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ABSTRACT

‘This paper concerns the exploitative competition of two predators for two prey species.
We analyze the model proposed by MacArthur with more general paramelters. MacArthur
used the model to address questions of species packing on resourees, but he did not
completely determine analytically under what conditions will neither, one, or both
predator specics and one or both prey species, survive. Our analysis is global for all cases
excepl one, for which we performed a numerical analysis. We conclude that the behavior
of this predator-prey syslem is more complicated than previously thought. In pasticular,
we analyze cases in which the two-predator, two-prey system catastrophically collapscs to
a one-predator, two-prey sysiem, of even 1o ons-predator: one-prey system. We also-show
that there are cases in which the initial numbers of the two predators determine. the
pattern of this collapse. These conclusions suggest that caution should be exercised in
interpreting any conclusions of species packing that are based solely upon a grapl-ucal
analysis of the MacArthur model,

1. INTRODUCTION

i
In 1972 MacArthur [9} introduced a model of two “consumer™ species,
xy and x,, competing for food on shared “resources,” R, and R,. Because he
assumed that the “resources” were capable of self-reproduction and regen-

erated logistically in the absence of consumption, the model is perhaps _'
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- more appropriately treated as a case of competing predators sharing two

prey specics. MacArthur did little formal analysis of this model system
before his untimely death. This paper is a rigorous analysis of the global
behavior of MacArthur's two-predator, two-prey model, The principal re-
sult of the paper is to define the conditions under which the competing
predator species survive or die out. To our knowledge, no such analysis has
yet appeared in the literature. ]
MacArthur's model represents a.major advance in biological realism

“over classical mathematical treatments of competing species because it

incorporates explicit equations for the dynamics of the limiting résources
(i.e., prey) in addilion 1o the usual cquations for cach-competitor. However,
the added realism markedly increased the complexity of the analytical
problem because of the jump from the classical two-dimensional system to a
four-dimensional system. Perhaps because the increased difficulties of the
four-dimensional system were enough, MacArthur apparently chose to
model only the simplest possible predator [funclional response to increasing

* prey density. This is the response in which the predator’s feeding rate

increases linearly with prey density (type I response under Holling's {31
classification). This mass-action formulation of feeding rate characterizes
the classical models of predator-prey interaction [11), and is most accurate
at low prey densities. We report clsewhere (5] on the consequences of
incorporating nonlinear functional responses that saturate at some maximal
feeding rate as the prey density beconies sufficiently large.

The remr~’nder of this paper is organized as follows.’ A statement of the
model and definitions of its parameters appear in Scc. 2. The analytical -
results are given without proof in Sec. 3. The proofs are deferred to the
appendix. Finally, in Sec. 4 the results are discussed in biclogical terms and
compared with the earlier partial results of MacArthur [9].

2. STATEMENT OF THE MODEL

The present analysis concerns the behavior of a predator-prey system
consisting of two predator species, x, and x;, and two prey species, R; and .
R,. We'specifically assume that the predator species compete purely explojs
fatively, with no interference between rivals. Both species have access to
prey and compete only be lowering the population of shared prey. Dezath
rales are assumed to follow a “iype 1" survivorship {10] in which the
number dying is proportional to the number currently alive. We also
assume that there are no significant time lags in the system, that growth
rates are logistic in the prey species in the absence of predation, and that
the predators’ functional response is linear, With these assumptions the
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model is given by.
, R
R;=R:["’:(1 "—1) kllxl ku-‘fz}s

{ R
Rz"_"Rz["z(l"?z')—kuxl kzzxz].
>

Xi=x[by R+ bR, — Dy} : (2.1)
x2=x2[b-‘,R|+bzzR2——D2],
R(0)>0,| x(0)>0 for i=1,2,

I

where |

‘=d/dr,
{=lime, .
R;(#) = the number of ith prey at time 7,
X;({)=the number of ith predalor at time ¢,
r,-=the intrinsic rate of increase for ith prey,
= the carrying capacity for ith prey,
,;,,—the birth rate per predator (predator species i) per unit prey (prey
species j) consumed,
ki =the feeding rate per predator (predator species f} per unit prey (prey.
species j) consumed,
D;=the death rate of ith predator.

We analyze the behiavior of solutions of this system of ordinary differen-
tial equations in order to apswer the biological question: Under what
conditions will neither, one, or both species of predator survive or die out?
If only one predator survives, we also seek to determine the limiting
behavior of the surviving prcdator and its prey.

3. STATEMENT QF RESULTS

In this section we state the- principal results of the paper The proofs and
certain technical lemmas are deferred to the appendix. 1 he first.lemma is a
statement that the system given by (2.1} is as “well behaved” as one intuits
from the biological problem. The proof of the lemma is easy and we omit it.

LEMMA 3.1

Solutions of (2.1) are positive and bounded. Furthermore, Jor any >0 there
exists 19> 0 such that R(1) K Ki+¢ for 3145 i=1,2.
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The next lemma provides conditions under which the predators cannot
survive on the prey given the carrying capacity of each prey population
even in the absence of compelition: ~ :

LEMMA 3.2 ;

. . '

A necessary condition for either predator species X; to survive is by K+
5Ky > D, ! : :

This lemma states that if the death rate D, for the ith predator is too high
or if the carrying capaciti¢s K; and K; for the prey species are collectively
too small, then the ith predator will die out..-We note the result is indepén-
dent of competition. :

We state the principal result in the case of inadequate carrying capac-
ities of preys in seven parts. We are able in Theorem 3.3 to determine the

globally asymptotic behavior of the solutions, The theorem may be -

summarized by noting that the unsuccessful competitor does not affect the
eventual behavior of the survivor and its prey. .

First we consider the case where the carrying capacity for each prey
species is inadequate for gither predator species to survive. As one expects,
in this case each prey spcj;ics grows to its carrying capacity. '

-THEOREM 3.3() |

-If bﬂK:"l‘ b“K2<Dif0r i=l,2, then

im,_ o R(0)= K .

lim,_,x(f)=0, i=12.

We note that Theorem 3.3(i) simpl.y follows from Lcmmn 3.2 and (;.’.._1); )
Let A= D,/ by, i,j=1,2. S o
THEOREM 3.3()

Let b"Kl"]‘b'sz)Dl and bz|K‘+buKz<D2. I_f

ki ki

0 —— —— < —,
Jr'1(1")\11/1‘(0 r

- (AD)

then

 (C1) the trajectory of '(2.1) approaches the equilibrium (E,;} as t—»o0,
where <o

(E1)=(R,0,%,,0),
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" THEOREM 3.3i)

Lei bllK|+b_12K2>bl alld’b2|K|+an‘2<D2. ]f

Kz kyy
—— <_" A2
)< r(l1=A/ Ky) | (A2)
theni"'

(C2) the trajectory of (2.1) approaches the equilibrium (E;z) as r-—-:-oo,‘
where ;

(E)=Q@Rus0),

Cand T
B 3 = _ T2 AIZ) .
Rp=Ap EF=-2f1-212)
Zl 12: 1 k|z( Kz
THEOREM 3.3(v)
Lert 5|1K| +_b|;K3>DI and_bz,f-.’|+anZ<Dl. If
klz .}\” k‘ll k“ AIZ klz
Sufypofny o Fa LY PR ) A3
fz(l J"-’1.<f'1 o ’ll Kz<'-’2 (43)
then

(C3) the trajectory of (2.1) approaches the equilibrium (Eis) as t—c0;
where . : : '

(E13)=(Rh, Rt x1,0),

) by - ( J';1 7z ( A:z))

= - ————|1-=2]l<Kk
iﬁ_'__rz_ by Vkn  ky K !

ku K, iklz K.

by ("2 "x( An))
Ry= - T ——{l—-==}]<k
ST PN VN S o A
ky K, 'klz i

xe=Ljo RN nf, Rh
o kn Kl klz Kz )

\J'\
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We note that it is impossible that i
|

k k k

on 12 -~ 0 and kll t

> e LU
nooor{l=A/K) o on(l=M/K) >

hold simultancously. We also note that Kj may be less than A, and K; may

Similarly we have e
THEOREM 3.3(v) S

Let by K+ b1aKy <Dy and by, Ky + by Ky > Dy, If

oc—Kn__ Fu

' r, ( l ——

then

(C4) the ‘trajec.rbry of (2.1) approaches the equilibrium {Ey) as {00,
where

(En)=(2,0,0,x)

and _
: . X
Ry=XAy, x =—‘(1 _2_1_)
1 31 2 kZI KI
THEOREM 3.3(vi) ;

Let b|1K|+buK2<Dl and bZlKl+b22KZ>DZ' If

-k k
0<___£__>._2_', B2
rz(I_Au/K;) n (82)
then - ' : ' '

(C5) the trajectory of (Z.I)Aapproaches the equilibrium (E,;) as t— oo,
where o -

(EJ.Z) = (,0' BZ) Ol &2)
and )

32=A22‘ Xy = _,-E_(I-—_A__z_:"_)_

(’39'.

Jp——
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THEOREM 3.3(vii)
Lef b|]K|+blsz<Dl and ble|+b22K2>D2. ]f

kyy A21 kz: ki _kzz k;z :
R(R)< me Bl-R)< oy

then

(C6) the !rajeclary of (2.1) approaches the equilibrium (Ey) as t—»o0,
where,

(B) = (R R 052,

b1z ! "1( 7\22)
— - —|1-==1i<K,,
AN bzz 2 by [km "k '

kK, kzz Kz

R =

by ."z | ( AZI)
Rhi= — == ]|<K;"
2 r b22+ ry bll [kzz kay\. K »
ka Ky 22 Kz

ny Rzl) ( R:?z)
x3=—|1- - 1.
2 kg ( Kl,l kyy X,

I
In order to discuss the interior equilibrium pojint, we may assume as a
basic hypothests

(Hl) b”K] + b'sz >Df fOl' l“= 1,2.

Under the assu'mptiou (H1}, the equations of (2.1) may be relabeled without
loss of generality, so that we assume either -

(H2) A <hgp, A<y
or |
(H3) Ay <Ay, A<y,
Weé note that most of the conditions on parameters for the various cases

in Theorems 3.3, 3.4, 3.5, 3. 9 can also be established by the lmcanzatxon
method. )

]

)




'\,‘{E‘

53":

' . \ .
i ; B
i . 3 H
H - . ' . 1
[

i P _ o ' ' S.B.HSU ANDS. P, HUDBELL "~
1 Rz . " .
o~ :
{
I
|
| !
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An ‘a1 1

| ? .-
i ‘ ‘ FIGURE 1.
THEOREM 3.4

Let (HY) and (12} hold (see Fig. I) Then the sm!emenls in Theorein 3,3
(ii}, (it1), (iv) }:o!d

THEQREM 3.5
Assume (H1) and (H3) hold. Let

| ge= Dibu=Dibn
e bnbu— bu’:’u
and
° ’ Ri':: Dzbn"'lezl ) '

bubzz""bubzl '

(i) If Ky >Ry, and K; <R}, [see Fig. 2(a)), then the stateents in Theorem
3.3(it), (iv) hold. : -

(i) If Ky <R}, and K, >R2, [see Fig. 2(b)], then the statements in The-
orem 3,3(vi), (vii) hold.

Remark. From Fig. 2(a), the assumption (A2) in Theorem 3.3(iii)
doesn't hold. Similarly from Fig. 2(b), the assumpuon (Bl) in Theorem
1.3(v) doesn’t hold.

1
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For the rest of this section we assume
(H4) &,>R}, and K, >R3.

We note the following lemmas.

i
i
LEMMA 3.6 |
Let ]
i |
k k
Pym—"1 ___ p =
N n(T=RETKY Y R(I=RLTKY
o _ kyy _ Ky
SR RRY P Ry
kll k!t
= Cy= 2
12 1 ku
x* = riky(l — R/ K —rka(1- RL/K)
e kukzz_ kl2k21 ’

i
i
x* = rokn(1— B3/ K3) = riko(1 —RL./K)
2 ' knkyy = kypky

() The “positive” equilibrium (E)={(RE.R}, x}.,x3.} exists if and only .if
P11 > Py Py >Py or Py <Py, Py <Py, . ”

(i) Under assumptions (HY), (H3), and (H4), a necessary condition for the
asymprotic si’abilio’ of the equilibrium (E,) is Ci>C.

(iii) If C,>C,, then (£) is an unstable saddle point. We note that it is
hard to verify (E,) iy asymplotically stable, as the reader can see in the proof

of (ii).
Remark 1. P, is the predption intensity cxerted by the jth predator on
the jth prey species at cquilibFium.
LEMMA 3.7 f
Let (1), (H3), and (H4) hdld. Then
(') ROVKRYL iff Py<Py,.
(i) RH<RY, iff Pyy<py,.

Remark 2. Lemma 3.7 is very useful in graphing so that we can
determine the stability of the equilibria. '

LEMMA 3.8 . |
Let (H1), (H3), and (H4) hold,

() If Py > Py, Py >Pyy, then tim,_, Ry(D)x5(6)=0.
D) If Py >tPy, P> Py, the lim,_,  R\(t)x,(1)=0.

=
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Fm: 3. S means that the equilibrium is stable; U means that the equilibrium is

unstable,
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4, DISCUSSION

This paper is a mathematical analysis of the behavior of a model of two

predator species competing exploitatively for two prey species. Each prey

species grows logistically in the absence of predation, and the predator
species consume the prey according to a linear functional response. The
prey can be regarded as “substitulable” resources from the perspective of
the predators, since the “indiflerence” curves of cqual growth rates arise as
constant linear combinations of densities of the two prey species [7].

+  The outcome of competition depends on the prey parameters r, and K

(the intrinsic rate of increase and carrying capacity of the jth prey species,

respectively), as well as on the birth, death, and feeding rates (by, Dy k) of
the ith predator species. Particularly important composite parameters are Ay
and Py. In this model A; is the ratio of the ith predator’s specific death rate-
to its specific birth rate vn the jth resource per unit prey consumed
(Ay=D;/b;). A has units of prey density because the units of D are
predator™'time™!, whereas the units of b*are prey~!predator—‘time=". N
represents the density of prey species / at which predator s birth rate just
equals its death rate. ‘We will cal A; the “subsistence density” of prey j
minimally necessary to support predator i. The second composite parame-
ter, P,}, is the predation intensity exerted by the ith predator on the jth prey
species at equilibrium. Predation intensity is defined as the ratio of the per
capita (per prey, per predator) consumption rate of prey divided by lhe per
capita (pet prey) rate of increase of the prey. .

Elsewhere it has been shown that if # predator species are competmg for,
a single prey species which grows logistically, and if the predators consume
prey according to a linear functional response, then only one predator
species will survive in the end, that being the species with the smallest A.

The surviving predator and its prey approach constant values (see [4), (8D.

When a second prey species is added to the system, the possible out-
comes are more numerous. In this paper we consider only the two-predator
case. The focus of the analysis has been to define the analytic conditions
under which neither, one, or both predator species survive. Given that both
prey and 'both ‘predators are present at the beginning, there are eight
equilibria which can be reathed by (2.1) (Table 1). Each of these equilibria
can arise in several different ways, which we have classified (Table 2). We
have divided our results into three general cases:

Case I: neither predator gan survive, even without competition;

Case II: one prcdator can survive on these prey species, but the other
canno;

Case [II: both predators can survive on these prey, at leasl m the
absence of competilion, : -

S. B. HSU ANDS. P. HUBBELL =~ -

¢
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- TADLE | o
Biological (Nonnegative) Equilibria of @.n

Equilibrium Refer to Theorem.
I (R, R,,0,0) 3.3()
2 (R,0,x,0) 3.3()
3. (0, Ry, x,,0) L33
4. (R, Ry, x7,0) 1.3(iv)
5, (R,,0,0,x;) 330
. 6. (0. R,,0,x;) 3.3(vi) .
7. (R}, R.0,x5) 3.3(vii)
8.7 (RyRuxpx = 39
9. (0,0,0,0) Impossible*
' 0. (R,,0,0,0) * Impossible* |
1. | ©R.0,0 Impassible®
- 12. 0,0,x,,0) Impossible, 3.3(i)
13. (0.0,0,x,) Impossible, 3.3()
14, (@,0,x;,x;) Impossible, 3.3(i)
15. ' (R,0,xp,x5) Impossible; cf. [4]
16 (ORyx,x) - Impossible; cf. [41

o “*Only cquilibrium points 1-8 are possible given the
initial conditions in (2.1), namely, R,(0), Ry(0),
x (0}, x5(0) >0, :

Cases II and I1I have several subcases with different biological outcomes
(Table 2). ) - .o

CASE Y

This represents the case in which neither predator can survive on the
prey species, regardless of the presence or absence of its rival. This situation
arises when the carrying ‘capacities of the Prey species are collectively too
small to support either predator [Theorem 3.3(1)]- When both predators go
extinct, each prey species equilibrates at its carrying capacity. This occurs
when by, K, +b,K, <D, for i= 1,2 predators. '

CASE IT

This case is partially understandable from the outcome in Case I, since .

one of the predators cannot survive on the prey no matter what its rival
does, but the rival can survive when grown alone. In the limit this case poes
to a two-prey, one-préedator system, or sometimes to a one-prey, one-preda.
tor system, whose behavior is casy to understand if we apply Liapunov's
function’ in (5.2), (5.3), (5.4) without 8x,. '




I 8. B. HSU AND 8. P. HUBBELL
- - ! - . * ° (
TAPLE 2 i
Detailed Classification of Outcomes . ;
Predator, . Prey o
Xy C X2 R, v Ry
I. When grown alone neither predator survives, i
b"K‘ +b|zK2_<Dl and b1|K1+ bzsz<Dz
0 0 X : Kz
II.. When grown alone, only one p}cdnlor SUCvIives,
A. b] IK1+512K2> Dl an ble|+b21K1<D2
: l kiz N Ay
L — (== ¢ A 0
T rr kn ( K, ) : "
- ku e _Ap
2.0 ——2——d« 0 0 A
rfl- -\u/Kz) klz ) . 12
k A kq
M l._ll 1L
.3. r; a-go<ot and
ki Ap ktz .« - e oe
_’T(l ?;)< —; x? 0 R} R}y
B. b"Kl ‘i‘bIsz <D| and bZIKI+b22K1>DI
' k k P Y
L 0 —pmil—re < 2 0 - -2 A 0
nl=An/X) ~ k3 ( Ky H
kas k) ) An *
20— e <= 0 2a--2 0 & :
n(l-Ap/K) ~ ko K -
38 —(l AII kZI ) '
1 o
ku T . . pe
—'T(l -'R';')<r—2 0 x2 R R}

111. Both predators can survive when grown alone.
bl lKl 4+ bl!'K2>DI and bJIKl +buKz>Dz
A A< A <Ay '

1. Same as Case [IAl'
2. Same as Case _IIAZI-
3. Same as Case [IA3

B. Ay <A An<ip

1. Same as Case 1IB1

2. Same as Case IIB2

3. Same as Case [1B3 +
C Ai<An An<Ap

1 Ky >Rl Ka<RY "

a, Same as Case [TA1
b. Same as Case 11A3

*

/4
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2. K <RI K> RS,

a. Samec as Case 1IB2
b. Samec as Case 11D3

3. Ky >Ry Ky >R3 -

B Py>Pr Py > Py
1. Same as Case lIAl
. 2. Same as Case IIA3
b.Pay > Pyyw Py > Praxicxi RIRE. .
) c Py > R
: ’ l. Same as Case I1IB2
2. Same as Case IIB 3
H : d. Py;>P;, P> Py, outcomes depends on initial conditions

*Incomplete msul!.sl cheEd i:;l(l In?x’n?é"r‘td?l‘ ".'rﬁﬁglu a%fb%lfbscﬂp ts1and2

1 ! ' 1
Suppose predator x, survives and predator x; dies out. Then there are
three cufcomes possible depending on the survival of the prey species:

Case I1Al: R, survives, R, dies out;
Case 11A2: R, dies out, R, survives, and
Case ITA3: R, and R; both survive, _

The parallel cases 1IB{, 1IB2, and 1IB3 also exist, in which predator x,
survives and predator x,; die} out. MacArthur [9] made no mention of the
possibility of Cases [IA1,2 and [IB1, 2, and apparently was unaware of their
existence. ) '

However, these cases are of considerable ecological interest because they
imply catastrophic change in the community as a result of interactions of

member species, Thus, it is relevant to consider the biological circumstances -

under which the two-predator, two-prey system collapses to a one-predator,
one-prey system. Again, consider the case in which predator x, dies out

because of insufficient prey carrying capacity, but x, can survive. In case

IIA1, when the inequalities

kll kIZ

| ki, kyy
T e I
r (1"‘?\12/*’(2) 12

and _’; > n(l=-A,/K) =Pu

‘are satisfied, prey species R, is consumed 1o extinction by the surviving

predator x,, and x; and R, approach equilibrium values.
The above inequalitics in biological terms-compare the two prey species

in terms of the intensity of predation they experience on-a per capita basis,

relative to the per capita power of each prey species to multiply. High &;/r,
ratios reflect a high predation intensity on the basis of prey per capita
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&
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growth rale. Thus, for a_given consumption rate, a lower rate of prey
increase results in a higher steady-stale predation intensily. Together the
inequalities above state that predation intensity in terms of specific rate of
consumption per unit specific rate of prey increase .is always greater for

prey species R, than for prey species R, at all prey densities. Morcover,:

even when R; is al very low density and regenerating at its maximal,
density-independent rate, it still experiences a higher per capita predation

- intensity, k,z'/r,, than prey species R, does, This is in spite of the fact that

R, is at higher density and is regencrating at a submaximal, density-depen-

S. B. HSU AND S. P, HUBBELL

dent rate under steady-state predation, ky;/r(1—4,,/K). A symmetrical

biclogical inlerpretation exists for Case 11A2, in which prey species R;
survives and R, dies out from predation.

In Case 1IA3 both prey species survive under predation from x,. The
reason both species persist is that predation pressures are balanced. Each
prey spceies at low density sustains a lower predation intensity than the
other prey species sustains at its equilibrium density under steady-state
predation. This is stated mathematically by the inequalities
kiz kyy

ki ki . p

— Lt — = P, and e =Py

n r(1—An/Ky) 2 r r{1-An/Ky) "

This balancing. “frequency dependence” in predation inlensity maintains
both prey species in the system. When both prey species are individually
inadequate to support the predator (A,;>K]), but are adequate as a food
supply when taken together, then the above inequalities are written as,

Kia Al ki kaf Ay kn
—’-_-l'-—(] -E <Tz- and -;z—.l —k—l- <_!'T'

On a mathematical note, although the behavior of the two-prey, one-pre-
dator system is readily understood, it is technically quite difficult to show
the results in Thecorem 3.3(it), (iii), and (iv). In this article, we consider only
trajectories which begin in the positive orthant. In {2] Goh studied the
behavior of a boundary equilibrium by the technique of sector stability. In
that case, the considered trajectories begin in the nonnegative orthant, . ¢

CASE 11

This case represents the most interesting and potentially the most com-’

9

plex situation of the two-predator, two-prey system. In this case, both -

species can survive handily when grown alone without competition on the

* prey species. This condition is met when the prey carrying capacities are
large cnough that b;i K, + b, K, > D; for both predators (i=1,2). In'this case :

there are four different possible biological ‘outcomes of competition, which

/4
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parallel the cases from classical Lotka-Volterra theory (1 1): These cases are:
(1) predator x, always eliminates predator x;; .(2) predator x, always
eliminates predator x;; (3) predators x; and x; cocxist in stable equilibrinm;
or (4) predators x, and x,|coexist unstably, with the usual result that one
species eliminates the othef, depending on initial density.

Each of these biologicalloutcomes, it turns oul, can arise in a number of
mechanistically different ways under Case I11. For example, under Case
[11A predator x, always climinates predator x;. However, this outcome also.
occurs if the conditions for Cases I1ICI or 111D2 are met, and can occur
when cases I1IC3 and [11D3 hold (Table 2). Case IIIA represents the
situation in which predator x, has the smaller A with respect to each prey
species, i.e., Aj; <Az and Aj; <Ay, In this case x, is a clear winner, because
it can persist al lower prey densities on either prey species than predator x,
can. However, in Case IIIC predator x; only has the smaller A for prey
species R;; predator x, is better on prey R, than x, is. In this case, predator
x, will always win when there is not enough R; available (X is too small) to
support predator x, in the face of rival predation on R, from predator x;.
Case 11IC1 defines the conditions under which the carrying capacity of prey
species R, is 100 low for predator x; to survive in the face of competing
predation on its principal prey (Table 2).

In Case IIIC3 the carrying capac:txes of the two prey spec:es are
adequate for the predators, so the outcome depends in this case on the
relative predation intensities imposed on the two prey species by the two
predator species. If these predation intensities are balanced, the predators
can coexist stably [Case IIICBa(z), Table 2]. If they are unbalanced, one or
the other predator species is climinated.

The complete list of-biological conditions for stable coexistence between
the two predator species in this model can be stated as follows:

(1) Each predator must be capable of persisting on the prey when grown
without competition (Case 11I).

(2) Each predator must have the lower subsistence density of prey Oower
A) for one of the prey species (Case 111C or HID). (If one of the predators
has lower A's for both prey species, it will eliminate its rival.)

(3) There must be sufficient prey of both specics (adequale prey carrying
capacity) to support each predator species given steady-state predation.

.(Adequacy of prey carrying capacity is defined in Cases II1C3 and II1D3.}

(4) Finally, the predation intensity imposed by ¢ach predator species on
each prey species must be preater on that prey species for which the
predator has the lower A [Cases 111C3a(2) apd 11ID3a(2)].

Mathematically, condition (4) for coexistence can be written as follows.
If Ay <Agyeand Ags <Ay, then given conditions (1) and (3), the'condition for

oo
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stable coex:stcnce in terms of predation intensity is that Py >Py; and

P2:>Pu. or thﬂt ! B
S _ |

k" kip and

A= Rt/ K) ~ (1= i‘L/Kz) ,’z(l"Rz‘c/Kz).

kn o kn
rl(l _Rl‘c/Kl)

Thus, predator x, has the Iowcr A on R, predator x; has the lower A on R,,
.and the predation intensities of x, and x, are greater on R, and R,,
respcclwc]y In terms of the composite parameters, these inequalitics reduce
to the condition Py > Py, Pyy > Py, for Ay <Ay and Ayy <Ay, By symmetry,
stable coexistence also occurs when Py, <Py, Py <Py if Ay <Ay and
A1 <Az Condition (4) for the coexistence of two species competing exploi-
tatively for two resources which regenerate at a constant rate has also been
reported in [5] and [7]. i

Initial densities of the rival predator species influence the outcome of
competition when each predator imposes its mare intense predation pres-
sure on the primary prey species of its rival, i.c., the prey species for which .
the rival predator has a lower A, In this case, the initial numbers of each
predator will determine the eventual winner. Malhcmahca]ly, this condition
is given by P,, < P,; and P22<P2,, or

Ky k A A k
- 12 . I'and 22 21
F(I=RLJR) < T(T=RL/ Ky . r(T=. /Kz) n(l- .‘.:/Kl)'

when A, <A1, and Ay; <Ay, [case IIICSb(Z)} ‘

We note that proof of Theorem 3.9 is still incomplete. However, from the
numerous partial results on the theorem, supplemented by numerical analy-
sis where needed, we can be certain of the validity of the conclusions under
(HI), (H3), and (H4). ‘

" In its original form as pf_escnlcd by MacArthur [9], the two-predator,
two-prey model is a special kase of the model we have analyzed here, In
that form, he set b;=¢, W;k; and D;= ¢, T,, for some constant c, Hence the
cocfhclents salisfy the followmg equalities:

by b b by ;
—=-— and -——=_-=, 4.1
ky kg kyy ky (49

This is the reason why it was relatively easy for Case and Casten [1] to get

their result on global stability, and it is also the reason why they did not

find any cases in which the outcome depends on the initial numbers of the

competing predators. In fact the assumptions of Theorem 3.9(iii) give an
_ example which vioclates thefequalities in (4,1). This is the case which

generates the unstable equilibrium in which competitive outcomes are
' |

i

*
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determined by initial numbers of predators and prey. There scem to be no
compelling biological reason to assume (4.1). Thercfore, there is a real
possibility of situations in which the initial conditions play a role in the

‘outcome of competition. Only in the very special case of the equality in .

(4.1), is it safe to assume that when the predator isoclines cross, the

two-predator equilibrium is stable. This analysis should serve as a -
cautionary note that when one is interpreting discussions of specics packing

and the number of specics that can coexist on a set of resources, one should
not rely solely on a graphical analysis of crossing predalor isoclines.

As mentioned earlier, our resulls can be compared with those obtained
from the classical model of two-species competition introduced by Volterra
[11]. MacArthur, by rearrangement of (2.1), obtained the compelition coef-
ficients (a’s) and carrying capacities (K's} of classical theory [rom his
“two-consumer, two-resource” model. If we use the notation of the present
paper, MacArthur's method for computing « and K is as follows. Set

-/ K)Ky— R)— kyyxy— kyx; =0 and solve for R,. Then substitute R, and

Ry into by R+ bRy = D). Then we have Kf —x;—-ax,=0 and K§—x;—
a'x, =0, where K} and K? are the computed carrying capacities of preda-

tors x| and x,, respectively, and & and &' are the competition coefficients of -

x; on x; and x, on X, respectively. In terms of present notation, these
parameters are ' '

by K+ by, Ky~ D, by K+ by Ko~ Dy

- Ki= K, . X ’ ki=% X. g
1 2 1 2
P bk + rz }?:2"12 T 021k21+_'r2 bzzknrz
K, , K, Ky, LK
rn buku""""rz biaky ' ““—rl l-"zl*'\fu"'_’_2 byakyy
o=, . a' =

K, Ky L K '
T bk + ,.2 biokyz "}—l'bzlkzl*“;z—bzzkn

Under the assumptions (H1), (H3), and (H4), it is easy to show that

a'} _k?:. iff ky < ks .
‘ K n(I=RLJKY S rn(I-RL/ Ky
and
Ky kyy &4y
— iff < .
YK M= RiJKy) ~ (1= Ri/ K

These inequalities correspond to the outcome in which there is a unique
cquilibrium (x7,x$) in the interior of the first quadrant which js a saddle

“point, while (X},0) and (0,X2) are asymptotically stable. This is the case in

.....
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which the oulcome depends on the initial values, The other oulcomes of
classical competition theory -also follow. Thus, if «'>K3/K? and a<
K}/ K2, theu the solution tends to (X?,0). If a'<K}/K¥and a>K}/ K2,
then the solution tends to (0, K3). Finally, if o' <K} /K}? and a<Kt/K3,

.then (xf,x3) exist and are globally asymptotically stable. It should be

noted, however, that these parametric relationships assume (H1), {H3), and
(H4), and are not valid in general otherwise. MacArthur apparently did not
test his computed a’s and X's against the compelition criteria, Such a test
would have shown that the Lotka-Vollerra case in which the outcome
depends on initial conditions could never happen in his special case (1.
Moreover, by assuming (H1), (H3), and (H4), Cases I and i could not have
been anticipated, nor could the great wealth of outcomes under Case Il
have been expected. - ' :

5. APPENDIX -

Proof of Lemma 3.2, It is equivalent to show that if b,K, + b, Ky <Dy,
then lim,_, ,x(£)=0. Let ' - :

Di_anl_bfzK2
by+by ’

O<ex<

By Lemma 3.1 there exists {5 > 0 such that R,-(!) SKi+efor t 34, i=1,2,

Then for an appropriate constant C, it foilows that
5i(i) = xoexp( [ [BaRi())+ baRo() = D] )
/o

< exgexp{[Bu(Ky +€) + (Kot €)= D)t~ 1)),

The first factor in the exponent is negative, so lim,_, , x,(£)=0.

Before beginning the proof of Theorem 3.3(ii), we note the following

* definitions and LaSalle's theorem (6], which will be used later.

Let (1):x"=f(x) be a system of differential equations. The vector-valued
function f(x) is continuous in x for x& G, where G is an open set in R" and
G is the closure of G. Let ¥ be a C! function on R* to R.

DEFINITION 5.1 .
We say ¥V is a Liapunov function in ‘G for (I} if V=grad ¥-f{<0 on G.

‘THEOREM. . .

Iif*V is a Liapunov function G Jor (I), then each bounded solution x(1) of

(1) approaches the largest invariant set M in E ={x:¥(x)=0,x&G).
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Proof of Theorem 3.3(ii), (iii), (iv). First we prove (ii). From assumphons

and. Lcmma 3.2 it follows that lim,_,, x;{(f)=0. Let

O<e< Dz_blel“bzsz kll a=ﬁ blz

, —=, §=1,
bn"'bzz ,ﬁ ki’ kiz' E

By Lemma 31 there exists o> 0 such llmt R, (<K +e i=1,2 and

x(1)<0 for t>t°.'

'bzlxlj*',bzzKl‘*‘E(bzl'*‘bzz)"Dz /K

We take as a.Liapunov'funclion V for (2.1}

V-_"R'_El_Rll

Ll

aR2+B( ‘-.flln-—-)

_==1|>=

+8xy ' (5-1)

on the open set

{(Rl.Rz,xhxz) O<R‘<M+E, x;>0 l—l 2 and
bzIKI"'bzsz'f'E(bu'*'bzz) Dy+ /K x;<0}.

It follows that |

pe— (R =B+ 2|
'K‘ 1 t 2(!1/.[{.) 2
N g
‘*‘“R:[(’z_k:le)—%_Rz“kzzxz]
2

+ xz[bz,RI + by Ry =D D+ 4((:}'3'(.) B ]

2
<R[ - Ry ey e )
+ aRz[(r,— kX)) — ?’2 R,-—kuxz]

+X2[b2|K|‘Fb12K2"' DZ+(b2|+b11)+ x|'<0 on Q-

K,
4(n/K) }

Hencé Theorem 3.3(ii) follows directly from Lemma 3.1 and LaSalle’s
theorem. The proof for Theorem 3.3(iii), (iv) respectively is similar to that of

L4
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Theorem 3.3(i) cxccpt.lhat the Liapunov functions
A

VR|+C!

Ry~ Ryt Byn 12 J +B[x, %= % In 2t ] +8x;  (52)
Rz X1 .

. V=R, -R}y~In R,‘ +a[R2— Rp— Ryln RL’]
: Ry : i2
+B[x,—x{—x{ln%]+8x; _ {5.3)
I
i .

are used for (iii), (iv) respecli{'gly.

Proaf of Theorem 3.4. From (H2) we choose € >0 such that
(% by — b“) +bye<0 and (%: by — b,z) + bye 0.

Let £= D,/ Dy+e. From (2.1) it follows that

SO HO_ (D, Vg )
¢ 50 {(Dzbz. b..)+bz.-_]R1(f)

rt {(“gibzz_blz) +5225]R2(’)_592
| .

<5 — EDz-

Integrating from 0 to ¢ and taking exponentials on both sides yields.
3
( xl(t) ) < ( xl(’) )e—m,r S Me=tod
X0 X110 )

for some M > 0. It follows that lim,_, ., x,()=0. Using similar arguments to
those in the proof of Theorem 3.3 yields Theorem 3.4.

Proof of Theorem 3.5. ‘First we prove 'part (i). Sinceé R} > K;, we have
Ay > Ky, ie, Dy>byuK,. It is casy to show that RE > X, iff
D Db
(‘D—;bn" blz)K:_ bn_—El,—;z—l
< —
! D= bnkK; . by

!

'
1
i
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Let

f D
(‘Ei'bzz-bu)xz bn‘"‘j{‘

0< <<
Dy— bk, T

and choose £>0 such that

D
{(’b‘;'bzz"‘ bu) + bzz’l}(Kz+€)—'ﬂ92 <0.

By Lemma 3.1, there cxiéts fo such that R(f)<K;+e¢ for ¢ >4, Let §{=
D/ Dy+m. Then ’ :

-- (Lo

+ {(‘—“ by — blz) + bzz"i] Ry(6)— 1D,

< {(f; bzz‘blz)‘*bnﬂ](f(z*‘é)“ﬂbz

=-q.<0

for 1>1,. From Lemma 3.1 it follows that lim,_,x,(r)=0. Following the

arguments in Theorem 3.4, we complete the proof of (i). -
The proof of (ii) is similar to that of (i), and we omit it.

Proof of Lemma 3.6. I;art (i) follows directly from a simple alpebraic
computation. From an elementary linear stability analysis about (E,), the
chardcteristic polynomial for the variational matrix evaluated at (£} is

J() =2+ A2+ A2+ Az + Ay

where

A= R+ L RES0,

K, ! K, '
rnr |
A= Kl; RERS + ky by REx P+ kg Ry x5,

+ kyab i REx T+ kaabn RE X1 >0, A
. A3= Ry, Rlc[——"(""llbuxlr"'k22b22x2c)+m(klibllxlc+k‘lb2Ix2:)]

Ag=(kykay— kika ) (Briba— biaba ) Ric RE XX
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From the Routhe-Hurwitz criterion, (£,) is asymptotically stable if and only
il 44> 0 and Ay(A,4;— A;) >A}A,. By (H3) we have b, 6,35 b,3by,. Hence
. (i) follows. We note that it is hard to verily A, (A;4;,— A3) > A, .
' If C;>C), then A, <0 and (E.) is unstable. Since 4, <0, it is impossible
"that each root of f{z)=0 has positive real part. Hence (jii} follows.

Proof of Lemma 3.7.,

‘ AMa\Y L fnd r b
RL<RL = b 1-_'1) -(_'_'z+_=__ﬂ)
SR = "[k.. ku( % ;< Nk KR K

n R, L Ai2), by
= Eblz({ K ) kl [bll(l Kl) KZ Rlc

R. T }L!z I b“ -
it k”\l )< KIZ(I KK b.,R"

ra (l i’\|2+ Kz bl (D‘ bn_Rz‘))

ku K
(- %)

knz - K

& PL<P.

Hence (i) follows. Similarly we have (ii).

Proof of Lemma 3.8. First we prove (i). Let

‘ r.(l- };‘:) ' O ——%—bua(e)il--%b“
TRy @Ot s
rz(l_ Kz)
—%bua(e)+ ]%bu .
B(E)= y -p(e)=rz—£(e)D'2—a(s)r|+B(£)D,,
bypby— biaby, _ : 7 .

where >0 is a small parameter. Then

- Ri(1) .o\ X5(0) Ri(1) o |
R T O%E T ORG FORE '
Y * :
’ _ . =’P(E)+[—kaz"'“(ﬁ)kn]xl(’)f["*'fzz"'“(f)ku]xz(‘)'-. (5:8)
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It is easy lo verify ' ;

r I r :
0 = —_,'_ i _
o T bty Tt (GaPy D)

T2 by Dy by,
Ky by — by

= — Rz“ — N RI‘ _
’2(‘ ‘KT) 7:(1--;?,-)—0

+

[ p—

- and

do_ [RE
-J;—r.[—-—- _1]<0.

Since P12>.P2| aﬂd PuLP", “. fo“ows that T’>C||C2. We choose
£* >0 small enough that p(e*) <0, £(c*} >0, =k +oe*)k,, <0, and —kyy

+ a{e*)ky; <0. Then from (58) and Lemma 3.1, it follows that .

Ry(N[x3(D]? < M e for some constant M >0 and hence

limy_ g, Ry()[xo()f€ =0. We claim lim, . Ry()xy(t)=0. If £(¢*)> 1, then

[Ra{)x(OFCT = [Ry(N]CD=1 But Ry(0)[x (0 <
(Ry, med ™ RA Do ()]0 as {—o0. Hence lim,_, ., Ry{Ox,(0)=0. If
#e)< 1, then ‘

Ro(1)x(8) = [x2(O]' ™ Ry o 1)
>( sup x(0) TR

0<i<on
—0 as f{—»00.

Hence we cofnpletc the proof of (i). :
The proof of (ii) is similar to that of (i), Let a(e)= 7" +e,

r ry- r r
T{'T‘bu+ —lg;bua(e) T'lbu-i- ?zz-b,,a(e)

] c =
bt:bzz_bubn B( ) bubzz“bubu

ge)=

and p(e)=r = £(e) D, ~ a(e)r, + B(£) D;. Then we have p(0)=0 and dp/de=.
rz(Rz“/Kz_ l)<0. Si“cc le >P22 and P“ >P[2, it fOllOWS lhat P <C], Cz-
We choose £* >0 such that p(e*) <0, a(c*) <C,;, Cy, £e*)>0. Then we have

R{(D) " M_ o R L xi(1)

kit %@ TH Ry~ FE 5
:=p(e")+[—k“-fi-a(a")ku]x,(l)+[-—k;l+a(e')kn]x2(1)
> p(e*) <0, ' ‘
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Hence .lim,_,,, Ry(Dbxy (D)7 =0 and lim,_,,, R,(1)x,(£)=0.

Proof of Theoren 3.9(i). First we prove part (a). Since T*> (), C,, from

- Lemma 3.8 it foliows that lim,_, , R,()x,(r})=0. From assumption (Al), the

equilibrium (£,)=(R,,0,%,,0) exists. Let B=k\ /by, a=pBb,/k;; and
8= tky /by, Since by, R, — D, <0, we have ry<kp¥, and lim,_, , Ry()xy(1)=
0. There exists £, > 0 such that for ¢ 4, .

(8byy— atkys)?

8(5, R\~ D,) ~
( 2 z) 4a(rz—k|2f|)

Ry(1)xo(1) <O0.

Let the Liapunov function V¥ be (5.1) with a, 8,6 above, defined on open set

Q= [(R.,Rz,xhxz) 2, R>0,i=1,2, and
A (8bay— atkyy)’

s(bZIRl - Dz) - da(ry— k%)

szzc(OJ.

It .follows that

. r o
V"_']TZ(RI"RI)Z'_*‘“Rz[_"%Rz"‘(’z"‘klzfl)"kzzxz]
+8x2[b22R2+(b21E1'—Dz)] '
r . =2 r
--—:-—-K'—l(Rl—R,).——a?i-Rf-

B 2
+afr,— kufi)gz(l + Sbuakn z)

— X
2ﬂ(rz"kux|) .

_ (8by3— akzz)z
-+ xz[ 8(51|R1 - Dz) - :ia_(z;;.—Tz)::':j- faxs

<0 on Q.

Then Theorem 3.9(i) (a) folJows from Lemma 3.1 and LaSalle’s theorem.
Let (A3} hold. Theorem 3.9(i) (b) follows directly from Lemmas 3.7, 3.8.

Proaf of Theo}ern 2.9¢iii). *.' Theorem 3.9(iii) foliows d'ircclly from Lemma

Proof of Theorem 3.9(iv). From Lemma 3.6, it follows that (E.) cxists,
By Remark 2, we have four cases, namely, (A2)(B1), (A3)(B1), (A2}(B3), .
(A3)(B3). We just show one case; the rest of them follow in the same way.
Let (A2)(B1) hold. If lim,_, _ x,(f)=0, then using the arguments in the proof
of part (i) of Theorem 3.4 yields lim,_,,, R,(1)=0, lim,_,, Ry(y=Ap=R,,
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lim,_ , x,{)=%, From (2.1), x,(1) becomes unbounded s f—co. This is the

desired contradiction. Hence limsup,_, ,, x,(1) >0.
Similarly, if lim,_,, x,(f)=0, then lim,_, _ R, (D =2y, lim,_, , R;(£)=0, and

x,(1) becomes unbounded. Hence lim sup,_,m x,(8)>0. .
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