Lemma 3.3(i)). Then the basin of attraction A of Ẽc is

a nonempty relatively open subset of Γ. Denote by ∂ΓA the boundary of A relative to Γ.

Clearly, ∂ΓA is invariant because A is invariant. If ∂ΓA does not intersect IntR3
+, then we

are done. Suppose that ∂ΓA∩ IntR3
+ ̸= ∅. Choose some u ∈ ∂ΓA∩ IntR3

+. Since Γ∩ IntR3
+ is

positively invariant (see Proposition 2.1 with M = 0), the forward orbit of u still remains in

∂ΓA∩IntR3
+. So, the omega-limit set ω(u) ⊂ ∂ΓA, which entails that Ẽc /∈ ω(u). Furthermore,

it follows from Remark 4 that ω(u) does not contain Ẽ0, ẼB, ẼA. In other words, ω(u) contains

no equilibrium. So, by virtue of the claim above, ω(u) itself is a locally asymptotically stable

periodic orbit; and hence, we have ω(u) ⊂ ∂ΓA∩ IntR3
+, since the only non-wandering points

on Γ\ IntR3
+ are Ẽ0, ẼB, ẼA. Now, one can choose some point p ∈ A∩ IntR3

+ sufficiently close

to ω(u). On the one hand, p is attracted to Ẽc. On the other hand, p will be asymptotic to the

stable periodic orbit ω(u), a contradiction. Thus, we have proved Ẽc is globally asymptotically

stable in Γ ∩ IntR3
+.

3.2.3. Proof of Theorem 2.2. Theorem 2.2 is directly from Lemmas 3.1-3.2 and Propo-

sition 3.6. �

3.3. Uniform Persistence of the system (BAM). In this subsection, we focus on the

uniform persistence of the 4-dimensional Barnacle-Algae-Mussel system (BAM). We will prove

Theorem 2.3, which provides an amenable sufficient and necessary condition for the uniform

persistence of (BAM) on Σ.

For this purpose, we denote the boundary equilibria for system (BAM) on Σ by

(3.20) E0 = (0, 0, 0, 0), EB = (B∗
0 , 0, 0, 0), EA = (0, 0, A∗, 0), Ēc = (B̄0, B̄A, Ā, 0),

14
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and

(3.21) E1 = (B∗∗
0 , 0, 0,M∗), E2 = (0, 0, Â, M̂).

Here, B∗
0 = 1− mB

cBR
, A∗ = 1− mA

cAR
and (B̄0, B̄A, Ā) satisfies(2.5)-(2.7); and moreover, B∗∗

0 =

Â = mM/cM and

(3.22) M∗ =
cBR(cM −mM )− cMmB

cM (cM + cBR)
and M̂ =

cAR(cM −mM )− cMmA

cM (cM + cAR)
.

Remark 5. (i). E0, EB, EA, Ēc in (3.20) correspond to the equilibria Ẽ0, ẼB, ẼA, Ēc of

system (BA) in Section 3.2. For brevity, we may also write

E0 = (Ẽ0, 0), EB = (ẼB, 0), EA = (ẼA, 0), Ēc = (Ẽc, 0),

in the context without any confusion.

(ii). For clarity, we may also rewrite M∗ =
1−mM

cM
− mB

cBR

1+
cM
cBR

and M̂ =
1−mM

cM
− mA

cAR

1+
cM
cAR

, respectively.

In order to study the existence of E1, E2 (see (3.21)), as well as the existence of the positive

equilibrium for (BAM), we introduce the conditions

(A1):
mB

cBR
+

mM

cM
< 1;

(A2):
mA

cAR
+

mM

cM
< 1.

We also define the quantity

(3.23) σ , cM
mM

cAR + cM
cAB

(M∗ − M̂).

Remark 6.According to the supporting data in [1], cAB = 0.049, cBR = 0.018, cAR =

0.021, cM = 0.078,mB = 0.003,mA = 0.013,mM = 0.017. Then one can directly obtain

that M∗ ≈ 0.115394, M̂ ≈ 0.0547889, σ ≈ 0.561388 and 0 < σ < 1.

In the following sections, we discuss the dynamics of system (BAM) according to the

quantity σ and the conditions (A1)-(A2).

Lemma 3.7. For system (BAM), we have

(a) E1 exists if and only if (A1) holds, and EB exists if E1 exists ;

(b) E2 exists if and only if (A2) holds, and EA exists if E2 exists;
(c) The positive equilibrium Ec exists if and only if (A1) and 0 < σ < 1. Moreover, if Ec

exists, then it is unique and Ec = (B̃0, B̃A, Ã, M̃) ∈ Σ ∩ IntR4
+, satisfies

B̃0[cABÃ+ cMM̃ +mB − cBR(1− B̃0 − Ã− M̃)] = B̃A[cBR(1− B̃0 − Ã− M̃) +mA],(3.24)

B̃A(cMM̃ +mB +mA) = cABB̃0Ã,(3.25)

cAR(1− B̃0 − Ã) + cABB̃0 − (cAR + cM )M̃ = mA,(3.26)

B̃0 + Ã =
mM

cM
.(3.27)
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Proof. (a) Clearly, for system (BAM), the equilibrium E1 = (B∗∗
0 , 0, 0,M∗) exists if and

only if B∗∗
0 = mM

cM
and M∗ =

1−mM
cM

− mB
cBR

1+
cM
cBR

, which implies that E1 exists if and only if (A1)

holds. Moreover, one can easily verify that EB exists whenever E1 exists.

(b) Similarly, the equilibrium E2 = (0, 0, Â, M̂) exists if and only if Â = mM
cM

and M̂ =
1−mM

cM
− mA

cAR

1+
cM
cAR

, which entails that E2 exists if and only if (A2) holds. Moreover, one can easily

verify that EA exists whenever E2 exists.

(c) The positive equilibrium Ec = (B̃0, B̃A, Ã, M̃), if exists, should satisfy (3.24)-(3.27).

By (3.24), we have

(3.28) B̃0[mB −△∗ + cABÃ+ cMM̃ ] = B̃A(△∗ +mA),

where △∗ = cBR(1 − mM
cM

) − cBRM̃ . Since B̃0B̃A ̸= 0, together with (3.25), one can deduce

from (3.28) that

(3.29) [mB −△∗ + cABÃ+ cMM̃ ][cMM̃ +mB +mA] = cABÃ[△∗ +mA].

Rewrite (3.29) as [cMM̃ − (△∗−mB)](cMM̃ +mA+mB) = cABÃ[(△∗−mB)− cMM̃ ]. Then,
we obtain either cMM̃ = △∗ −mB or cMM̃ = −(mB +mA + cABÃ). Noting that M̃ > 0, it
follows that M̃ = (△∗ −mB)/cM . Hence,

(3.30) M̃ = M∗ =
cBR(1− mM

cM
)−mB

cBR + cM
> 0,

if (A1) holds. Moreover, by plugging (3.27) into (3.26), we obtain that

cABÃ+ (cAR + cM )M̃ = (cAR −mA) +
mM

cM
(cAB − cAR).

So, together with (3.30), we have Ã = 1
cAB

[cAR(1 − mM
cM

) − mA − (cAR + cM )M∗] + mM
cM

=
mM
cM

(1 − σ). Hence, B̃0 and B̃A are determined by (3.27)and (3.25) as B̃0 = mM
cM

σ and B̃A =
m2

M cABσ(1−σ)

c2M (cMM∗+mA+mB)
, respectively. In other words, we obtain

(3.31) Ec = (
mM

cM
σ,

m2
McABσ(1− σ)

c2M (cMM∗ +mA +mB)
,
mM

cM
(1− σ), M∗).

Consequently, Ec is unique if it exists.

Next, we will show that Ec exists if and only if (A1) and 0 < σ < 1. Indeed, if Ec =

(B̃0, B̃A, Ã, M̃) exists, then (3.31) and Remark 5(ii) imply that 0 < σ < 1 and (A1) must hold.

On the other hand, it is clear that (A1) implies M̃ > 0. Moreover, together with Ã = mM
cM

σ

and B̃0 =
mM
cM

σ, it follows from 0 < σ < 1 that Ã > 0 and B̃0 > 0. Therefore, Ec exists.

Before going further, we note that the Jacobian of system (BAM) is

(3.32)


L3 cBR(1 − B0 − A − M) + mA −(cBR + cAB)B0 − cBRBA −(cBR + cM )B0 − cBRBA

cABA −(mA + mB + cMM) cABB0 −cMBA

(cAB − cAR)A 0 L4 −(cAR + cM )A

cMM 0 cMM cM (B0 + A) − mM )

 ,
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where L3 = −2cBRB0 − cBRBA − (cBR + cAB)A − (cBR + cM )M + cBR − mB and L4 =

(cAR −mA) + (cAB − cAR)B0 − 2cARA− (cAR + cM )M.

Lemma 3.8. (i) E1 is unstable if σ < 1; and E1 is locally asymptotically stable if σ > 1.

(ii) E2 is unstable if σ > 0; and E2 is locally asymptotically stable if σ < 0.

(iii) Ēc is unstable if (A1) holds; Ēc is locally asymptotically stable if mB
cBR

+ mM
cM

> 1.

Proof. (i). A direct calculation yields that the Jacobian (3.32) at E1 = (B∗∗
0 , 0, 0,M∗) is


L3 |E1

cBR(1 − B∗∗
0 − M∗) + mA −(cBR + cAB)B∗∗

0 −(cBR + cM )B∗∗
0

0 −(mA + mB + cMM∗) cABB∗∗
0 0

0 0 L4 |E1
0

cMM∗ 0 cMM∗ 0

 .

The eigenvalues of E1 is determined by

(λ− L4|E1) · (λ+mA +mB + cMM∗) · [λ2 − L3|E1λ+ cM (cM + cBRB
∗∗
0 M∗] = 0.

Here L3|E1 = −2cBRB
∗∗
0 − (cBR + cM )M∗ + cBR −mB = −2cBRB

∗∗
0 < 0, and

L4|E1 = cAR −mA + (cAB − cAR)B
∗∗
0 − (cAR + cM )M∗

= (M̂ −M∗)(cAR + cM ) + mM

cM
cAB = cAB

mM

cM
(1− σ).

Consequently, the only possible positive eigenvalue is L4|E1 . In other words, E1 is L.A.S. if

σ > 1; and E1 is unstable if σ < 1.

(ii). Similarly, the Jacobian of Jacobian (3.32) at E2 = (0, 0, Â, M̂) is


L3 |

(0,0,Â,M̂)
cBR(1 − Â − M̂) + mA 0 0

cABÂ −(mA + mB + cMM̂) 0 0

(cAB − cAR)Â 0 L4 |
(0,0,Â,M̂)

−(cAR + cM )Â

cM M̂ 0 cM M̂ 0

 .

Again, one can calculate the eigenvalues of E2 as µ1 = −cABÂ − mA − mB − cMM̂ < 0,

µ2 = cBR(1− Â− M̂)−mB − cMM̂ = (cBR + cM )(M⋆ − M̂), and µ3, µ4 are the roots of the

equation λ2 + cABÂλ + cM (cAR + cM )ÂM̂ = 0. Clearly, Reµ3 < 0 and Reµ4 < 0. Moreover,

µ2 > 0 if and only if σ > 0. So, E2 is unstable if σ > 0 and E2 is L. A. S. if σ < 0.
(iii). The Jacobian (3.32) at Ēc is as


−cBRB̄ − cABĀ mA + mB −(cBR + cAB)B̄0 − cBRB̄A −(cBR + cM )B̄0 − cBRB̄A

cABĀ −(mA + mB) cABB̄0 −cM B̄A

(cAB − cAR)Ā 0 −cARĀ −(cAR + cM )Ā

0 0 0 cM (B̄0 + Ā) − mM

 .

So, by Lemma 3.3(i), the eigenvalue cM (B̄0+ Ā)−mM determines the stability of Ēc. Recall

that B̄0+ Ā = 1− mB
cBR

. Then cM (B̄0+ Ā)−mM > 0 if and only if (A1) holds. Thus, we have

obtained that Ēc is unstable if (A1) holds, and Ēc is L.A.S. if mB
cBR

+ mM
cM

> 1.

As a summary, Table 1 illustrates the the existence and stability of the equilibria for

system (BAM).

Based on all the above analysis, we are ready to prove Theorem 2.3:

Proof of Theorem 2.3: (i). This follows directly from Lemma 3.7(c).
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(ii) We only show that (BAM) is uniformly persistent if and only if Ec exists. The

necessity is a standard theory of uniform persistence (see, e.g. [4, 33]). So, we need to prove

the sufficiency part.

For this purpose, we assume that Ec exists, i.e., (A1) and 0 < σ < 1. By (H1) and Lemma

3.7(a), E0, EB, E1 always exist. Then, one of the following four alternatives must occur:

(Alt1): (A2) holds and
mB
cBR

< mA
cAR

, by which EA, E2, Ēc exist.

(Alt2): (A2) holds and
mB
cBR

≥ mA
cAR

, by which EA, E2 exist and Ēc does not exist.

(Alt3): (A2) does not hold and mA
cAR

< 1, by which EA, Ēc exist and E2 does not exist.

(Alt4): (A2) does not hold and mA
cAR

≥ 1, by which Ēc may exist and EA, E2 do not exist.

In the following, we will focus on (Alt1) and prove the uniform persistence of (3.25) for

this alternative. The other alternatives can be treated by the similar arguments.

To this end, under the assumptions (A1), 0 < σ < 1 and (Alt1), we will prove in the

following three claims which are crucial to our proof of the uniform persistence.

Claim 1: ∃ ε1 > 0 such that lim inft→∞A(t) ≥ ε1, whenever A(0) > 0 in Σ. In order
to prove Claim 1, we define the persistence function on Σ as ρ1(B0, BA, A,M) , A and let
ΣA = ρ−1

1 (0). Then, we will show
∪

y∈ΣA
ω(y) = {E0, EB, E1}. In fact, since BA ≤ A on Σ,

one has BA = A = 0 on ΣA. So, the dynamics on ΣA is governed by the two-dimensional
system

(3.33)

{
Ḃ0 = B0[cBR(1−B0 −M)− cMM −mB ] , f1,

Ṁ = M(cMB0 −mM ) , f2.

Clearly, (B∗∗
0 ,M∗) is a locally stable equilibrium for system (3.33). Moreover, along any

Equilibria Conditions on Existence Conditions on Asymptotic Stability

E0 = (Ẽ0, 0) always exists always unstable

EB = (ẼB, 0) always exists λ∗ < 0 & mB
cBR

+ mM
cM

> 1

EA = (ẼA, 0) cAR > mA λ∗ > 0, mB
cBR

> mA
cAR

& mA
cAR

+ mM
cM

> 1

Ēc = (Ẽc, 0) λ∗ > 0 and mB
cBR

< mA
cAR

. mB
cBR

+ mM
cM

> 1

E1 = (B∗∗
0 , 0, 0,M∗) mB

cBR
+ mM

cM
< 1 σ > 1

E2 = (0, 0, Â, M̂) mA
cAR

+ mM
cM

< 1 σ < 0

Ec = (B̃0, B̃A, Ã, M̃) mB
cBR

+ mM
cM

< 1 and 0 < σ < 1 Unknown
Table 3.1

Existence and Stability of Equilibria for system (BAM) on Σ, under the Standing Assumption (H1): Here,

λ∗ is defined in Theorem 2.2 or in (3.3); σ is defined in Theorem 2.3 or in (3.23). Note that mB
cBR

< mA
cAR

iff

∆1 < 0 (see Remark 3); while mB
cBR

+ mM
cM

< 1 iff (A1) holds; and mA
cAR

+ mM
cM

< 1 iff (A2) holds.
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ω-periodic solution,∮ ω

0

(
∂f1
∂B0

+
∂f2
∂M

)dt =

∮ ω

0

[cBR(1−B0 −M)− cMM −mB + (cMB0 −mM )− cBRB0]dt

=

∮ ω

0

(
Ḃ0

B0
+

Ṁ

M
− cBRB0)dt < 0.

It then follows from the so-calledWeak Negative Bendixson Criteria (c.f. [5,16]) that (B∗∗
0 ,M∗)

is globally asymptotically stable for any positive initial values for (3.33). Thus, we have ob-

tained
∪

y∈ΣA
ω(y) = {E0, EB, E1} and it is an isolated and acyclic covering of the limit sets

on ΣA.

Next, we still need to show that the stable manifold W s(El) ⊂ ΣA, for l = 0, B0, 1. Due to

the element L4 in the Jacobian form (3.32) for (BAM), this is automatically satisfied for l = 0

(since cAR > mA), l = B0 (since L4|(B∗∗
0 ,0,0,M∗) = (cAR − mA) + B∗

0(cAB − cAR) = λ∗ > 0)

and l = 1 (since L4|E1 = (1 − σ) · cABmM/cM > 0). Therefore, by using the celebrated

persistence Theorems (see [33, Theorem 5.2 and Theorem 8.17]) for the function ρ1 on Σ, we

have obtained Claim 1.

Claim 2: ∃ ε2 > 0 such that lim inft→∞B(t) ≥ ε2, whenever B(0) > 0 in Σ. To prove
this claim, we define another persistence function on Σ as ρ2(B0, BA, A,M) , B and let
ΣB = ρ−1

2 (0). Clearly, B0 = BA = B = 0 on ΣB. So, the dynamics on ΣB is governed by the
two-dimensional system

(3.34)

{
Ȧ = A[cAR(1−A−M)− cMM −mA],

Ṁ = M(cMA−mM ).

Similarly as the proof of Claim 1, one can deduce from the local stability analysis of (Â, M̂)

and the Weak Negative Bendixson Criteria to obtain that
∪

y∈ΣB
ω(y) = {E0, EA, E2} is an

isolated and acyclic covering of the limit sets on ΣB.

In order to show W s(El) ⊂ ΣB, for l = 0, A, 2, we need to recall equation (2.1), that is,

(3.35) Ḃ = B[cBR(1−B0 −A)− (cBR + cM )M −mB].

So, it is clear that W s(E0) ⊂ ΣB. Since mB
cBR

< mA
cAR

and cAR(1 − A∗) = mA, one has

cBR(1 − A∗) − mB < 0; and hence, W s(EA) ⊂ ΣB. As for E2, we note that σ > 0 (hence

M∗ > M̂). This implies that cBR −mB − cBRmM/cM − cBRM̂ − cMM̂ > 0, that is, cBR −
cBRÂ− (cBR+ cM )M̂ −mB > 0. Together with (3.35), this yields that W s(E2) ⊂ ΣB. Again,

by using the persistence Theorems ( [33, Theorem 5.2 and Theorem 8.17]) for the function ρ2
on Σ, we have obtained Claim 2.

Claim 3: ∃ ε3 > 0 such that lim inft→∞M(t) ≥ ε3, whenever B(0) > 0, A(0) > 0 and

M(0) > 0 in Σ. For this claim, we introduce the persistence function ρ3(B0, BA, A,M) ,
min{A,B,M} on Σ, and let Σ⋆ = ρ−1

3 (0). So, y ∈ Σ⋆ if and only if at least one of A,B,M

vanishes at y.
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Combining with
∪

y∈ΣA∪ΣB
ω(y) = {E0, EB, EA, E1, E2} (by Claims 1&2) and Theorem

2.2(ii-b), one obtains that
∪

y∈Σ∗
ω(y) = {E0, EB, E1, EA, E2, Ēc}. Among these equilibria, we

have the following typical chains in Σ⋆:

E0 7→ EB 7→ Ēc (or E1), E0 7→ EA 7→ Ēc (or E2) in Σ⋆.

We further assert that there is no chain starting from E1 (or E2 or Ēc) in Σ⋆. Suppose that

there is a chain (B(t), A(t),M(t))t∈R in Σ⋆ starting from E1, for instance. Then, Claim 2

entails that inft∈RB(t) > 0. Hence, this chain orbit (B(t), A(t),M(t)) can only be asymptotic

(in Σ⋆) to either EB or Ēc as t → +∞, which is impossible due to the property of Σ⋆

mentioned above. Similarly, one can utilize Claim 1 (or 2) to exclude the existence of a chain

in Σ⋆ emerging from E2 (or Ēc). Thus, we have proved the assertion. Therefore,
∪

y∈Σ∗
ω(y)

is an acyclic covering of the limit sets on Σ⋆.

Moreover, again by Claims 1-2, one hasW s(Ej) ⊂ ΣA(⊂ Σ⋆) for j = 0, B0, 1 andW s(El) ⊂
ΣB(⊂ Σ⋆) for l = 0, A, 2. So, in order to show that W s(El) ⊂ Σ⋆ for any El ∈

∪
y∈Σ∗

ω(y), it

suffices to prove that W s(Ēc) ⊂ Σ⋆. This can be easily done by checking the Jacobian form

(3.32) at Ēc with cM (B̄0 + Ā)−mA > 0 (because (A1) holds).

By utilizing the persistence Theorems ( [33, Theorem 5.2 and Theorem 8.17]) again for

the function ρ3 on Σ, we have obtained Claim 3.

Now, based on Claims 1-3, let ε0 = min{ε1, ε2, ε3} > 0. Then we have that lim inft→∞B(t) ≥
ε0, lim inft→∞A(t) ≥ ε0, lim inft→∞M(t) ≥ ε0, whenever B(0) > 0, A(0) > 0 and M(0) > 0
in Σ. If, in addition, B0(0) > 0 and BA(0) > 0, then we will show that B0(t) and BA(t) are all
uniformly persistent. To this end, we may assume that B(t), A(t),M(t) ≥ ε0 for t sufficiently
large. Fix any ε ∈ (0, ε0). Due to the BA-equation in system (BAM) on Σ, we have

ḂA(t) = cABAB0 − (cMM +mB +mA)BA

≥ cABε0B0 − (cM +mB +mA)BA ≥ cABε0(ε0 − ε)− (cM +mB +mA)ε,

whenever BA(t) ≤ ε for t sufficiently large. So, one can choose ε sufficiently small so that
ḂA(t) > 0 whenever BA(t) ≤ ε for t sufficiently large. Consequently, we have BA(t) ≥ ε for t
sufficiently large; and hence,

Ḃ0(t) = B0[cBR(1−B0 −A−M)− cABA− cMM −mB ] +BA[cBR(1−B0 −A−M) +mA]

≥ −B0[cABA+ cMM +mB] +BAmA ≥ −B0[cAB + cM +mB ] + εmA,

for t sufficiently large. Then, one can choose some small δ ∈ (0, ε) such that Ḃ0(t) > 0

whenever B0(t) ≤ δ for t sufficiently large. This implies that B0(t) ≥ δ for t sufficiently large.

Thus, B0(t) and BA(t) are uniformly persistent. We have completed the proof. �

4. Discussion. There are many mathematical models in ecology showing that chaos can

be produced, for examples, the well known discretized logistic equation in [25,26], a three-level

food chain with Holling type II functional responses [10] and a resources-consumers model of

n phytoplankton species competing for k complementary resources, with k ≥ 3, n > 4 in [15].

In [2, 7], the authors did experiments in laboratory and constructed mathematical models to
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give the evidences that chaos can be generated in insect population and plankton community

respectively. However, for the real-world ecological community, Benincà et al. [1] is perhaps

the first article to present evidences that the erratic fluctuations in an intertidal rock-pool

ecosystem are caused by competitive interactions that cause chaotic dynamics. Furthermore,

they constructed the patch occupancy model (1.1) based on species interaction in a seasonal

cycle environment. They also did extensive numerical simulations to show chaos is possible

for the model (1.1) under some parameters ranges. In this article we study this model of

barnacle-algae-mussel interactions without external seasonal forcing. Our work turns out to

be the first attempt to initiate the research on rigorously analyzing this new model from both

mathematical and biological points of view.

We rigorously prove a biological observation: the cover (i.e., the fraction of patches occu-

pied) by barnacles overgrown with crustose algae is smaller than the cover by crustose algae,

i.e., BA ≤ A. The mathematical statement is that the region Σ = {(B0, BA, A,M) ∈ R4
+ :

B0 + A + M ≤ 1, BA ≤ A} is positively invariant, where R4
+ is the nonnegative orthant in

R4. In order to study the dynamical behavior of (BAM), we propose the basic assumption

(H1): cAB > cAR and cBR > mB; which means that the crustose algae settle more firmly on

barnacles than on the bare rock and the colonization rate of barnacles over the bare rock is

greater than the mortality rate of barnacles. According to the data reported in Benincà et

al. [1], cAB = 0.049 day−1, cAR = 0.021 day−1, cBR = 0.018 day−1 and mB = 0.003 day−1.

Consequently, assumption (H1) clearly makes biological sense.

In the first part of this paper, we give in Theorem 2.2 a complete description of the global

dynamics of system (BAM) without mussel, i.e., M = 0 (see system (BA) or (1.3)). We

not only prove the local stability of all equilibria, but also their global stability. For the

system (BA) (or equilalently, (1.3)), the most important result is proving the global stability

of positive equilibrium Ẽc. In fact, we transform system (BA) to a type-K competitive system

(SAT) by changing variables (B0, BA, A) → (S,A, T ),where T := A−BA, S := A+B0. Then

we construct a Lyapunov function and utilize the stability criterion in term of the second

compound equations (e.g., [21, 28]) to prove the nonexistence of periodic orbits for system

(SAT), which help us show the global stability of Ẽc.

After understanding the 3-dimensional dynamics of (BA), we study in the second part

of this paper the 4-dimensional dynamics (BAM) (or equivalently, (1.2)) with the presence

of mussel, i.e., M ̸= 0. In an ecological system, uniform persistence is well-known as the

coexistence of all the species. We present in Theorem 2.3 an amenable sufficient and necessary

condition (i.e., mB
cBR

+ mM
cM

< 1 and 0 < σ < 1) for the uniform persistence of system (BAM).

Here we emphasize that, for the proof of uniform persistence of (BAM), it is a nontrivial

task to verify the isolated acyclic-covering property of the limit sets on the boundary of our

working 4-dimensional region Σ. We accomplish it by repeatedly utilizing the persistence

Theory in [33] to guarantee the uniformly positive lower bounds of A,B and M , gradually.

We further point out that the condition “mB
cBR

+ mM
cM

< 1 and 0 < σ < 1” is equivalent to the

existence of positive equilibrium Ec (see Theorem 2.3 and Remark 2). Therefore, (BAM) is
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uniformly persistent if and only if Ec exists. For the extinction of species, it is still a challenge

problem and we leave it for future study.

To interpret the biological meaning of the condition 0 < σ < 1 and mB
cBR

+ mM
cM

< 1,

we note from the proof of Lemma 3.8(i)-(ii) that the quantity “σ” essentially describes the

biological invasion from E1 and E2, which are extinction steady states with crustose algae and

barnacle vanishing, respectively. From the proof of Lemma 3.8(iii), the quantity “mB
cBR

+ mM
cM

”

characterizes the biological invasion from Ēc, which is extinction steady state with mussel

vanishing. More precisely, σ < 1 means that crustose algae is able to invade the extinction

state E1; while σ > 0 means that barnacle is able to invade the extinction state E2; and

moreover, mB
cBR

+ mM
cM

< 1 means that mussel is able to invade the extinction state Ēc.

Again from the data used in Benincà et al. [1], we obtain that mB
cBR

+ mM
cM

≈ 0.384615 and

σ ≈ 0.561388, which entails that Ec exists and (BAM) is uniformly persistent.

The close relationship between our study of the autonomous system (1.2) and the period-

ically forced system (1.1) relies on the parameter α in (F∗), which represents the strength of

seasonal forcing; and on the unique positive steady state Ec for (1.2). When α = 0 (i.e., the

strength of seasonal forcing is vanishing), system (1.1) is reduced to the autonomous system

(1.2). We conjecture that Ec is globally asymptotically stable in Σ ∩ IntR4
+ for system (1.2).

For the system (1.1) with periodic perturbation, in their numerical simulation in [1] (Fig. S15

supplemental material), Benincà et al. have shown that, as the parameter α varies, there is a

route of periodic-doubling to chaos and the Lyapunov exponent becomes positive for α ≥ 0.28.

It is a difficult open problem to theoretically prove that the chaos occurs for α ≥ 0.28. Our

analysis provide useful information for the necessary conditions for chaotic dynamics of the

periodically forced system (1.1).
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