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Abstract. In this paper, we shall survey recent developments in variable-internal-

stores models with multiple resources or spatial/temporal inhomogeneity, which may

enhance coexistence of species and diversity in competitor communities. On the other

hand, it was known that basic limiting resources for growth usually include nutrients

(e.g., nitrogen and phosphorus), light, and inorganic carbon. Thus, the proposed

models will involve the competition between the species for nutrients (e.g., nitrogen

and phosphorus), or light, or both of nutrients and light, or inorganic carbon.

1. Introduction

The understanding of competition between species for resources is a fundamental ecological

issue [13, 18, 53]. Classical phytoplankton competition studies often assume a simple,

well-mixed laboratory system, such as the chemostat culture system, in which a nutrient

medium is pumped, balanced by an outflow that removes nutrients and organisms [51].

The chemostat is a basic piece of ideal apparatus and it has been regarded as a lake or

pond in a laboratory. Any mathematical model that explicitly addresses both resource and

population dynamics must specify how much resource is consumed in the production of

one new individual [14, 15, 18]. Previous competition models assume a direct relationship

between the external concentration of nutrients and the population growth of organisms,

without any intermediate steps of nutrient storage within cells. The simplest model is

under the assumption that the consumption of resource and production of i-th species are

directly proportional through a quota constant qi, leading to the following system [1,26]:

dS

dt
= (S(0) − S)D −

n∑
i=1

qifi(S)ui,

dui
dt

= (fi(S)−D)ui,

S(0) ≥ 0, ui(0) > 0, i = 1, 2, . . . , n.

(1.1)

Received May 6, 2018; Accepted December 26, 2018.

Communicated by Tai-Chia Lin.

2010 Mathematics Subject Classification. 34C12, 34D20, 34D23, 35K55, 37C65, 92D25.

Key words and phrases. chemostat, competitive exclusion, coexistence, variable quotas, spatial variations,

internal storage, positive periodic solution, growth for light.

*Corresponding author.

269



270 Feng-Bin Wang and Sze-Bi Hsu

In the chemostat model (1.1), the nutrient is supplied with a constant concentration S(0) at

dilution rate D. There is a compensating outflow also at rate D of the well-stirred contents

of the chemostat. S(t) denotes the nutrient concentration at time t; ui(t) represents the

concentrations of species i in the culture vessel, i = 1, 2, . . . , n. fi(S) is the per capita

nutrient uptake rate, per cell of species i as a increasing and continuously differentiable

function of nutrient concentration S, and fi(0) = 0. A usual example for fi(S) is the form:

fi(S) =
miS

ai + S
,

where mi and ai are the maximal growth rate and the Michaelis-Menten (or half satura-

tion) constant of i-th species, respectively.

In phytoplankton ecology, it has long been known that the quota is not a fixed constant.

It can vary depending on the growth rate of population, leading to variable-internal-stores

models [11,25,50,51]:

(1.2)

dS

dt
= (S(0) − S)D −

n∑
j=1

fj(S,Qj)uj ,

dui
dt

= (µi(Qi)−D)ui, i = 1, 2, . . . , n,

dQi

dt
= fi(S,Qi)− µi(Qi)Qi, i = 1, 2, . . . , n,

S(0) ≥ 0, ui(0) ≥ 0, Qi(0) ≥ Qmin,i, i = 1, 2, . . . , n.

For i = 1, 2, . . . , n, Qi(t) represents the average amount of stored nutrient per cell of i-th

population at time t, µi(Qi) is the growth rate of species i as a function of cell quota

Qi, fi(S,Qi) is the per capita nutrient uptake rate, per cell of species i as a function of

nutrient concentration S and cell quota Qi, Qmin,i denotes the threshold cell quota below

which no growth of species i occurs. From the third equation of (1.2), we note that the

quota decreases at a rate −µi(Qi)Qi, which is the dilution by growth [13].

The growth rate µi(Qi) takes the forms [4, 5, 7]:

µi(Qi) = µi∞

(
1− Qmin,i

Qi

)
, or µi(Qi) = µi∞

(Qi −Qmin,i)+
Ki + (Qi −Qmin,i)+

,

where (Qi −Qmin,i)+ is the positive part of (Qi −Qmin,i) and µi∞ is the maximal growth

rate of the species. According to Grover [12], the uptake rate fi(S,Qi) takes the form:

fi(S,Qi) = ρmax,i(Qi)
S

ai + S
,

ρmax,i(Qi) = ρhighmax,i − (ρhighmax,i − ρ
low
max,i)

Qi −Qmin,i

Qmax,i −Qmin,i
,
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where Qmin,i ≤ Qi ≤ Qmax,i. Cunningham and Nisbet [4, 5] took ρmax,i(Qi) to be a

constant.

Motivated by these examples, we assume that µi(Qi) is defined and continuously dif-

ferentiable for Qi ≥ Qmin,i > 0 and satisfies

µi(Qi) ≥ 0, µ′i(Qi) > 0 and is continuous for Qi ≥ Qmin,i, µi(Qmin,i) = 0.

We assume that fi(S,Qi) is continuously differentiable for S > 0 and Qi ≥ Qmin,i and

satisfies

fi(0, Qi) = 0,
∂fi
∂S

> 0,
∂fi
∂Qi

≤ 0.

In particular, fi(S,Qi) > 0 when S > 0.

For a competition model with a single limiting resource in a well mixed habitat, we usu-

ally expect the Competitive Exclusion Principle to be valid, that is, two or more species

cannot coexist [13]. Mathematically, this conclusion has been established for the sys-

tem (1.1) with constant quota (see, e.g., [1,23,26]) as well as the system (1.2) for variable-

internal-stores models (see, e.g., [25,50,51]). However, in a real ecosystem, outcomes such

as coexistence of two or more species, or bistability where outcomes depend on initial

conditions could be observed. Those observations motivate us to do some modifications

of the aforementioned systems.

In Section 2, we survey some spatially homogeneous systems (ODE models). The

competitive exclusion principle of system (1.2) is shown in Section 2.1. In Section 2.2, we

consider a Droop model with two competing species for a single nutrient with periodic

input. Section 2.3 is devoted to the study of a Droop model with two competing species for

two complementary/essential nutrients with periodic input. In Section 2.4, we consider a

Droop model with two competing species for a single nutrient and light in which the input

concentration of nutrient is a constant. In Section 3, we survey Droop models in the form of

reaction-diffusion(-advection) systems. The results of a Droop model with two competing

species for a single nutrient (resp. two complementary/essential nutrients) in an unstirred

chemostat are presented in Section 3.1 (resp. Section 3.2). In Section 3.3, we consider

a Droop model with a single species consuming a single nutrient in a water column. In

Section 3.4, we investigate the effect/role of inorganic carbon on global warming. More

precisely, we survey a Droop model with a single species consuming inorganic carbon

that is stored internally in a water column. Assuming the cell quota is proportional to

cell size, we survey size-structured models in Section 4. In Section 4.1, we first review a

size-structured model in which the resource is assumed to be unlimited, and hence, the

governing equation of nutrient is ignored. In Section 4.2 (resp. Section 4.3), we consider a

size-structured model in a well-mixed chemostat (resp. an unstirred chemostat) where the
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governing equation of a single nutrient is added. In Section 4.4, we survey a size-structured

model with light limitation.

2. ODE models

Classical models of competition usually consider a simple, well-mixed habitat, such as

the chemostat culture system, in which a nutrient resource is supplied via an inflow, and

a balancing outflow removes nutrient and organisms [51]. Since the spatial gradients of

resource and species are neglected, the governing systems are ODE equations. In this

section, we shall survey several ODE systems modeling the interactions of species and

resources that are stored within individuals.

2.1. Analysis of a Droop model in a simple chemostat

Substituting Ui = uiQi, i = 1, 2, . . . , n into (1.2), leading to the following system

(2.1)

dS

dt
= (S(0) − S)D −

n∑
j=1

fj(S,
Uj

uj
)uj ,

dui
dt

= (µi(
Ui
ui

)−D)ui, i = 1, 2, . . . , n,

dUi

dt
= fi(S,

Ui
ui

)ui −DUi, i = 1, 2, . . . , n,

S(0) ≥ 0, ui(0) ≥ 0, Ui(0) ≥ 0, i = 1, 2, . . . , n.

Let Σ(t) = S(t) +
∑n

i=1 Ui(t). Then we have the following mass conservation

(2.2)
dΣ(t)

dt
= (S(0) − Σ(t))D,

and hence,

Σ(t)→ S(0) as t→∞.

Thus, we conclude that the limiting system of (2.1) takes the form

(2.3)

dui
dt

= (µi(
Ui
ui

)−D)ui, i = 1, 2, . . . , n,

dUi

dt
= fi

(
S(0) −

n∑
j=1

Uj(t),
Ui
ui

)
ui −DUi, i = 1, 2, . . . , n,

ui(0) ≥ 0, Ui(0) ≥ 0, i = 1, 2, . . . , n.

We note that the solutions of the limiting system (2.3) have the same asymptotic behavior

as the solutions of the full system (2.1) (see, e.g., [52] or [51, Appendix F]). Alternatively,

one can also use the theory of chain transitive sets (see [21] or [57, Section 1.2]) to lift the
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dynamics of the limiting system (2.3) to the full system (2.1). Thus, it suffices to study

the global dynamics of system (2.3).

Putting n = 2 into (2.3), leading to the following system

du1
dt

= (µ1(
U1
u1

)−D)u1,

dU1

dt
= f1(S

(0) − U1 − U2,
U1
u1

)u1 −DU1,

du2
dt

= (µ2(
U2
u2

)−D)u2,

dU2

dt
= f2(S

(0) − U1 − U2,
U2
u2

)u2 −DU2,

ui(0) ≥ 0, Ui(0) ≥ 0, i = 1, 2.

(2.4)

In [50], Smith and Waltman show that the semiflow associated with system (2.4) preserves

the partial ordering defined by

(u1, U1, u2, U2) ≤K (ũ1, Ũ1, ũ2, Ũ2)

if and only if

u1 ≤ ũ1, U1 ≤ Ũ1, u2 ≥ ũ2, U2 ≥ Ũ2.

Then one can prove that the competitive exclusion principle holds for system (2.4) by

applying the theory of monotone dynamical system (see [50]) or directly using the abstract

results in [34, Theorem B].

The authors in [25] proved that the competitive exclusion principle also holds for n

species competing for a single nutrient in the system (2.3) with n ≥ 3. Basically, their

idea is to apply fluctuating lemma (see, e.g., [22]) to the following system

dUi(t)

dt
= fi

S(0) −
n∑

j=1

Uj(t), Qi(t)

 Ui(t)

Qi(t)
−DUi(t), i = 1, 2, . . . , n,

dQi(t)

dt
= fi

S(0) −
n∑

j=1

Uj(t), Qi(t)

− µi(Qi(t))Qi(t), i = 1, 2, . . . , n,

Ui(0) ≥ 0, Qi(0) ≥ Qmin,i, i = 1, 2, . . . , n,

where
∑n

j=1 Uj(t) ≤ S(0). We note that the arguments in [25] is based on the conservation

(2.2), that is, the assumption of the same dilution rate for each species and nutrient are

necessary. Here, we propose an open problem with different removable rates.
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Open problem. Show the competitive exclusion principle holds for the following system:

dS

dt
= (S(0) − S)D −

n∑
j=1

fj(S,Qj)uj ,

dui
dt

= (µi(Qi)− di)ui, i = 1, 2, . . . , n,

dQi

dt
= fi(S,Qi)− µi(Qi)Qi, i = 1, 2, . . . , n,

S(0) ≥ 0, ui(0) ≥ 0, Qi(0) ≥ Qmin,i, i = 1, 2, . . . , n,

where D, d1, d2, . . . , dn are mutually different.

2.2. A periodic Droop model with a single nutrient

An explanation for the coexistence of many species of phytoplankton in a seemingly tem-

porally constant environment is the non-steady state dynamics [38]. In fact, temporal

variations can promote coexistence of species and diversity in competitor communities

(see, e.g., [10, 24, 38, 43]). The authors in [49, 55] investigated a system modeling two

species competition for one nutrient with internal storage and a periodic input:

(2.5)

dS

dt
= (S(0)(t)− S)D −

2∑
j=1

fj(S,Qj)uj ,

dui
dt

= (µi(Qi)−D)ui, i = 1, 2,

dQi

dt
= fi(S,Qi)− µi(Qi)Qi, i = 1, 2,

S(0) ≥ 0, ui(0) ≥ 0, Qi(0) ≥ Qmin,i, i = 1, 2,

where S(0)(t) satisfies S(0)(t+ τ) = S(0)(t) ≥ 0, for some period τ > 0. For system (2.5),

it was shown in [49, 55] that coexistence occurs in the competition for one nutrient with

internal storage and a periodic input.

2.3. Competition models for two essential nutrients

In [36], we consider a model for two phytoplankton species competing for two comple-

mentary/essential nutrients with internal storage in the well mixed chemostat. Let S(t)

and R(t) denote the concentrations of the limiting nutrients in the chemostat at time t.

Assume that ui(t) stands for the concentrations of species i in the culture vessel, and

Qi(t) represents the average amount of stored nutrient per cell of i-th population at time

t, i = 1, 2. Then the model is governed by the following ordinary differential system
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(see [36,40–42]):

(2.6)

dS

dt
= (S(0)(t)− S)D − fS1(S,QS1)u1 − fS2(S,QS2)u2,

dR

dt
= (R(0)(t)−R)D − fR1(R,QR1)u1 − fR2(R,QR2)u2,

dQSi

dt
= fSi(S,QSi)−min{µSi(QSi), µRi(QRi)}QSi, i = 1, 2,

dQRi

dt
= fRi(R,QRi)−min{µSi(QSi), µRi(QRi)}QRi, i = 1, 2,

dui
dt

= [min{µSi(QSi), µRi(QRi)} −D]ui, i = 1, 2,

S(0) ≥ 0, R(0) ≥ 0, ui(0) ≥ 0, i = 1, 2,

QSi(0) ≥ Qmin,Si, QRi(0) ≥ Qmin,Ri, i = 1, 2.

Here fSi(S,QSi) (resp. fRi(R,QRi)) is the per capita uptake rate of species i as a function

of resource concentration S (resp. R) and cell quota QSi (resp. QRi). In (2.6), the two

nutrients are essential, sometimes also referred to as complementary, meaning that a

minimum amount of each nutrient is required for population growth. “Liebig’s Law of the

Minimum” is used to describe the dependence of species growth on cell quotas, that is,

growth rate of species i is determined by the minimum of two Droop functions, µSi(QSi)

and µRi(QRi). Qmin,Ni denotes threshold cell quota below which no growth of species i

occurs, where N = S, R. Here, we assume that there exists a period τ > 0 such that

S(0)(t) and R(0)(t) satisfy

S(0)(t+ τ) = S(0)(t) ≥ 0, R(0)(t+ τ) = R(0)(t) ≥ 0.

We note that the authors in [41, 42] studied system (2.6) in the case of constant input,

that is,

S(0)(t) = S(0) > 0, R(0)(t) = R(0) > 0.

It is shown that system (2.6) with constant input exhibits the results of competitive

exclusion, coexistence, and bi-stability (see [42]).

In order to investigate the global dynamics of (2.6), the authors in [36] first consider

the case of single species growth. By applying the theory of monotone dynamical system

as well as the property of sub-homogeneous systems (see [57]), it was established that

the associated single population system is washed out if a sub-threshold criterion holds,

while there is a globally stable positive periodic solution if a super-threshold criterion

holds. Then both uniform persistence and the existence of periodic coexistence state

of the two-species model (2.6) are established provided that there is mutual invasibility

of both semitrivial periodic solution (see [36]). In the Discussion section of [36], it was

numerically shown that the outcomes of competition may be reversed if we increase the

amplitude of periodic input.
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2.4. A Droop model under light limitation

It has been known that growth of population is critically affected by the supply of two

fundamental types of resources: light and mineral nutrients. In phytoplankton communi-

ties, species typically compete for two essential resources, nutrient and light. The authors

in [48] proposed the following system:

(2.7)

dS

dt
= (S(0) − S)D −

2∑
j=1

fj(S,Qj)uj ,

dQi

dt
= fi(S,Qi)−min{µi(Qi), gi(I)}Qi, i = 1, 2,

dui
dt

= [min{µi(Qi), gi(I)} −D]ui, i = 1, 2,

S(0) ≥ 0, Qi(0) ≥ Qmin,i, ui(0) ≥ 0, i = 1, 2.

Here, we assume that the specific growth rate gi(I) satisfy

gi(0) = 0, g′i(I) > 0 for I > 0, i = 1, 2.

The light intensity I(t) takes the form

I(t) = Iin exp

−k0zm − 2∑
j=1

kjzmuj

 .

An usual example is the Monod functions (Michaelis-Menten forms):

gi(I) =
miI

ai + I
, i = 1, 2.

In [30], the authors apply the theory of monotone dynamical system to determining the

outcomes of competition of system (2.7): extinction of two species, competitive exclusion,

stable coexistence and bistability (outcomes dependent on initial conditions). They also

propose a graphical presentation to classify the results of competition.

3. PDE models

In the past decades, there have been several developments in the study of interactions

of populations and dissolved nutrients that are distributed in spatially variable habitats

[2,3,14–17,19,27,28,33,35,45]. Investigating ecological model systems with variable quotas

in a spatially variable habitat are important and significant since those individuals could

obtain resources in a rich zone of a habitat and for their later use to grow when they

travel to a poor zone [14,15]. Due to the complexities and difficulties in modeling as well

as mathematical analysis, there are quite few papers that involve in this direction.
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One approach of modeling is the reaction-diffusion system [27] or the reaction-diffusion-

advection system [15], which describes the dynamics of dissolved nutrient concentration,

the total concentration of stored nutrient by a species at a given point, and the correspond-

ing population density. Although this approach may risk errors, the author in [15] recently

pointed out that errors caused by the approach were relatively modest, and mathematical

modeling in [15,27] can be a good approximation.

3.1. A Droop model with a single nutrient in an unstirred chemostat

In [27], we consider two species competing for a single nutrient with internal storage in an

unstirred chemostat. The governing equations take the following form:

(3.1)

St = dSxx − f1(S, U1
u1

)u1 − f2(S, U2
u2

)u2,

(Ui)t = d(Ui)xx + fi(S,
Ui
ui

)ui,

(ui)t = d(ui)xx + µi(
Ui
ui

)ui, i = 1, 2,

in (x, t) ∈ (0, 1)× (0,∞) with boundary conditions

(3.2)
Sx(0, t) = −S(0), Sx(1, t) + γS(1, t) = 0, t > 0,

ϑx(0, t) = ϑx(1, t) + γϑ(1, t) = 0, ϑ = Ui, ui, i = 1, 2, t > 0,

in t ∈ (0,∞) and initial conditions

(3.3)
S(x, 0) = S0(x) ≥ 0, x ∈ (0, 1),

ϑ(x, 0) = ϑ0(x) ≥ 0, ϑ = Ui, ui, i = 1, 2, x ∈ (0, 1).

First, we establish a conservation principle to reduce the dimension of the above sys-

tem (3.1)–(3.3) by eliminating the equation of nutrient S. The reduced/limiting system

generates a monotone semiflow in its feasible domain under a partial order ≤K . For the

case of single species growth, it was shown that extinction (resp. persistence) occurs if the

diffusion rate is relatively large (resp. small). Further, if the single species can persist,

then there exists a unique positive steady-state solution which is globally asymptotically

stable. However, the question of extinction/persistence is left open for intermediate diffu-

sion rates. The authors in [33] pushed further the results in [27] and obtained a threshold

result by defining, in an abstract way, the threshold diffusion rate to be “the supremum of

diffusion rates where a lower solution can be constructed”. Finally, suitable upper/lower

solutions are constructed to study the uniform persistence of limiting system of (3.1)–

(3.3), and the existence of coexistence steady-state solution is also established. It is worth

noting that a threshold type result on the extinction/persistence of (3.1)–(3.3) can be

also established in terms of the sign of the principal eigenvalue of a nonlinear eigenvalue

problem similar to the one developed in [29].
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3.2. A Droop model with two essential nutrients in an unstirred chemostat

The authors in [28] consider the competition of two species for two complementary/essential

nutrients. The governing system is the following system of partial differential equations:

(3.4)

St = dSxx − fS1(S, US1
u1

)u1 − fS2(S, US2
u2

)u2,

Rt = dRxx − fR1(R,
UR1
u1

)u1 − fR2(R,
UR2
u2

)u2,

(USi)t = d(USi)xx + fSi(S,
USi
ui

)ui,

(URi)t = d(URi)xx + fRi(R,
URi
ui

)ui,

(ui)t = d(ui)xx + min
{
µSi(

USi
ui

), µRi(
URi
ui

)
}
ui, i = 1, 2,

in (x, t) ∈ (0, 1)× (0,∞) with boundary conditions

(3.5)

Sx(0, t) = −S(0), Sx(1, t) + γS(1, t) = 0, t > 0,

Rx(0, t) = −R(0), Rx(1, t) + γR(1, t) = 0, t > 0,

ϑx(0, t) = ϑx(1, t) + γϑ(1, t) = 0, ϑ = USi, URi, ui, i = 1, 2, t > 0,

and initial conditions

(3.6)
S(x, 0) = S0(x) ≥ 0, R(x, 0) = R0(x) ≥ 0, x ∈ (0, 1),

ϑ(x, 0) = ϑ0(x) ≥ 0, ϑ = USi, URi, ui, i = 1, 2, x ∈ (0, 1).

Two conservation principles are established, and system (3.4)–(3.6) can be reduced to

a monotone dynamical system. Thus, one can first study the extinction and persistence

of the single species growth, then the possibility of coexistence of system (3.4)–(3.6) can

be investigated. The arguments in [28] are inspired by those in [27].

3.3. Growth with internal storage in a water column

In [15], the author proposes a competition model with variable quota and nutrient storage

in a water column, where a periodically varying nutrient concentration was imposed at

the bottom. Assuming that the supply of the nutrient is constant, the authors in [45]

investigated the single population model associated with the system proposed in [15]. The

equations take the form:

(3.7)

St = dSxx − f(S, Uu )u, x ∈ (0, L), t > 0,

Ut = dUxx − νUx + f(S, Uu )u, x ∈ (0, L), t > 0,

ut = duxx − νux + µ(Uu )u, x ∈ (0, L), t > 0,

with boundary conditions

(3.8)

Sx(0, t) = 0, S(L, t) = S(0), t > 0,

νϑ(0, t)− dϑx(0, t) = 0, ϑ = U, u,

U(L, t) = u(L, t) = 0, t > 0,
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and initial conditions

(3.9) S(x, 0) = S0(x) ≥ 0, U(x, 0) = U0(x) ≥ 0, u(x, 0) = u0(x) ≥ 0, 0 < x < L.

Here, the spatial coordinate x represents depth of a water column, with x = 0 being

the surface and x = L the bottom. Dissolved nutrient S(x, t) diffuses with diffusivity d.

The boundary conditions of S(x, t) are zero-flux condition at the surface (x = 0), and a

constant supply of the nutrient, S(0), at the bottom of the habitat (x = L). Population

density transports at the same diffusivity d and moves by advection toward the bottom

of the habitat at the sinking speed ν. The nutrient taken up by individuals is carried

within these individuals, so we assume that U(x, t) follows the same transport processes

as u(x, t). The boundary conditions of U(x, t) and u(x, t) are zero-flux conditions at the

surface of the habitat, and absorbing conditions at the bottom; Q(x, t) := U(x, t)/u(x, t)

is the average quota at a location.

We note that system (3.7)–(3.9) cannot be reduced into a monotone dynamical system,

due to the lack of a conservation principle. In order to study the extinction/persistence,

the authors in [45] compare system (3.7)–(3.9) with two auxiliary systems, which are

both cooperative. Thus, the standard comparison principle can be used to investigate the

threshold dynamics of the single population model (3.7)–(3.9).

3.4. Competition for inorganic carbon

The basic limiting resources for growth of population are nutrients (e.g., nitrogen and

phosphorus), light, and inorganic carbon. Several previous works have considered the

competition between the species for nutrients (e.g., nitrogen and phosphorus), or light,

or both of them. However, the competition for inorganic carbon have received very little

attention, perhaps due to the difficulty in the biochemistry of inorganic carbon. The

authors in [54] proposed a system of ODEs modeling the competition of the species for

inorganic carbon that is stored internally in a well-mixed chemostat, in which dissolved

CO2 and carbonic acid are regarded as one resource (denoted as “CO2”), and bicarbonate

and carbonate ions are regarded as another (denoted as “CARB”). The resources “CO2”

and “CARB” are substitutable in their effects on algal growth. To make the mathematics

more tractable, we adopt the ideas in [47] to do some simplifications in the complex

processes of “CO2” and “CARB” involved, and modified the ODE system proposed in [54]

to the following variable-internal-storage model:

dR

dt
= (R(0) −R)D − fR(R,Q)u− ωrR+ ωsS,

dS

dt
= (S(0) − S)D − fS(S,Q)u+ ωrR− ωsS,
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dQ

dt
= fR(R,Q) + fS(S,Q)− µ(Q)Q,

du

dt
= [µ(Q)−D]u,

R(0) ≥ 0, S(0) ≥ 0, Q(0) ≥ Qmin, u(0) ≥ 0.

Here, R(t) represents the total concentration of “CO2” (i.e., dissolved CO2 and carbonic

acid); S(t) represents the total concentration of “CARB” (i.e., bicarbonate and carbonate

ions); u(t) denotes the population density of the species; Q(t) stands for the cellular carbon

content. The effect of respiration in system (3.4) is ignored. Then the first equation

represents the changes in the concentration of dissolved “CO2” through the influx R(0)

and efflux of water containing dissolved “CO2”, through gas exchange with atmospheric

CO2, and through the chemical reaction from dissolved “CO2” to “CARB” and vice versa,

and through uptake of “CO2” (fR(R,Q)u) by the species; the second equation describes

changes in the total concentration of “CARB” through the influx S(0) and efflux of water

containing these inorganic carbon species, through the chemical reaction from “CARB”

to dissolved “CO2” and vice versa, and through uptake of “CARB” (fS(S,Q)u) by the

species [54]. The third equation in (3.4) describes the cellular carbon content of the

species, which increases through uptake of “CO2” (fR(R,Q)) and “CARB” (fS(S,Q)),

and decrease through consumption of cellular carbon for growth (µ(Q)Q). We further

assume that carbonic acid loses a proton to become bicarbonate at the rate ωr, and the

rate of the reverse reaction is denoted by ωs [47].

The following “unstirred chemostat model” associated with system (3.4) was discussed

in [29]:

(3.10)

Rt = dRxx − fR(R, Uu )u− ωrR+ ωsS, x ∈ (0, 1), t > 0,

St = dSxx − fS(S, Uu )u+ ωrR− ωsS, x ∈ (0, 1), t > 0,

Ut = dUxx + fR(R, Uu )u+ fS(S, Uu )u, x ∈ (0, 1), t > 0,

ut = duxx + µ(Uu )u, x ∈ (0, 1), t > 0,

Nx(0, t) = −N (0), Nx(1, t) + γN(1, t) = 0, N = R,S, t > 0,

wx(0, t) = 0, wx(1, t) + γw(1, t) = 0, w = U, u, t > 0,

w(x, 0) = w0(x) ≥ (6≡)0, w = R,S, U, u, x ∈ (0, 1),

where the chemostat is tubular, and hence, the spatial dimension in (3.10) is one; the

constants d and γ represent the diffusion coefficient and the washout constant, respectively.

The authors in [29] also considered a reaction-advection-diffusion system associated

with system (3.4) that models the dynamics in another natural habitat, the water column

of lakes and oceans (see also [14, 15, 47, 56]). In a water column, the phytoplankton,

which is relatively homogeneously distributed horizontally, may be moved up or down by
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turbulence diffusion. In addition, it also has a tendency to sink or float. The spatial

coordinate x ∈ [0, L] represents the depth of a water column, with x = 0 being the surface

and x = L the bottom. Assuming that CO2 enters via water-atmospheric interface (x = 0),

whereas CARB enters via the sedimentary interface (x = L), we propose the following

model for a phytoplankton species with internal storage in the water column [29]:

(3.11)

Rt = (DR(x)Rx)x − fR(R, Uu )u− ωrR+ ωsS, x ∈ (0, L), t > 0,

St = (DS(x)Sx)x − fS(S, Uu )u+ ωrR− ωsS, x ∈ (0, L), t > 0,

Ut = (d(x)Ux − ν(x)U)x + fR(R, Uu )u+ fS(S, Uu )u−mU, x ∈ (0, L), t > 0,

ut = (d(x)ux − ν(x)u)x + µ(Uu )u−mu, x ∈ (0, L), t > 0,

γRR(0, t)−Rx(0, t) = γRR
(0), Rx(L, t) = 0, t > 0,

Sx(0, t) = 0, Sx(L, t) + γSS(L, t) = γSS
(0), t > 0,

d(x)wx(x, t)− ν(x)w(x, t) = 0, w = U, u, x = 0 or L, t > 0,

w(x, 0) = w0(x) ≥ (6≡)0, w = R,S, U, u, x ∈ (0, L),

where DR(x), DS(x), and d(x) are the vertical turbulent diffusion coefficient of resources

R, S, and species u, respectively; ν(x) is the sinking velocity (ν(·) > 0) or the buoyant

velocity (ν(·) < 0) of species. We assume no boundary flux for species u and total stored

resources U , that is, species do not leave or enter the water column at x = 0 and x = L. In

(3.11), we further assume that resource R (resp. S) enter the water column only from the

surface (resp. the bottom sediment), and R(0) (resp. S(0)) is the source concentration of R

(resp. S) at the surface (resp. the bottom) of the water column. γR is the transfer velocity

of nutrients relative to DR(0) at the surface; γS is the transfer velocity of nutrients relative

to DS(L) at the sediment interface [56]. There is another type of boundary conditions

for CO2 and CARB in the models of [47]. Using the boundary conditions for resources

in [47], we have the following alternative model in the water column [29]:

(3.12)

Rt = (DR(x)Rx)x − fR(R, Uu )u− ωrR+ ωsS, x ∈ (0, L), t > 0,

St = (DS(x)Sx)x − fS(S, Uu )u+ ωrR− ωsS, x ∈ (0, L), t > 0,

Ut = (d(x)Ux − ν(x)U)x + fR(R, Uu )u+ fS(S, Uu )u−mU, x ∈ (0, L), t > 0,

ut = (d(x)ux − ν(x)u)x + µ(Uu )u−mu, x ∈ (0, L), t > 0,

γRR(0, t)−Rx(0, t) = γRR̂, R(L, t) = R(0), t > 0,

Sx(0, t) = 0, S(L, t) = S(0), t > 0,

d(x)wx(x, t)− ν(x)w(x, t) = 0, w = U, u, x = 0 or L, t > 0,

w(x, 0) = w0(x) ≥ (6≡)0, w = R,S, U, u, x ∈ (0, L).

Here, the constant R̂ > 0 is the thermodynamic equilibrium concentration of CO2 in
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water, whose biological explanations can be found in the introduction of [47]; R(0) and

S(0) are the source concentration of CO2 and CARB at the bottom of the water column,

respectively [47].

In [29], the authors directly investigated the following general model for the growth of

single species that includes the habitats in the unstirred chemostat (see (3.10)) and in the

water column (see (3.11) and (3.12)):

(3.13)

Rt = (DR(x)Rx)x − fR(R, Uu )u− ωrR+ ωsS, x ∈ (0, L), t > 0,

St = (DS(x)Sx)x − fS(S, Uu )u+ ωrR− ωsS, x ∈ (0, L), t > 0,

Ut = (d(x)Ux − ν(x)U)x + fR(R, Uu )u+ fS(S, Uu )u−mU, x ∈ (0, L), t > 0,

ut = (d(x)ux − ν(x)u)x + µ(Uu )u−mu, x ∈ (0, L), t > 0,

BN,x[N ] = cN,x ≥ 0, N = R,S, x = 0 or L, t > 0,

Bx[w] = 0, w = U, u, x = 0 or L, t > 0,

w(x, 0) = w0(x) ≥ (6≡)0, w = R,S, U, u, x ∈ (0, L),

where m ≥ 0. For the definitions of BN,x[N ], cN,x and Bx[w], we refer the readers to [29,

Section 1].

The main difficulties in mathematical analysis for the system (3.13) and models in

[27, 28, 33] are caused by the singularity in the ratio U/u at the extinction steady state

with (U, u) = (0, 0). Thus, standard techniques such as linearization and bifurcation

are not applicable. In previous works [27, 28, 33], it was essential that the limiting sys-

tem is monotone, as they are based on upper/lower solution arguments. We point out

that the arguments developed in [27, 28, 33] can not be applied to (3.13) since the gen-

eral system (3.13) can not be reduced to a monotone system. Recently, J. Mallet-Paret

and R. D. Nussbaum [44] proposed a Krein-Rutman type theorem involving two sepa-

rate cones, and hence, the existence of the principal eigenvalue of a nonlinear eigenvalue

problem can be proved. Then the authors in [29] establish a threshold type result on

the extinction/persistence of the general system (3.13) in terms of the death rate and the

principal eigenvalue associated with a nonlinear eigenvalue problem.

4. PDE models with cell quota structure

Assuming that quota is proportional to cell size, the authors in [18] build on previous work

addressing size-structured populations (see, e.g., [6, 46]), extending it to a size-structured

competition model in the chemostat. More precisely, the ideas in [18] are as follows: the

quota of resource for an individual is proportional to its size, and individuals reproduce

by simple division into two equally-sized daughters.
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4.1. A size-structured model

In this subsection, we briefly introduce a size-structured model developed in [6, 20, 46],

and the equation takes the following form:

(4.1)
∂n(t, q)

∂t
+
∂(g(q)n(t, q))

∂q
= −µ(q)n(t, q)− b(q)n(t, q) + 4b(2q)n(t, 2q).

Here t denotes time, q represents the size of an individual cell. n is the population density

function, that is,
∫ q2
q1
n(t, q) dq represents the number of cells with size between q1 and q2

at time t. The functions µ(q), b(q) and g(q) are the rates at which cells of size q die, divide

and grow, respectively. The second term at the left hand side (The first term at the right

hand side) denotes changes due to the growth (death or dilution) of cells. The last two

terms describe the reproduction process. The factor 4 in the birth term may be strange

to the readers. We refer the Appendix in [6] for a derivation of equation (4.1).

We assume that an individual cannot divide before reaching a minimal size qmin > 0.

Consequently, cells with size less than 1
2qmin can not exist, which is expressed by the

boundary condition

n(t, 12qmin) = 0.

Furthermore, we assume that cells have to divide before reaching a maximal size which is

denoted by qmax. Thus we have to impose the following condition on b:∫ qmax

qmin

b(q) dq =∞.

4.2. A size-structured model in a well-mixed chemostat

We next consider the following system describing competition between n competitors with

quota structure in a well-mixed chemostat [18]:

∂ni(t, qi)

∂t
= βi(S)

{
−∂(gi(qi)ni(t, qi))

∂qi
− bi(qi)ni(t, qi) + 4bi(2qi)ni(t, 2qi)

}
−Dini(t, qi),

dS(t)

dt
= D(S(0) − S(t))−

n∑
i=1

αiβi(S)

∫ qmax,i

qmin,i/2
gi(qi)ni(t, qi) dqi,

ni(t,
qmin,i

2 ) = 0, 1 ≤ i ≤ n,

ni(0, qi) = n0i (qi), 1 ≤ i ≤ n,

S(0) = S0.

(4.2)

Here ni(t, qi) denotes the concentration at time t with quota qi for the i-th competitor,

1 ≤ i ≤ n; S(t) denotes the concentration of nutrient at time t; D is the dilution rate;
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qi and Di are respectively the cell quota and the death rate for i-th microorganism.

βi(S) := µmax,iS/(ai + S) is the Monod function.

In [18], the authors showed that the competitive exclusion principle holds for sys-

tem (4.2), that is to say, when size-structured species compete for a single resource in

a spatially uniform habitat–one species wins which has the lowest break-even concentra-

tion for the nutrient. With size structure, the break-even concentration also depends on

the principal eigenvalue that summarizes the relationships among cell growth, cell divi-

sion, and cell size. Thus, the model with quota structure may reverse the outcome of

competition for the classical model without quota structure (see [18, Remark 2.2]).

4.3. A size-structured model in an unstirred chemostat

In this subsection, we study a two-species competition with quota structure in an unstirred

chemostat, that is, we shall incorporate diffusion terms into our system. The governing

equations take the form [18]:

∂S(t, x)

∂t
= d

∂2S

∂x2
−

2∑
i=1

αiβi(S)

∫ qmax,i

qmin,i/2
gi(qi)ni(t, qi, x) dqi,

∂ni(t, qi, x)

∂t
= d

∂2ni
∂x2

+ βi(S)

{
− ∂[gi(qi)ni(t, qi, x)]

∂qi
− bi(qi)ni(t, qi, x)

+ 4bi(2qi)ni(t, 2qi, x)

}
, i = 1, 2,

(4.3)

with boundary conditions

∂S(t, 0)

∂x
= −S(0),

∂S(t, 1)

∂x
+ γS(t, 1) = 0,

∂ni(t, qi, 0)

∂x
= 0,

∂ni(t, qi, 1)

∂x
+ γni(t, qi, 1) = 0,

qmin,i

2
< qi < qmax,i, t > 0,

ni(t,
qmin,i

2 , x) = 0, 1 ≤ i ≤ 2,

(4.4)

and initial conditions

(4.5) S(0, x) = S0(x), ni(0, qi, x) = n0i (qi, x), 1 ≤ i ≤ 2.

Here S(t, x) denotes the density of the nutrient at time t and position x ∈ (0, 1). S(0) is the

input concentration of the nutrient; ni(t, qi, x) represents the density of i-th individuals

having quota qi at time t and spatial location x in (0, 1), i = 1, 2. The parameter d is the

diffusion coefficient and the constant γ in (4.4) represents the washout rate. The rest of

the parameters are same as those we defined in (4.2).

In [18], the authors have demonstrated that outcomes of system (4.3)–(4.5) are sim-

ilar to competition models for spatially structured habitats that lack population size-

structure [34, 35]. Coexistence of two competitors is possible, depending on parameter
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values, and both persistence of one population and coexistence of two are related to prin-

cipal eigenvalue problems similar to those arising in other spatial models [3,17,34,35]. We

emphasize that the calculation of competitive outcomes depends on the principal eigen-

value that also summarizes relationships among cell growth, cell division, and cell size [18].

4.4. A size-structured model with light limitation

In [32], the authors consider the dynamics of a single species in a water column, where

the species depends only on light for its growth. They further assume that the amount of

light absorbed by individuals is proportional to cell size, which varies for populations that

reproduce by simple division into two equally-sized daughters, and species move by vertical

turbulent diffusion and advection. Let x denote the depth within the water column, where

x runs from 0 (top) to L (bottom); n(t, q, x) represent the density of species having quota q

at time t and depth x. We assume that phytoplankton transport is governed by turbulent

diffusion D and sinking term ν (ν > 0), due to mathematical restrictions. The specific

growth rate can be determined by a production term β(I(x, t)) and cell size, which varies

for populations that reproduce by division; dn(t, q, x) represents a loss term of species.

We assume that the specific production rate of a species, β(I(x, t)), is an increasing and

possibly saturating function of light intensity I(x, t). There is no production without light,

that is, β(0) = 0. Typically, the Monod function is β(I) := µmaxI/(a+ I).

The light intensity at each depth can be described by Lambert-Beer law [37,39], that

is, the amount of light absorbed at depth x is proportional to the light intensity at depth

x:

(4.6)
∂I(x, t)

∂x
= −K(x, t)I(x, t).

We assume that the constant of proportionality, K(x, t), consists of all components that

absorb light, including the water itself and the number of cells with size between qmin/2

and qmax at time t and depth x:

(4.7) K(x, t) = k0 + k1

∫ qmax

qmin/2
n(t, q, x) dq,

where k0 is the background turbidity that summarizes light absorption by all nonphyto-

plankton components, and k1 is the specific light attenuation coefficient of phytoplankton

species. From (4.6) and (4.7), it follows that the light intensity I(x, t) is given by

I = I(x, t) = I0 exp

(
−k0x− k1

∫ x

0

∫ qmax

qmin/2
n(t, q, s) dqds

)
,
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where I0 is the incident light intensity. Then the model takes the form [32]:

∂n(t, q, x)

∂t
= D

∂2n

∂x2
− ν ∂n

∂x

+ β(I(x, t))

{
−∂[g(q)n(t, q, x)]

∂q
− b(q)n(t, q, x) + 4b(2q)n(t, 2q, x)

}
− dn(t, q, x), t > 0,

qmin

2
< q < qmax, 0 < x < L,

νn(t, q, 0)−D∂n
∂x

(t, q, 0) = n(t, q, L) = 0, t > 0,
qmin

2
< q < qmax,

n(t, qmin
2 , x) = 0, t > 0, 0 < x < L,

n(0, q, x) = n0(q, x),
qmin

2
< q < qmax, 0 < x < L.

(4.8)

Motivated by [15], the boundary conditions of n(t, q, x) at the top (resp. bottom) of the

habitat are the zero-flux conditions (resp. absorbing conditions).

The authors in [32] first study the structure of the semigroup for a population operator

with turbulent diffusion and sinking term. Then the property of the asymptotic behavior

of this semigroup can reduce the model (4.8) into a nonlocal reaction-diffusion-advection

equation similar to those in [8, 9, 31], but their boundary condition at the bottom of

the water column are different. Thus, we may not directly apply the previous results

in [8,9,31] to our system, and hence, the detailed analyses of the reduced system are also

given in [32, Section 5]. Basically, the authors in [32] define a critical death rate then they

show that the phytoplankton survives if and only if its death rate is less than a critical

death rate that depends on the reproductive rate, the characteristics of the water column

(e.g., turbulent diffusion rate, sinking, depth), cell growth, cell division, and cell size.
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