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Abstract

Spatiotemporal chaos or turbulence in partial differential equa-
tions is a vastly open research field. In this-paper, we show that
imbalance of boundary energy flow due to certain types of non-
linear feedback boundary control can cause chaotic vibration of
the one-dimensional wave equation. We first show that if there
is a linear amplifier with feedback gain n at the left end point,
and if there is cubic velocity feedback damping at the right end
point, then spatiotemporal chaos of the gradient {wy,w.) will
oceur as the gain parameter 7 is tuned. We then show through
numerical simulations of concrete examples what may happen
if a more general polynomial feedback is applied at the right
end point. Chaotic profiles of wave motion are illustrated by
computer graphics.



1.1 Introduction

Advances in dynamical systems, particularly in the theory of chaocs, are
widely regarded as one of the foremost scientific achievements of the late
20th century. During the past ten years, control theorists have attempted
to incorporate brand new techniques in that area in order to understand
and utilize nonlinearities in systems. A particularly remarkabie new devel-
opment is anti-control — how to create, maintain or enhance chaos when
it is healthy and useful [7, p. 4]. Examples of such include fluid mixing,
chemical reactions, the biological systems of human brain, heart and per-
ceptual processes, secure communications ([7]), ete. So far, great success
has been achieved in the study of lumped parameter systerns; see (8], for
example.

For distributed parameter systems, remarkable progress has been made
during the past three decades in the boundary controllability and stabiliz-
ability of linear partial differential equations due to the pioneering work of
Russell {17]. Boundary feedback control achieves the control effect on the
system by propagating the controller action from the boundary into the in-
terior of the domain. This is quite advantageous from the practical design
point of view, because the boundary is much more accessible than the inte-
rior of the domain. {Obviously, internally distributed actuators and sensors
are also feasible and have already been in use, but their fabrication is more
difficult.) A large assortment of highly advanced modern mathematical
methods and tools was developed ([1], (14}, [15]) to handle the mathemati-
cal intricacies. Even though control theorists have also made certain success
in treating nonlinear distributed parameter systems, much of the existing
work becomes inadequate when the nonlinearity in the system is “severe”
with a chaotic regime. Such “genuinely nonlinear” distributed parameter
systems display the behavior/phenomena/properties such as multiple un-
stable solutions, bifurcations, fractals, hysteresis, strange attractors and
randomness which can only be approached by the contemporary study in
dynarmical systems and chaos.

Researchers began to examine chaotic behavior in distributed parameter
vibration systems in [13], [18], for example. In [13], Holmes and Mars-
den derived a Smale horseshoe from the motion of a nonlinear beam. In
[18], Sharkovsky considered some chaotic motion of hyperbolic equations.
However, no feedback control was mentioned in those works. The efforts
made by this group of authors is to study the chaotic behavior of the one-
dimensional (1D) linear wave equation when nonlinear feedback is applied
at a boundary point. The propagation of acoustic waves in a pipe. and the
vibration of a string or a rod, satisfy the linear wave equation

Wez(Z,t) — wy(z,t) =0, 0<z< L,t>0, {1.1.1)
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where the subscripts zz of Wy, .g., denote twice partial differentiations
with respect to the z variable. Let the initial conditions (ICs) be

w(z,0) = wo(z), wi(z,0) = wi{z), 0<z< L. (1.1.2)
Let the boundary conditions (BCs) be, respectively,

we(0,2) = —nwe(0,t), t>0, (1.1.3)
we(L,t) = owy(L,t) — Bwi(L,t), t>0, (1.1.4)

at the left end = = 0 and the right end = = L, where a, 3 and n are positive
constants lying in certain parameter ranges. The BC (1.1.4) is associated
with the name of van der Pol in that it has the effect of self-regulation or
self-excitation [19] and is therefore extremely useful in the design of ser-
vomechanisms in automatic control. The cubic nonlinear relation in (1.1.4)
can be realized by using tunnel diodes ([2, Appendix C]), for exampie. The
left BC (1.1.3) is linear signifying the presence of an emplifier (such as a
microphone in acoustics); it injects energy into the system,where the energy
of wave motion at time ¢ is defined by

L
E(t) = %fo [w?(z,1) + wi{z,t)]dz. (1.1.5)

Note that the parameter n in (1.1.3) may be considered as the feedback
gain; this gain will be the varying parameter in most of discussions to
foilow. The above statements will be clear if we look at the rate of change
of energy of the system:

d L
“—'E(t) = [ {'LUI:?.UJ; -+ w“wt]dﬂc
= ..-(integration by parts and utilization of (1.1.3) and (1.1.4))
= ﬂwg(oa £) +w?(L! t)[e -—,Bwf(L,t)], {1.1.6}
where

(i) nw2(0,t) > 0, meaning that energy is injected into the system from
the left endpoint;
() ,
2 P >0, if w,(L, )] < (/8)?,
wy (L,f)[a Bw, (Lat)] { <0, if |wg(L, ) > (a/’@)lﬂ‘

signifying a self-regulation effect.

The imbalance of boundary energy flow is evident in (1.1.6), as we see that
the effect of the lefc end BC is trying to increase the total energy of the
system, while that of the right end BC is to modulate the total energy



change. In [3], [4], we have shown that when «, S and 7 enter a certain
regime, chaotic vibration of the gradient (w,,w:) occurs. Note that in
(1.1.3), force feedback (i.e., the —nw:(0,%) term} is used, while in (1.1.4),
nonlinear velocity feedback (i.e., cw,(L,t) — fw?(L,t) terms) is used. Also,
we mention that in {3, (93)] (which is a differentiated form of (1.1.4)) a
combination of nonlinear displocement and velocity feedback is used.

In this paper, we consider chaotic vibrations generated by polynomial
velocity feedback st the right end boundary point. The organization of the
paper is as follows:

(1) In §1I, we prove that when the van der Pol BC (1.1.4) is replaced by
one with cubic damping, chaotic vibration still happens when the pa-
rameters enter a certain range. This shows that imbalance of bound-
ary energy flow is a major cause of chaos, and the nonlinearity does
not have to be van der Pol in order for chaos to occur.

(2) In §III, we show through numerical simulations certain new features of
nonlinear phenomena when higher order polynomial velacity feedback
is used at the right endpoint.

The study in (1} and (2) above leads to many pertinent questions whose
detailed treatment must be deferred to a sequel where more space is avail-

able.

1.2 Chaos Induced by Interaction of Energy Injection at
the Left End and Cubic Damping at the Right End

Let us clearly state the problem under consideration:

Wee (T, 1) — wye(z,t) =0, 0<r<l1,t>0, (1.2.1)
w,(0,t) = ~nw,(0,1), t>0n>0,79%#1, (1.2.2)
wz(l,t) = —[ow(1,2) + Bw?(1,8)], t>0;0>0,8>0, (1.23)
w(z,0) =wo(x), wi(z,0)=w(z), 0<z <l {1.2.4)

Comparing (1.2.3) with (1.1.4), we note that the o here has been given a
different sign so that the RHS of (1.2.3) now represents a cubic damping
velocity feedback (without the van der Pol self-regulation effect). We also
mention that we have set L in (1.1.2) to be 1, because the velocity of
wave propagation can be easily incorporated and adjusted in the ensuing
analysis. The standard change of variables ([2}-[4])

Wy =u4v, wWp=u—v (1.2.5)
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converts (1.2.1)-(1.2.4) to a diagonalized first order hyperbolic system

d [u 1 0] @ [u |
5 M - [o ~1] = H * (:28)
2(0,4) = Gy (u(0,8)) = izu(_o,t), (1.2.7)
u(1,1) = Fo g(v(1,2)) = v(1,1) + 9a,8(v(1,1)), (1.2.8)

u(z,0) = uo(zx) = %[wg(x) +wn(z)], 0<z<l,

v(z,0) = w(x) = %{wa(m) —wi(z)], 0<z <1, {1.2.9)

where in (1.2.8), the nonlinear function gq g(v) is defined implicitly through
the cubic equation

Bas a(v) + (1 + @)ga,p(v) + 20 =0, (1.2.10)

and F,p(v) = v + gap(v). By an application of the Implicit Function
Theorem and = little extra effort, it is easy to show that g, g(v) is a globally
well-defined (single-valued) function. By the tracing of characteristics ([2,
10]), the unique solution to {1.2.6)-(1.2.9) can be given explicitly below:
Fort=2k4+7,k=0,12,...,0<7<2and 0z <],

(Fa,p 0 Gn)F(uo(z + 7)), T<1-z,
u(z,t) = G;l o(Gpo Fﬂ,g)k+1(vo(2 —z-7l-z<T<2 -1
(Fa,g 0 Gy)*t (uo(r + x - 2)), 2~z <TSY
(1.2.11)
(G o Fog)f(vo(z — 7)), T,
v(@,t) = ¢ Gpo{Fapo Gn)k(uU(T —-x)), z<T7<1+7,
(GpoFapg) i {wo{2+z~7)),1+z<T<2
(1.2.12)

Here, as a rather standard practice in dynamical systems, we have abused
the notation (Fy g o Gp)*, e.g., to denote the kth iterate composition of
the function F, g o G, with itself. Spatiotemporal chaotic vibration of u
and v occurs when the map F, g o Gy and/or G, o F, g is/are chaotic.
Representations (1.2.11) and (1.2.12) show that » and v are completely
determined by the composite reflection relations G, o Fi g, Fa g0 G5, and
their iterates. But Fy g o G, and G, o F g are topologically conjugate to
each other (3, p. 433], so it is sufficient to consider whether G, o Fi, g alone -
is chaotic. The map G, o Fy, g is thus a natural Poincaré section of the
PDE system (1.2.1)-(1.2.4) or (1.2.5)-(1.2.6).

For easy visualization, we display the graphs of G, o F, g for certain
sample values of o, § and # in Fig. 1.
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FIGURE 1

Graphs of the map G, o Fys: (a)
a=05 8=1; {¢) =15, a =12,

0, =05 8=1; (b) n =09,
1.
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LEMMA 1.1 Stability of the Origin
Leta >0 and 8> 0. Then

(i) If @ = 0, then the origin is a neutrally stable fired point and 15
(weakly) globally attracting.
(i) If a > 0, then the origin is a globally attracting fized point of Iy .
(i) If0<a<1andeitherl>n>aorn>1, then the origin is a
repelling fized point of G, 0 Fy 5.

(iv) Ifa>1andeither0<n<l,anp>1ora>n>1then the origin
is a repelling fized point of G0 Fup.

PROOF By differentiating the function go g in (1.2.10) implicitly, it is
easy to obtain

3
Fla)y=1+gL L) =1~ = . 1.2.13
At v =0, gq,5(0) =0, so we obtain
F ,0)=1- 2 _a-l |FL g(0)] <1 for a2 0 (1.2.14)
a,f - 1__a—a+1‘l o, B -~ =~ . L.
Conclusions in (i) and (ii) above become immediately clear from (1.2.13)
and (1.2.14).
Since Jin a—1
CroFyg)(0) = ——t . — =, 1.2.
(Gno Fag) (0) = Tt S (1215)

we easily verify the claims in (iii) and {iv). g

LEMMA 1.2 wv-axis Intercepis
Leta>0,8>0,n>0 andn#1 be given. Then for 0 < @ <1, the map
Gy o Fap has three distinct v-azis intercepts

l—aD l—«o
g 'YV B

For a > 1, G0 F, p has ezactly one intercept at v =10.

v= (1.2.16)

PROOF Obvious from [3, Lemma 2.3). [

THEOREM 1.3

(Period-Doubling Bifurcation Theorem for —G, 0 Fa,6,0 <71 <1)
Leta > 0 and 8 > 0 be fized, and let ;- n > «, be @ varying parameter
such that 1 —amn > 0. Then



(i) voln) =52 122 is o curve of fized points of —Gpo Fyp:

— Gy Faglvo(n) = vo(n). (12,17
(ii) The algebraic equation

1/1—an\"?[1+ (3 +2a) _1+7n n-o
()P o

has @ unique solution n = o for any given o 0 < <1 and 8> 0.
We have

7]
-B_;J.[—GT] o Fa.ﬁ(q“)”vzvg(nu) =-L (1‘219)
7="0
(iti} For n = no satisfying (1.2.18), we have

 [8%GyoFag) 1[0 o2
_ [4a(20 — 3) + 693 + (6 — 4)ng — 1010 + 6
3(1 —10)3(1 +no)?
£ 0. (1.2.20)

(iv) For mp given in (ii), we have

_ [l%_ﬁ) 1 (62{6,, oF&,ﬁ))Zﬂ

v=vp(ng)
="y

6 a3 4 Jv? v=vo(7n0)
=10
4 _ - |
_ 8,67}0{(1 ?‘[0)[5 (1 -} 6&)] + 6T]0(1 T QT]U)} >0. (1221)

(1 —70)?(1 -+ 7o)
Consequently, there is period-doubling bifurcation at (vo{mo),n0). The sta-
bility type of the bifurcated period-2 orbit is aftracting.

PROOF The assertions in (i)-(iv) above are adaptations of [3, Theo-
rem 3.1} by changing « therein to —a. The only restrictions we must
observe are that 7 > « > 0 and 1 — an > 0. It is straightforward to verify
(). We can also confirm (ii}-(iv) with computer-aided proofs. Therefore
the Period-Doubling Bifurcation Theorem (16, pp. 220-223] applies. G

Example 1.1
By setting @ = 0.5 and 8 = 1 in (1.2.19) and solve for n = np on the
computer, we obtain

1o = 0.7676. (1.2.22)

This value at which the first period-doubling occurs can be observed in
Fig. 2. O
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v-axis

09

FIGURE 2

The orbit diagram of the map Gy o Fa,p, where we have chosen fixed
a=05, =1, and let 5 vary in [0,1}). Note that the first
period-doubling bifurcation happens at mp ~ 0.7676, agreeing with
(1.2.22).

A period-doubling bifurcation may or may not lead to a full pertod-
doubling cascade and the consequent chaos, depending on whether the map
—G, o Fy g has the renormalizable property (9], [12]. Here we note that
every prime period-2” orbit of the map ~G,oFu g corresponds to a unique
prime period-27*! orbit of the map G, o Fug {3, Lemma 3.1]. The map
—~Gy © Fa5 is unimodal on [0,00) and (—oc, 0}, respectively. Therefore,
renormalizability is assured. However, the restrictions 7 > o > 0 and
1~ a7 > O must also be satisfied all the time. Numerical simulations have
indicated that under these restrictions, a full period-doubling cascade will
always follow. This is supported by Theorem 2 below, where the existence
of homoclinic orbits is shown, which is a surefire way to establish chaos [11,
Theorem 1.16.5]. o

THEOREM 1.4

(Homoclinic Orbits and Homoclinic Bifurcations of the Map
Gq 0 Fop for 0 < a <1 with respect to the Varying Parameter
m0<n<1) Let0<a<1,f>0, and define

e (-58) /(- 50)
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If n satisfies 1 > 1 2 n,, then 0 is a repelling fized point of the map
Gpo Fa,p having homoclinic orbits. Furthermore, if n=n,,, then there are
degenerate homoclinic orbits.

Consequently, if n € {n = 1), then the map G, o F, g is chaotic on some
invarient sets of G0 Fo 5.

PROOF [t is easy to check that if 1 > n > My then

ve (-58) /(0 58)

and therefore %’}’ : 2—:_} > 1 the origin becomes a repelling fixed point by
(1.2.15) and Lemma 1.1 (iii).

The rest follows easily from an adaptation of [3, Theorem 4.1] by setting
a to —c therein. Since the arguments are identical, we refer the reader to

(3, loc. cit.]. I

Contrary to {3, Theorem 4.2], the origin of the map G, o Fu g does
not have homoclinic orbits when n > 1. This is also partly evident from

Fig. 1(c).

The chaotic property of the family of maps G, o F,, g with o and 8 fixed
and varying 7 is evident from the orbit diagram in Fig. 2, where a = 0.5
and 3 = 1 are chosen.

If we break up the overall reflection map G, o Fy g, we have

(i} G, is a linear expansion map;

(ii) Fag is a nonlinear contraction map.
The interactions of linear expansion and nonlinear contraction can lead to
chaos. This is the major conclusion of this section. What can be said about
a contrasting case, a composite map G, o F, 3, where

(i)’ G, is a linear contraction map;

(i}’ Fo.s is a nonlinear expansion map?

We can achieve (i)’ by changing BC (1.2.2) to
w(0,2) = nwz(0,1), >0,

leading to

—~ 1~
Golw) = Ty

and achieve (ii)" by changing BC (1.2.3) to

w.(0,1) = aw(0,t) + Bwi(0,t), a,f>0,a>1,



Feedback of Polynomial Type at the Right Endpoint 11

yielding

Fop(v) = v+ gas(v),
where g, g(v) is (uniquely defined as) the solution of

ﬁgi,ﬁ(v) + (o — 1)ge p(v) — 20 =10, v e R.

Qur numerical simulations so far have indicated that the map é,, o f’a_g
is never chaotic throughout the entire parameter range 7 > 0, & > 1 and
B > 0. This seems to be in sharp contrast to the chaos-causing potential
of the map G, o Fi, g in the theorems and graphics in this section.

1.3 Feedback of Polynomial Type at the Right Endpoint

The preceding section has shown that the nonlinear feedback does not have
to be of the van der Pol type in order for chaotic vibration to occur. This
has set the tone in this section for exploring a larger class of nonlinear
feedback boundary controls at the right endpeint, which, after interaction
with energy injection at the left endpoint, lead to chaos.

The broadest class of nonlinear boundary conditions at the right endpoint
can be described by an implicit nonlinear equation

Flw(l,t),wa(l,8),w(1,8)) =0, >0,

involving all the boundary displacement (w(1,t)), force {wz(1,¢)) and ve-
locity (w¢(1,t)) variables. But this class is too general to be useful for
control purposes. At this point, it is not clear to the authors what would
be “the most natual” choice for F based upon the physical consideration,
either. Two choices, much narrower but mathematically quite reasonable,
would be

(1) a polynomial feedback of velocity to the force, in the form
we(1,t) = Pplwe(1,1)), (1.3.1)
where P, (') is a polynomial of degree n given by
Po(z) = apz" + Gy 21+ o+ a0z + a2,

or
(2) a polynomial feedback of force to the velocity, in the form

wi(1,1) = Palw.(1,1)). (1.3.2)
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~ Note that we have not permitted the presence-of the displacement variable
w(1,t) in either (1.3.1) or (1.3.2) since the corresponding mathematical
treatment would be substantially more involved and, so far, few results are
available even for very simple P.s.

From purely the mathematical point of view, equations (1.3.1) and (1.3.2)
can be handled in the same fashion. For definiteness, let us just study type
(1.3.1) throughout the rest of the paper. As before, using (1.2.5) in (1.3.1)
and write out in detail:

u+v=Zak(u—U)k, (v =u(l,t),v = v(1,t))
k=1

we obtain
u=F,(v) = v+ galv), {1.3.3)

where g, (v} is defined implicitly through the nonlinear equation
Z argt(v) + (a3 — Dga(v) ~ 20 =0, v € IR. {1.3.4)
k=2

For each given v € IR, (1.3.4) may have as many as n real solutions g,(v)
and, thus, in general, g.(v) is not a well-defined function of v. (In reality,
multivalued g,(v) is physically admissible. What one has is a hysteresis
situation. Certain special cases have been treated in [4], for example. For
general multivalued functions g, (v}, however, the hysteresis behavior will
be quite complicated. No systematic study has been done so far.) To avoid
this technical difficulty, it is sufficient to assume that

Pla)-1=3 kape* 4 (a1 —1)#0, VzeR (1.3.5)

k=2

Under (1.3.5), we have either P/(zx) —1 > 0 or Pi(z) —1 < 0 for all
z € IR, the Implicit Function Theorem then applies and (with a few extra
arguments) we have the single-valuedness of the function g, (v).

At this point of time, there is no theory available about the dynamic
behavior of the composite reflection map G, o F,, where G, and F, are
defined, respectively, in (1.2.7) and (1.3.3). We envision that the develop-
ment of such a theory will be a major task for us in the next few years.
Nevertheless, in what follows we do wish to present two concrete examples
to illustrate the novel dynamic features and, perhaps, the advantages of us-
ing polynomial feedback boundary control in generating chaotic vibration
of the wave equation.
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Example 1.2 _
Assume (1.2.1)-{1.2.4), except that the right end BC (1.2.3) is replaced by

we (1,1) = —wd(1,8) + 4w} (1,8) — 6wd(1,) + 05w (1,t), t>0. (1.3.6)
It is easy to check that here
Pi(z) —1 = —5z* + 162 — 182> — 0.5
= —z* — 4z (z — 2)? —22% — 0.5 <0, VYzelR,

and, therefore, we have a well-defined function F,{-); its graph is displayed
in Fig. 3. A distinctive feature observed from Fig. 3 is that F, is not uni-
modal, nor is it an odd function (in contrast to those counterparts studied
in [2]-(6]).

We now study the asymptotic dynamic behavior of the composite reflec-
tion map G, o F, by varying 7 € IR, # 1. The orbit diagram is plotted
in Fig. 4.

From this orhit diagram, we observe the following features:

(a) For larger values of n (i.e., n away from 1), the orbits of Gy 0 Fy
consist essentially of two branches, with each branch functioning at
its own wili, for positive v and negative v, separately. For example,
the upper branch has already completed the period-doubling cascade
{when n decreases leftward toward 1) and is well into chaos, while the
lower branch is still undergoing its first period-doubling bifurcation.

(ii) For 77 in the approximate range [1.751, 1.877}, the chaos in the upper
branch is suddenly sucked out of existence by attracting periodic or-
bits of the lower branch, causing “disconnectedness” or “gap” between
the two branches.

(iii) The two branches re-attach for € {1.488,1.751).

{iv) Another chaotic regime exists for < 0.633.

To show some of the chaotic effects of the above spatiotemporally, let us
choose 1 = 1.9417, with the following ICs:

vo(x) == 10(z — 3) - dolz), z€[0,1], (137)
up{z) =0, z €{0,1}, -
where @) is a C?-continuous piecewise cubic spline defined by
((z—z1)3/h3, z) <z < 19,
2 3
14 3(x;:52) + 3z %Ig) 3= —3:1:2} zo <z <1,
1 h® 4 b s
do(z) = 24 11— 3(z —f;:u) + 3z ;22:4) + 3z ;;3%) , T3 <o < Ty,
(z5 — z)* /12, z4 <z < 75,
0, elsewhere,

.

h=1/6,z; = j/86, §=1,2,3,4,5.
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FIGURE 4
The orbit diagram of the map G, o F,, with n varying in (0, 3).
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The choice in (1.3.7) implies the corresponding choice of the ICs for w,
the original state variable in (1.2.1}, to be ‘

wole) = w(z0) = [ walE,0)de +C

T
= f vo(€)dE + C,C = arbitrary constant,
0
wy(z) = wy(z, 0) = uo(z) — vo(z) = —vo(z).
According to [3, Theorem 6.1], we have the regularities
(v,0) € [C*([0, 1] x [0, T])?,
(w,w,) € C3([0,1] x [0,T]) x C3([0,1] % [0,T]), for any T > 0.
The initial spatiotemporal profiles of (u,v) and {w.,w,) are plotted, re-
spectively, in Figs. 5 and 6, for (z,t} € [0,1} x [0,2].

In this example, each eycle of vibration, defined to be the time duration
required for a wave to travel from £ = 0 to z = 1, reflect at z = 1 and
return to = = 0, is two time units. So let us look at the snapshots of (u,v)
during the 50th time cycle, ¢ = 101.5 € [50-2,51 -2} = (100, 102], displayed
in Figs. 7(a) and (b). We observe that « and v manifest both chaotic and
periodic behavior. This can be easily interpreted with the visual aid of
Fig. 8.

It is known that (w.,w:) and (u,v) are topologically conjugate in the
sense of [6, §IV]. The profile of w is not displayed here. It has a fractal
look but does not display chaotic behavior; ¢f. [6, Fig. 6.11], for example.

In order to make w itself chaotic, the nonlinear BC must contain w; see [3,
Theorem 6.2}. )

Example 1.3
Let us return to {1.2.1)-(1.2.4) again, but with {1.2.3) replaced by

1 1 12
wy = _rlus o wy — wa’ + 8w?) — (1 - -;;-) wy;  {p=12.6618)

pst
(1.3.8)
at z = 1, for all t > 0. Then we have
Pi(z)—1= —i-(z‘* — 4% — 2% 4 162 —12) -2

- —i{(m+1)($+2)($+3)($—2)]—2

__mlfr

=== Ul (z+D(E+2Hz+3)(z-2)] -2

< ml_ 2<0, VzeRR, (1.3.9)

7



16

oy

.Lr.fr-’:,"I"'
I ff i
i t,f:’i’/” W
r'frﬁ'?'ﬁ' it
f’i’l’!’f’f’f’u’f’i’t’ﬁ’f’r’
i HHHHH
)
)
W 07
-E T
o
) 1
(a)
............ Ly
iz axis
§ d
(b) > 3
2] 1
- E 2
i
;i .
E-axis
5
B
UR
FIG

d
n
1] a

0,

€

€T

for

b) v,

d

arn

u

a)

£ (

Oﬁles °
1 pr

I'a.

pO

] tem1.2'

tio les

pa

.nitialESxamp
1 in

he 2} i

T [0,

tEe



Feedback of Polynomial Type at the Right Endpoint 17

("]
ceadviertererf

,_
sdeseidiriate

= 3 3 \-““
o 3 S ‘t{‘\\\}\
& 03 R
Lo L
@ e
W
23

F i / 0
axis

x—-

E
® ']
.% _:

lﬁ

s

poeloiaplopagdeeeaty

ab
U
A
%

-2

I}
—

r
(=]

FIGURE 6
The initial spatiotemporal profiles of: (a) w and (b} w, for 2 € [0, 1]
and t € [0,2] in Example 1.2.
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The snapshots of: (a) » and (b) v, for z € [0,1] and

t = 101.5 € (100, 102] in Example 1.2. Note that the “flat parts”
indicated by A correspond to the periodic portion of the solution,
while the “highly oscillatory parts” indicated by B correspond to the
chaotic portion of the solution. Thus u and v have mixed behavior of
being partly periodic and partly chaotic.



Feedback of Polynomial Type at the Right Endpoint 19

i T T

n—axis

-1 —— -
~1 4] 1
y—axis

FIGURE 8

This graphical analysis shows coexistence of chaos (for v > 0) and
attracting period-2 orbits (for v < 0) of the map GqoFap, with

n = 1.9417, for Example 1.2. Note that for v > 0, the iterates of

G, o F. s are chaotic as shown by the denseness of orbits in the
middle upper right of the fizure, while for v < 0 the iterates converge
to a period-2 orbit in the middle lower left of of the figure.

where

m= mlélIfl;{ [(z+ 1){z +2)(z + 3)(z - 2)] = —24.0572

and by the choice of i we have l%'— < 2 and, therefore (1.3.5) is satisfied.
The reflection map F, at the right endpoint is well-defined, which is com-
puted and then shown in Fig. 9. Comparing it with the counterpart I, for
Exampie 1.2 in Fig. 3, we see that Fig. 9 embodies more features — it has
two local maxima and two local minima. (These four local extremal points
are somehow ”designed” to be related to the four roots of the polynomial
(z + 1)z +2)(z + 3)(z ~2) in (1.3.9).)

The orbit diagram of G, o F, is shown in Fig. 10 for the varying pa-
rameter n < 1. Here again we see chaos. For n appearing in some range,
it is straightforward to rigorously establish that the origin is a repelling
fixed point kaving homoclinic orbits, and hence chaos ensues. See Propo-
sition 1 below. But how about other causes/routes to chaos? The initial -
period doubling route to chaos seems to have disappeared. Can we still
characterize the onset of chaos without period-doubling?

The “irregular” pattern of the orbit diagram in Fig. 10 leaves many
questions waiting to be answered. m]
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~ The proof of the following proposition, although stated in a form appli-
cable only to Example 3 above, contains ideas which can be used to treat
general problems.

PROFPOSITION 1.5

Let F, be the map (1.3.3) defined through the boundary feedbuck relation
(1.8.8) in Example 3. Then for n lying in a certoin range of the interval
(0,1), the origin is an unstable fired point having homoclinic orbits for the
map Gy o Fy.

PROOF Since homoclinic orbits are geometric concept and their existence
can be confirmed “visually”, an “intuitive proof” suffices provided that all
the geometric conditions are met. .

First, we observe from Fig. 9 that the origin (as a fixed point of Goo Fy =
F},) does not have homoclinic orbits. However, as 7 increases from 0, i—ig “m
begins to decrease past I; (cf. the caption of Fig. 9 for the values of m and
I¢), and at the same time the origin becomes a repelling fixed point.

A homoclinic orbit is marked by dotted lines in Fig. 11, where we have
chosen 7 = 0.45. [

10 \ T
o //
J
-10 r T —
-10 0 10

FIGURE 9

The graph of the reflection map F,; at z =1 in Example 1.3. In
addition to the origin, there are two intercepts as indicated:

I, = 2.8846 and I; =~ —3.7260. A local minirnum value m =~ —1.4321 is
also marked.
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FIGURE 10

The orbit diagram of G, o F, with the varying parameter 0 <n <1 for
Example 1.3.

I

FIGURE 11
The dotted lines indicate a homoclinic orbit for the map G, o F, in
Example 3 and Proposition 1, where 5 = 0.45 is chosen.
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1.4 Concluding Remarks

Only the one-dimensional wave equation is treatable so far by the types of
ronlinear feedback control (or anti-control) in this chapter. For “similar”
equations arising in structural vibration such as the Euler-Bernoulii beam
equation, although some reflection relations on the boundary may be de-
fined, the work here cannot be extended to that case when the boundary
condition is nonlinear because the wave propagation on an Euler-Bernoulli
beam is dispersive.

In higher dimensional settings, the study of partial differential equations
with nonlinear boundary conditions is a rather difficult subject in itself, let
alone that of chaotic effects caused by nonlinear boundary feedback. At
present, the best hope seems to be offered by problems on domains with
special geometry such as the rectangular, spherical and annular cases.

In any case, the advent of modern dynamical systems and chaos has
provided the control theorist with many useful ideas and powerful tools to
explore as well as to exploit nonlinearities in distributed parameter control
systems, with bright, aplenty future opportunities in this field.
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