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1 Lecture 1 Simple Chemostat Equation

Outlines: Derivation of simple chemostat equations; Competitive exclusion
principle in simple chemostat equations; McGhee’s proof for general monotone
functional responses; Hsu’s Lyapunov function; Wolkowicz and Lu’s Lyapunov
function for type III; Fluctuating lemma and its applications to simple chemo-
stat equation with delays.

Derivation of simple chemostat equations:
From Monod’s experiments (1942), we have the following basic assumptions:
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By Fig. 1, m is the maximal growth rate; a is the half-saturation constant.
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Let
S(t) = concentration of nutrient at time ¢. (mass/vol)
x;(t) = concentration of i-th micro-organBM at time ¢,4 = 1,2, ...,n (mass/vol)
SO = Input concentration of nutrient (mass/vol)
f = flow rate (vol/time)
V' = Volume of Chemostat
D = dilution rate = é (1/time)

nutrient consumed

v; = yield constant = (by Fig. 2)

population produced
m; = max growth rate for i-th species

a; = half-saturation for i-th species
Based on the Principle of modeling:

Rate of Change=Input-Output



we have:

S
VE = Rate of change of nutrient in the chemostat

"1 mS
— .50 _ r.9(1) = - i
P80 f s -3 e
\% p7ai rate of change of i-th species
p +szv f’zz(t)

we obtain simple chemostat equation

ds no1
— = (8O —8)D — > —fi(S)x,

dmi
S0)>0 z;,(0)>0, i=1,2,....n
Theorem 1.1. """ Let m; > D, m+):\ =D or \j = -mt— = break-cven
a; i (T)fl

concentration of i-th species. If 0 < A\j < Ao < ... < Ap , M1 < SO then
the competitive exclusion principle holds, i.e. tlim S(t) = A1, lim z1(t) = 2] =
—00

t—o0
SO — X\, lim z;(t) =0,i=2,...,n.
t—o0

Biological interpretation: The species with smallest break-even concentra-
tion wins the competition. Let r; = m; — D, =intrinstic grow rate, then \; can
be rewritten as \; = “;—D If v = ry = ... = r,, then the one with smallest

half-constant wins the coinpetition.
McGhee’s generalizations[AM] s,
Cosider s "1

dt = (fi(S) - D):Civ
S(O) >0 xi(O) >0, +1=1,2,...,n

fi(S) satisfies

(i) fi(0) =0
(i) fi(S) >0
Example:

(i) fi(S) = k:S Type 1
(ii) fi(S) = 2% Typell

(iii) f;(S) = M- Type III




Theorem 1.2. Let \; satisfies fi(Ai) = D. if 0 < A\ < Ao < ... < A, A1 <
SO then competitive exclusion principle holds.

Proof. Step 1: Conservation principle: For simplicity, we assume v; = 1 4 =
1,...,n. Then

S +a+ ..+, =89D - (S+x,4..42,)D
S(t) 4+ z1(t) + ... 4+ 20 (t) = S© + O(e™PY)
Consider limiting equation
d.’[i -

@ dt :(fi(s(o)*zwi(t))*D)xi, i=1,2,..,n

=1

From [SW](Appendix F, A Convergence Theorem), system (1) and system (2)
have the same solution behavior.
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Figure 3:

By Fig. 3
A={(z1,wn) Y m =50 -\ )

C={(x1,n) s D _a; >80 =N}

B ={(z1,.2n) 1 Y2 < SO =N}

we can check that if the trajectory enter the region 9B, then it stay there.(See
Fig. 3)
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Case 1. if the trajectory stays in C, then it converges to E; by using Lya-
punov functions. V(z1,...,,) = >27_; ;.

Case 2. if the trajectory stays in B the trajectory converges to F; by using
Lyapunov functions. V(z1,...,z,) = —x1.

O
. ]
Lyapunov functions

Example 1: Simple harmonic motion

ma” +kr=0 2 =v.

Let
mv?  kv? . .
5 -5 = kinetic energy+potential.

Then £V (z,v) = 0. i.e. energy conserved.

Viz,v) =

Example 2:
2"+ g(x) = 0,
zg(xz) >0, x#0.

G(z) = [y g(s)ds — o0, as [¥] — +oo. (See Fig. 5) V(x,v) = % +
G(z), 4V(z,v)=0. So energy conserves.
By Fig. 4, every solution is periodic.
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Example 3: Lotka-Volterra Predator-Prey system, let z(t) = prey density
at time ¢. y(t) = predator density at time t.

{ 7 = axr — bry = bx(y* — ), y* =

Y = cry —dy = cy(x — %), T =

o lasle

where d is the predator’s death rate, ¢ is the conversion rate.

{ C% = bm(y* - y)v

Suppose y = y(z),

dy  cy(z —a*
de ba(y* —y)’
then . .
e dx—&—éy_y dy = 0.
x c oy

Introduce ”Energy” function

x
= dé+- d¢ = (z—x"—z¥In—)+-(y—y" —y*in—=).
V(z,y) /1 g 4 S ¢ = (w—a"—a"In—)+=(y—y"~y ny*)
Then we have £V (z(t),y(t)) = 0. See Fig. 6.
Example 4: Consider L-V model

n
’ .
T; = i (b; + E Clz'jl‘j), 1=1,2,...,n.
J=1
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B.S.Goh introduces Lyapunov function

.’El,..., zn: h f_xl d&

where ¢; > 0 to be determined. Let E. = (mf, ., x}) = be the unique positive
equilibrium, then

. d 1

V(@) = SV (@0, malt) = 50 - ") (CA+ ATC) @ — ),
where A = (a;;), C = diag(cy,...,c,). If CA+ ATC is negative definite, then
E* is globally asymptotically stable(GAS).

Lasalle’s Invariance principle[H]
Consider
' = f(x), r € GCR,
{ x(0) = xo.
Let x(t,z) be a bounded solution for ¢ > 0 and V(z) = V(x1,...,2,) be a
Lyapunov function on G. i.e.

: d
V(z) = $V(l‘1( Z 3:81 )<0onG.

Let S = {z € G:V(x)

= 0} and M be the maximal invariant set in S. Then
tli>m dist(z(t,x0), M) = 0.
(o)



Simple Chemostat with Holling type II functional response and
different removable rates’

S = (5© —§)D— 3

=1 a;+ 98
WY 2= ( miSS —d;)wi,

2 ai+
S0)>0 z;(0)>0, i=1,2,...,n
H) M <X <A< o< A, M <8O\ = 7% > 0. We want to the
d

i
solution (S(t),z1(t)...x,(t)) satisfies (2) tlim S(t) = A, tlim w(t) = o =
R . ,

e, Jim zi(t) =0i=2,...,n.

Construct Lyapunov function:

S 1 o n
(3) V(s,21...ty) = /)\ ¢ _f)\l dé + ¢ / 3 5331 d¢ + Z CiT;
1 z i=2

1

Vs, x1...xp) = iV(s(t),xl(t), ey Ty (1))

dt
S — )\1 ’ T, — [L”lk ’ ,
= S'(t) + a1 o xy(t) + Z cixy(t)

S -\ 0) mi1S m;S
= —S)D — - i
5 (S S) o le Eﬁ x;)

.1‘1—.17; _ S—)\l ° ) L S—)\l ‘
+c o (my dl)a1+S+§C’(mz dz)aiJrSa:Z

Choose ¢; = -, then we have

—(S— )\1)2a1 i ZT;
) S)\l—i—;ml()\ Al)aﬁs <0

Homework: Apply LaSalle’s Invariance Principle to prove (2).

Remark: The Lyapunov function (3) only works for Holling-type I func-
tional responses.

Simple Chemostat with general monotone functional responses
and different removable rates.

S = (80 —8)D - an fi(S)zi,

(4) ;L =1
r; = (fi(S) — di)zi,
S(0)>0 2:(0)>0, i=1,2..n

1:(S) satisfies



(i) fi(0) =0
(i) fi(S) >0

(H) A < X2 < X3 < oo € A, A < SO fi(\) = di, \i > 0. To show
. . . ©_x, . .
(%) Jim S() = A, lim 2, (f) = a7 = W7 Jm zi(t) = 04 = 2,.,n

Wolkowicz & Lu " construct a Lyapunov function of the following form

S 1 % n
V(S.armn) = [ Qe+ [ S aer Y a
1 T1 =2

where (&) to be determined and ¢; to be chosen.

V= Q) + %mw — e+ 3l S) — i)

=Q(S)(8° = 8)D - Z fi(S)zi) + (1 — 21)(f1(S) — du) + Zci(fi(s) —di)zi

=2

= [Q(S)(S© — S)D — z(f1(S)) — d1)] + 21 [(f1(S) — d1) — Q(S) f1(S)]
+) wilei(fi(S) — di) — fFi(S)Q(S)]

Let Q(S)((S©® — 8)D — z%(f1(S)) — d1)=0, we have

SCT 1 S 7d1
ats) - ELEES) )

we find
(8° = M) fi(S)

050 — 3) )<0 for S>0.

(f1(8) —d1)(1 —

In order to have

let
hi(S) = fi(S) — d;
It is easy to show that h;(S) < 0 for A\ < .S < );. Choose ¢;, such that ¢; <
LR SANET=0) = (85), A < S < SO, ¢ > wilS) for 0< 5 < Ay

i —

By Fig. 7, mazo<s<x,wi(S) < ¢; < miny, cg<gow;(S). It can be shown

for such ¢; can be chosen under the assumption Type II: C:”+S,5 and Type II-
I: m;S> ’
* (@i +8)(bi+S)”

(H) M < X2 < A3 <o <0, M < SO fi(N) =di, d; £ D.
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Open problem: prove or disprove competitive exclusion principle holds for
Simple chemostat equation (4) with general monotone functional responses and
different removable rates.

Consider the following delay equation[wx]

S'(t) = (8 = S)D = 3= fi(S)a,
i=1

{I?:(t) = —D!Ei + fz(S(t — TZ)).’IJZ(t — TZ‘),

Lemma 1.3. (fluctuating lemma Hirsch)
f:la,00) = Ris C1, if 1tlim f(t) exists and f'(t) is uniformly continu-
—00
ous(or | f"(t)] < M), then %ir% f'(t)=0.
—

Lemma 1.4. iflitm inf f(t) < limsup f(t) then exists t, T oo and sy, T 0o, such
—0 t—o00

that
f(tm) = Jim supf(t) m— oo f'(tm) =0

flsm) = Jim inff(t) m— o0 f(sp) =0,

Main Theorem'" " for the case of same dilution rate D: if \; < A <

SO =2 . n,and 3 (S© — X)) < SO — X, then (S(t),z1(t),...,zn(t)) =
j=2

(A1, S© —A1,0,...,0) = E;

10
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For the case of different d; # D, if dy < 2D, A, < \; < SO, S (82D _
J:2 min
Aj) < 59D\ then (S(8), 21(8), s mn(t)) = (A, SO = A1,0,...,0) = By,
where din = min(dy, ..., d,) and dyae = maz(dy, ..., d,).

Open problem: Improve the work of Wolkowicz & Xia.

11



2 Lecture 2 Predator-Prey model

[HHW?2]

Rosenzweig-McArthur Model

Let x(t) be prey density at time t.

y(t) be predator density at time t.
In the absence of predation, prey grows according to logistic equation.
{ o'(t) =re(l— %) — 255y
y'(t) =ity —dy
where r is the intrinsic growth rate of prey,

K is the carrying capacity of prey,
d is the death rate of predator,

¢ is the conversion constant.

Holling Disk Model(1965)

Predator eat prey in an ”attack cycle”. The attack cycle includes
(i) search time Ts.

(ii) handling time h per prey item.

Let N, be the number of prey caught during the attack cycle,
T be attack cycle time = T 4+ hIV,,.

Assumption: N, is proportional to prey density S and search time T5.

So
N,=c¢-S-Ts.

¢ be encounter rate per unit prey density.

Write N, = ¢S(T — hN,) = N, = 1%L

Let F be the feed rate per individual predator, then

F:&: CS = %S = ‘/;nS
T 1+chS L +8 K,+§

Consider Predator-Prey system of Gauss Type:

{ o = xg(x) — yp(x)
y' = cp(x)y — dy = (cp(z) — d)y

g(x) satisfies g x)( K) >0,z # K,and

(
(0) =0,p'(z) > 0.

p(zx) satisfies p

12
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Local stability analysis of equilibrium (z*, y*)

ep(x*) = d,y* = z g(:f ),O<x* < K.
p(z*)

(z,y)=(z*,y*)

_ < (29(2)) la=a> =y (@*)  —p(z¥) )
The eigenvalue A of J(x*,y*) satisfies

N = M(zg(2)) o= — y"0'(z)) + b’ (a")y"p(z") = 0.

Rel < 0 & (29(x))|p=er — y*p' (2*) < 0. (%)

The prey isocline is y =
Verify.(homework!)

ag(z)’

p(x)

(z*,y*) is LAS(Locally asymptotically stable) if 29((5))/|$:I* < 0. See Fig. 9.

lp=ax < 0 < (F)holds.

!
(xz*,y*) is unstable if xpg((;)) |z=z+ > 0. See Fig. 10.

13
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For RM model,

For KQ_“ < A < K, see Fig. 11, E* = (a*,y*) is locally asymptotically
stable (LAS).

For 0 < A\ < Kz_“, see Fig. 12, E* = (a*,y*) is a unstable spiral.
Poincare Bendixson Theorem

Let ¢(t,z9) be a bounded solution of two-dimensional autonomous system

(**) for t > 0.
a' = f() (x%)
2(0) = xg

{ r) = fi(z1,22)

zy = fa(w1, 22)
then the w-limit set w(xg) := {p : It,, 7 +00,¢(tn, o) = p,as n — oo} satisfies
(i) w(zo) contains equilibrium points.
or

(ii) w(zp) does not contain equilibrium points.

14
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E" is an mnstable spiral
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Figure 13:

In case (ii), either o(t, z¢) is a periodic solution or w(zp) is a ”limit cycle” (a
periodic orbit with limiting property). See Fig. 13.

We want to show global stability of (z*,y*), i.e.(t,x9) — (z*,y*) as t — oo
for any initial point o when (x*,y*) is LAS.

If we can eliminate the existence of periodic solution, then we can prove the
global stability of E, = (z*,y*) which is LAS.

Negative Bendixson Criteria:

If gii + gii has same sign and # 0 in D C R2, then there is no periodic

solution for
{ 15/1 = f1(9017962)
xy = fawy,22)
in D.

Dulac’s Criteria:

If 3h(xy,x0) € CL, 5.t %1?) + %?:) has same sign and # 0, then there is
no periodic solution.

Proof. We note Green’s Theorem

B 9Q P
ﬁP@wm+Qmw®=[L@5~@Mmy

16



Figure 14:
See Fig. 14.
Suppose there is a periodic orbit C.
Let
P(z,y) = —h(w1,22) f2(21, 22).
Q(x,y) = +h(z1,22) f1 (21, 72).
Then

fc—h(1‘1,332)f2($1,332)d$1+h($1,Iz)fl(ml,xg)dl‘g = //D(ag};{l)+aé};i2))dxld$2 §é 0

On the other hand,

T
% 7h([L’1, $2)f2(27171'2)d$1 +h($1,.’£2)f1(1’1,1’2)d$2 = / 7hf21'/1 +hf1x/2 = 0,
C 0

a contradiction! O

Rosenzwig-McArthur Model

() =re(l - %) - 2%y = f(2,y)

y'(t) = (e — )y = g(z,y)

= (
z(0) > 0,y(0) >0
(

By scaling, we assume ¢ = 1. (Homework!)

Two cases:

17
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(I) £5% < A< K, (z*,y*) is LAS. See Fig. 15.

IHo<A< K;“, there exists a unique limit cycle. See Fig. 16.
To prove the case I: E = (x*,y*) is GAS (globally asymptotic stable) by
Dulac’s Criteria.
Let h(z,y) = (a_“f_m)“y‘;, a,0 € R to be chosen.
a(fh)  9(gh)

o +Ty = —may* ¥ (a+2)" D (a+ 1) +ry’z*(a+x) TV P, ().

where 8 = 81 P, s(2) = — 222 4 (B(m —d) + (1 — LF2 5 4 a((a +1) — Bd)).
Choose «, 8,a > —1, s.t. P, g(z) <0 for z > 0.
Compute discriminant:

Da(B) = p*(m —d)* +--- (%)

The discriminant of (*) :
D(a) =

Choose a* > 0, s.t.D(a*) > 0 and D (/) = 0 has two roots (1, fa.

Choose %, 81 < B* < fa, s.t. D%(B*) < 0. (Homework! You have to use
the condition K;“ <A< K.

Another method: Lyapunov Method.

18
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Gauss-Type Predator-Prey System

{f=wm—w®
y' = (p(z) —d)y

Construct Lyapunov function.

o= [ B0t [

=" (zg(z) —y"p(z) — (y — y")p(x)) + (y — ") (p(x) — d)

From Fig. 17, we can see: if 2* > &, then V(az, y) < 0 ,this is a partial result.

Ardito and Ricciardo construct Lyapunov function in JMB (1988)[}15“1] suc-
cessfully

V(z,y) =1y’ /r p(ig ddé - /J 7’ (n —y*)dn.

19
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Lyapunov function is of mixed type, not separable type.
0 to be chosen, 0 < 6 < 1.
Remark: Open problem, consider the following reaction-diffusion system:

up = diAu+ ug(u) — vp(u), 2 C R™

PDE < v =doAv+ (p(u) — d)v, Q@ CR”
Tulon =0, %290 =0

To show (u*,v*) is GAS when (“(dy _ <.

p(u)

Orbital Stability of Periodic Solution:

Let ' = f(z).f : D CR™ — R™ and z*(t) be a periodic solution with period
T.
Consider stability of 2*(¢): Orbital stability of periodic orbit
y=A{a"(t):0<t < T},

Definition 2.1. v is orbitally asymptotically stable if for any € > 0 there exists
0 >0 s.t. dist(zo,y) < § = dist(o(t,z0),7) < &,t > to, for some ty > 0. See
Fig 18.

Find conditions for orbital stability of ~.
Linearization of periodic solution x*(¢),0 <t < T. Let

y=x—z"(t).

20



Figure 18:

Then by Taylor expansion
y'=a'— (") (t) = f(x) - f(&" () = Do f(2" (1)) (x — 2" (1)) + HO.T.
We obtain linearized periodic system

(1) ¥ =AQ®)y, A(t) = Daf(2"(t), At) = At +T).
Consider the fundamental matrix ®(¢):

B'(t) = A(t)D(t)
{ o(0) =1

Definition 2.2. The eigenvalues of ®(T) p1,p2,-- - , pn are called Flogue’s mul-
tipliers of periodic system (1).

We claim: p; = 1.

Proof. p
S (1) = [ (1),
d, d * _ * *\/
S0 (1) = Daf (1)) ().

Since ®(t) is the fundamental matrix with ®(0) = I, We have (2*)'(t) =

o(t)(2")'(0).



Hence p; = 1 is an eigenvalues of (7).
O

Theorem 2.3. " If |pil < 1,¥Y i=2,---,n, then *(t) is orbitally asymptoti-
cally stable.

From Abel’s formula:

T
det®(T) = det®(0) -exp(/ traceA(s)ds).
0

T ofy 0 an
pe = capl | div(Defla” (1)) = can / G2l 2
For the case n = 2,
o r 8f1 * an *
po=ean( | (G 0) + G @)
0 0
|p2\<1<:>/ &{1 * ))+8—£z( *(t))dt < 0.

Consider Gauss type predator-prey system:

{ x' = zg(x) — yp(x),
y' = (p(z) — d)y.

Two Questions:
(i) global stability of E(z*,y*), which is LAS.
(ii)Uniqueness of limit cycle, when E(x*,y*) is unstable.
(i) strategy: To eliminate existence of periodic solution.

Proof. if not, there exist a periodic solution. To show”every” periodic solution
is orbitally asymptotically stable. Then, the periodic orbit is unique. It is
impossible to have a stable limit cycle ”enclosed” a stable equilibrium. As Fig.
19 shows below and we obtain: O

Theorem 2.4. (Weak Negative Bendixzson Criteria)

If for every periodic orbit (z*(t))i=F,
rof 99 .
[ o)+ e @i <o

then (x*,y*) is GAS.

22



Figure 19:
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Figure 20:

23



Assume (z*,y*) is LAS, then (242)Y|._.. < O(see Fig. 20),and

p(x)

i(xg(w)) p(x)(zg(x))" — (zg(x))p'(x)

1) ()2 |
let y ,
) = g agla)) - LA,

then (z*,y*) is LAS iff f(z*) < 0.

Theorem 2.5. Iff:g g((;a eCl & m( E:g £((§))) <0, VO < x < K, then
(z*,y*) is GAS.

Proof. Suppose (z(t), y(t)) is a periodic solution of period T.

A= / (z9(a)) — o/ () + (p(a) — d)dt
Since . y .
/ 5:A<mmf
then
A= / (zg(x)) — yp'(x))dt.
Since
B LG D Y (C N N
O_/o p(fﬂ)x / gl )p(x) /0 P,
then
= x)dt = / f(z dt+/ flx) — f(z™))dt
we obtain fo )dt < 0, we need to show fo — f(z*))dt < 0.
r T fa(t) = fz*) «
A(ﬂ@—ﬂ )it = / o Mﬂ»@mmwmw»ﬁ
flz) — f(z¥) f }
l’)
f(ﬂf) - f(x*) e
//Q g@(m)dl’dy < 0 (Green S Theorem)

O

And we can check for the case p(x) = gj_f;

Homework:To show (z*,y*) is GAS if £-¢ < X\ = 2* < K, by Theorem2.5.
HL]

(ii) Uniqueness of llmlt cycle

{ §'=rS(1- %) - (2) 3% = 2 25 (f(S) —2) = g(S,2),

o' = (25— d)z = h(S,z) = (m - d) 520

a+S
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Figure 21:

Proof. To show the Floque multiple po, satisfies po < 1, we need to show

Dy Oh_ [0 SIS mof)
oS ox S oS J y a+ S (a+95)2

—a— A,

f(8) = f(K—a=25),
f(8)=-f(K-a=S5)

0_/T aS’ / ma(f(S) —z)

Jo a+S aJrS
g oh_ [og _ [mSIS)
oS ox J oS Jry a+S

Since

then

Since S’(t)z%a%g(f(S) x), 80 ffsg == ZLG+S To show

dg  Oh _ [9dg [ mSf(S)

95 "o Pas by ars ~C

By Fig. 22, we obtain

Vs L et et S L
ry a-+ S AP PRQ QB BQ' Q'LP P'A
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Figure 22:

mSfS) [ fS) [ S
</PAA+ v eSS FO—m8) s, T8 -5

Sa J(8) —x2(S) Sa J(K—a—8)—z1(K—a->5)
_ SPf'(S)[ x9(s) —x1 (K —a—9) 1<0

Sa (F(5) = 22(9)(f(S) — 21 (K —a = 5))

where x2(S) > z1(K —a—8) for S4 < S < Sp,and f/(S) < 0for S4 < S <

S,.
Similarly
me (%o, 23(K —a—8) — x4(S) )

/QB /Q g 50 T OGS = 18 (s (K —a—8) = (5 <"
Since g

x’(t):x(m—d)a;;\
and 1 +S

a
m—d(S’—)\)xdx:dt

26



then based on Green’s Theorem, we have

m Sf'(S) m 1 Sf’(S)
orp Yy a+S ym dQprS /\

fozn* b / s
ymdQLP PQ QPxS/\

m 12+ MK —a—2)\)] die
_ymfd//ﬁ T (S )2 dsd
(S)

St
+ dx
/Q,/F/ (S = N)

Simiarly,we have

mSf'(S),  ~—m 1 1205 - A2+ MK —a—2)\)] i
/ﬁ@(y a5y [//5 v EENE dsd

Then

/ / me’
Q'L JPRQ Y G+S

1 " Si1(@) f1(S1(2))
/ (A — Sl(i))

Tpr

S ym—d
m_ 1 K —a—5(2)f(51()
y m— / (K —a—X=Si(z))
_m_1 /IQ f(S1(x)) G(S1(z))
y m— T A= S1(z)(K —a— A= 51(x))
m 1 e So( x)f’ 2(x))
; / 52(0)) — A —— " dx
and o g
G(S) = (5 = NO = ) 5og — o).
Let S = K —a — S’,we have
Si(z) < max{Sp,Sq'} < S_, zp <z <z
G(S1(x)) <0, zp <z <zga.

then

/ / (PSS
Q'LP PRQ Y a+S
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/ Dyv(g,h)dt <0
r

Uniqueness of limit cycle
Method of generalized Lienard equations.
Lienard equations:
2" + f(x)z" + g(x) = 0.

Example: Van der pol equation
fz) = k(2 =1),9(x) = z.

Example: Cartwright and Littlewood studied van der pol equation with
periodic perturbation

2 + k(z? — 1)z’ + x = bsinwt.

S.Smale discovered horse-shoe structure in chaotic dynamics from this equa-
tion. .
Write Lienard equation in Lienard form™;

{ G = v F@), Flo) =[] J(©)de.
it =9@),  Gl)= [ g(©)ds

Levinson.Smith theorem proves uniqueness of limit cycle. Assume there are
two limit cycle. To get a contradiction! (Using some symmetry!)(See[H])

Generalized Lienard Equation[zl:

do — _ — T
{Cj@t/_ @(y) F() (%)

Theorem 2.6. ' Assume

(i) 2g(x) > 0, @ #0, G(+00) = G(~00) = +00. G(x) = [ g(€)dE.

Z,(Ef)) # constant in neigh-

(i) I;/(Ef)) is non-decreasing on (—00,0), (0, 4+00),

borhood of x = 0.
(i) yo(y) > 0, y # 0, ¢(y) is non-decreasing. ¢(—00) = —oo, p(+00) =
+00. w(y)has right and left derivative atx = 0 which are non-zero in case

F'(0) = 0.

Then the system x has at most one limit cycle.
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In 1988, Kuang Yang and Freedman prove uniqueness of limit cycle for
Gauss-type Predator-Prey System by reducing it to generalized Lienard equation[KF] .

Consider Predator-Prey System:

{ é% = o(2)(F(z) = 7(y))
at = p@)y(z)

Example: Gauss-type predator-prey system
m(y) =y, ¢(z) = p(z).

F(z) = a;g(ff)) = prey isocline.

p(y) =y, ¥(z) =p(x) — p(z*).

Theorem 2.7. Assume
(i) ¢(0) = 7(0) = p(0) = 0.¢'(z) > 0,p'(y) > 0,7'(y) > 0, 7(+00) = +o0.
(i) Y(x*)=0,K > z*, F(K) =0, (x — K)F(z) <0,Vx # K.

(iii) W is non-decreasing for —oo < x < x*,x* < x < +00.

Then there is at most one limit cycle.

Proof. Let (x*,y*) be the equilibrium.
Consider change of variable (z,y) — (u,v).

x=&(u) +z*
y=n()+y"
&(u),m(v) to be determined.
Then
2 = () + o) (F(E() +2*) = 7(n(v) +y°))
W = wyPn() +y ) () + %)
Set

(See Fig. 23, 24.)

Write d
= =~ W) +y) —y) = [FFEW +27) +y7]
= —®(v) — F(u)
= p(z)
dv o
= () +2%) = g(u)



A

2=£u)
9 )_u
e
Figure 23:
A
2= piv)
0 ’v
"
Figure 24:
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Check: The conditions in generalized Lienard equations.
ug(u) = u(§(u) + z*) = u(p(§(v) + %) — p(z*)) > 0,u # 0.
G(u) = / g(s)ds — +o0 as |u| — +oo.
0

v®(v) = v(m(n(v) +y*) —y*) > 0,v #0.

Check: };/(Sf)) is non-decreasing on (—o00,0), (0, 400).

F'(u) = —F'(§(u) + )¢ (u) = —F'(E(u) + &) d(E(u) + 7).
F'(u)  —F'(&(u) +2")g(E(u) +7)

glu) (€ (u) +27)
—F'(w(x)
@)

is non-decreasing in wu, since in nondecreasing in x, —00 < x <

*

¥, ¥ <z <oo. .. (iii) holds.

Example: To prove uniqueness of limit cycle for RM model.
Here , -
F(x) = E(a +x)(1 - ?) be the prey isocline.

or) = =)
)= S —d = (m—d)

. —F'(x)¢(x)
Homework: To show e,

—F'(z)p(x) )
P(z) ’

Example: See [Huang]

is non-decreasing on (—oo, *), (z*, +00). Com-

pute (

[Hu]

p(z) = = o(x)

a-+z"

Then the system

o =rz(l—- %) - %y,
y = (5 — Dy
has a unique limit cycle.
Paradox of enrichment:
See Fig. 25.

Increase K to K7, the equilibrium become unstable. Then population of
prey and predator become extinct. See Fig. 26.
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y=(1-x)a+ x)=prey isocline

yzgxzpredalorisoc]jne

0
1-a | ’x
2
Figure 27:
. . [HHw]
Consider Holling-Tanner Model :
x me
"=rS(1—- =) -
z' =rS( 5) o
" =0y(1— = h > 0.
y =0yl —3) >

Assume predator grows according to logistic equation with intrinsic growth rates
and carrying capacity proportional to the population density of prey.
Homework:Convert the above equation into the following equation.

dx T
((ilit_x(lix)ia—i-xy’
Y Yy

= =y(§d — BL).

o y( ﬁx)

(See Fig. 27)Next,we reduced it to Gauss-type Predator-Prey system, let

(z,y) = (z,u)

u=yl(x), l(z)= (1 ;$>6

then, we obtain

dx u
u u a .
T A -t T Em)

From Fig. 28, we have the following cases:
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Supercritical Hopf Bifurcation

= h{x) =prey isocline

|
|
|
! |
Subeciitical : |
Hopf |- :
Bifurcation : |
| |
0 ! '
. >
x 2 o 1 X
Figure 28:

(i) 0 < z* < &, we can show(z*,u*) is GAS by Lyapunov function.
(i) ¢ < z* < aq, E* = (z*,u*) is LAS, but we don’t know how to prove
it is GAS.(open problem 1)

(iil) 1 < z* < ag, E* = (z*,u”*) is unstable, we only have partial results’

on uniqueness of limit cycle.(open problem 2)
(iv) ag < z* < 1 we prove E* is GAS by Dulac criteria.

We note that supercritical Hopf bifurcation occurs at z* = ay and subcrit-
ical Hopf bifurcation occurs at * = ay.
Ratio-dependence Predator-Prey model™™ (see Fig.29 ):

T czy
/: 1_7 _ ,
@' = aa( zK) m+z
/

= —d
v =ylf =
z =22,

y

where x is the prey density, y is the predator density. we obtain the following
system:

x cxy
I = 1—2)—
' = ax( ) K) e
, x
- —d).
v=y
we consider the predator isocline: f(x) = (my + z)d, then y = %x. (see

Fig.30)
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Scaling: t — at, v — %, ,y — ZZ, we obtain

¥ =x(l-z)— sa;y7 s:i,
xr+y :rfna d
x

/:6 —r + s (5:7 r= —.

y' = dy( x+y) " 7

Then we use change of variable (z,y) — (u,y), and u = %, we obtain:

u'(t) = g(u) — p(u)y,
y'(t) = ¢(uw)y,
u(0) =ug >0, y(0)=yo >0.
then (146 — s+ (14 6r — 6)u)
g(u) = —— ;
@(u) = UQ, w
Y(w) =8(.— — 7).

Next, we consider the prey isocline:

glu)  (Q4+0r—s+ 1+dr—0)u)

= h u) = = y
Ny w(ut 1)
let
A=1+6r—-9
B=1+0r—s
we obtain two equilibrium points: Ey = (0,0), E; = (6p,0). if AB < 0, we
assume that E* = (u*,y*),u* = ;=.. The stability analysis is the following:

Consider the most interesting case is A > 0,B < 0. In Fig. 31, we as-
sume the stable manifold I' of E; intersect the prey iscoline y = h(u). Then
I connects F and E*.

If T does not intersect prey isocline, then there two cases.

Case 1: 0, < u*

E* is LAS. T separates u-y plane into two regions 1 and Qo. If (ug,y0) €
Oy, then (u(t),y(t)) = Eo as t — oo. If (uo,y0) € Q2, then (u(t),y(t)) —
E* ast — c0. (See Fig. 32)

Case 2: 0y < u* < 0,

E* is unstable surrounded by a unique limit cycle T'. If (ug,y0) € Qi,
then (u(t),y(t)) — Ep as t — oo. If (ug,yo) € 2, then (ug,yo)) # E*,
then (u(t), y(t)) approach the limit cycle I'. (See Fig. 33)
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3 Lecture 3 Two Predators Compete for a Sin-
gle Renewable Prey

Consider the equation

S(t) 1 mS 1 mseS
(4 — 1— _ = _
S (t) ’I“S(t); K ) Y1 a1 + le Yo Ao + SxQ
m
T (t) = (a1 —1i-S —dy)x1,
m
) = (2 e
21(0) > 0,z2(0) > 0,5(0) >0

where S(t) is the density of prey at time t and x;(¢) is the density of i-th preda-
tor at time t. i=1,2. We may assume y; = y» = 1 by scaling.

Differential inequalities: Let f : R x R — R, f = f(t,z). Assume x(t)

satisfies

2'(t) < ft,z(t)), t>to

ZL’(to) < Zo-
let ©(t) be solution of

{ 2= f(t,z), t>tg

Z(to) = Xp.

Then z(t) < ¢(tg) for t > t.
Lemma 3.1. The solution (S(t),z1(t),z2(t)) is positive and bounded.

Proof. Homework: (S(t),z1(t),z2(t)) is positive for ¢ > 0.
Now,we prove the solution is bounded.

ds d.’El dl’z

S
%+E+E:r5(l—?)—d1x1—d2$2~
Since S'(t) < rS(¢)(1 — %) and S(t) < K +¢ fort > t. > 0. Let dpin =

min(dy,ds). Then

S'(t) + 21 (t) + 2h(t) < r(K +¢e) — dixy — doxo
< T(K -+ 5) — dmm(S + 1+ 1’2) + dminS
< [T(K + 6) + dmin(K =+ 8)] — dmm(S + 21 + IQ).

Then from differential inequality, we have

r(K +¢)+ dnin(K +¢)

dmin

S(t) +x1(t) + x2(t) <

b=t

So the solution is bounded. O
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To show extinction of predators, we make y—ll =1.

K :
Lemma 3.2. if a:nJr K d; <0, then t11>1r010 x;(t) = 0.
Proof.
W) mist)
m;(K + ¢)
< B2 TE g, =6.<0, t>t..
Tai+ (K+e) ) -
if ¢ > 0 is sufficient small. Then z;(t) < z(t.)e %(¢~%) - 0 as t — oo. O
m;K; .
Remark: —d; < 0 < either m; < d; or m; > d;, and K < \; =
o a; + I
miz > O.
(7)) -1

Theorem 3.3. if (i) by = 7+ <1 or A\ > K, (i) by = 72 <1 or X\ > K.
Then tli}m x1(t) = tli}m x2(t) =0, tli)m S(t) =K.

Theorem 3.4. if (i) 0 < A1 < K and Ao > K orby <1. If % < A1, then
tlLrgOS(t) =5"= A1, tlir&xl(t) =ai=L2(1-5)(a1+S*) > 0, tli)Hong(t) =0.

If 552 > Ay, then the trajectory of (S(t), x1(t),z2(t)) approaches S —z1 plane
to a unique limit cycle v1 except a distinguished orbit (i.e. stable manifold
Iy of (5%, 27,0)), which approaches (S*,x%,0).(See Fig. 34)

Theorem 3.5. We assume that 0 < Ay < Ao < K, by > by, then we have the
same conclusion,i.e. xo(t) — 0 ast — oo.

Proof. Choose £ > 0, such that

zy(t) i ()
i) (t) I (t)

S — A S =\

a2+S_(m1_d1)a1+S

mo—do S —Xy S—)\

my — dy ag—l-S_ a+ S
Pe- ()

(a1 + S)(az + 9)

Pg(S) = f*(S — /\2)((11 + S) — (S — /\1)(0,2 + S)

Choose £* > 0, such that, the discriminate D < 0, Pe«(S) < =6 <0,V 0< S <
K for some 6 > 0. Then

<5€2(t))§ . (g;l(t))[exp/ot(ml ) Pe-(S) Jdt

§

=&(ma — da)

= (m1 —dq)[&( ]

= (my —dy)

22(0) z2(0) (a1 + S)(az +5)
(=0t
< Milexplmi = dv) =m0 5 7))
s0 z2(t) = 0 as t — oo. O
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Figure 34:

Homework: Use the condition b; > by;. To show the choice of
&* > 0 is possible.

Remark: Under assumption 0 < A\; < Ao < K,b; < by = a1 < as.

bias — b
Theorem 3.6. if 0 < A\ < Ay < K, a1 < ag,b; <by, K < %, then
1— 02
tlggo:@(t) = 0.
.. . b1a2 —b2a1
The remaining caseis 0 < A1 < Ao < K, a1 < ag, by < by, K > b
1— 02

First step, we want to show the existence of positive periodic solution, aris-
ing from the limit cycle in S — x; plane. (See Fig. 35 and Fig. 36.)

Open problem: Apply Lyapunov function of Ardio-Ricciardo

0 5 g B Al o 6—1 *
V(S,x1,22) =x1[\ ¢ —|—/ n° " (n — x7)dn + cxa.
1 3

To obtain GAS of (S*, z}, z5).
Liearization of periodic solution (S*(¢),z%(¢),0),0 <t < T.

bi(t)
Bt) = D (8" (@), 25,0 = | AD (w;)
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mgS* (t)
as + S* (t)

Prove the following Lemma 3.7 as a homework.

bz (t) = ( —dy)

Lemma 3.7. Let A(t) be 2 x 2 periodic matriz of period T. Y (t) is the fun-
damental matriz of y = A(t)y,Y (0) = I. Let B(t) be 3 x 3 periodic matriz of
period T. Then the fundamental matriz ®(t) of 2’ = B(t)z is given by

z1(t)
wir= | Y0 (20) (3.1)
(0 0) =)

23(t) = exp(f(;s b3(s)ds).

If p1 = 1, pa < 1 are Floquet multipliers of A(t). i.e.(eigenvalue of Y (T)),
then the Floquet multipliers of 3 x 3 matriz B(t), is p1, p2,ps = z(T). (See Fig.
37.)

If p3 = 23(t) < 1, then -~y is orbitally stable. Hence fOT(;ZiSSZ((tt)) —dg)dt <0

implies v is orbitally stable.

Existence of positive periodic solution.

We shall obtain a positive periodic solution bifurcated from the limit cycle
in S — x1 plane.
State without proof:

Crandall-Rabinowitz bifurcation from simple eigenvalues.
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Let f: U CRxR" — R" for f € C?(U,R"). f(X\,0) =0 for all A € R.
Let
L(A) = D, f(\,0)
Lo = D, f(Xo,0) € R™™ Xy be the bifurcation point
and

L= Dw,\f()\o,()) e Rmx™

Theorem 3.8. (Crandall-Rabinowitz)

Assume

N(Lg) = span(up),
Lyug ¢ RangeLo(Principle of exchange stability)
d
(d—f = f(\, x),the stability ofx = 0 changes when X\ = \g)
Z = {UO}J_’

Then 36 > 0 and Ct-curve (A, ¢) : (=8,0) = R x Z, X = A(s),¢ = ¢(s),s €

(—=0,9).

s.1.
(i) M0) = Ao.
(ii) ¢(0) = 0.
(iii) F(A(s), s(uo + §(s)) = 0) for |s| < 6.
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Figure 37:

Furthermore, 3 neighborhood of (Ao, 0) s.t. the zeros of f either lies on this curve
or is of the form(\,0). (See Fig. 58.)

Proof. Let

_ meo T S*(t)
plaz) = ?/0 mdt

/.L(O) =msg > do
wlag) N\ in ag
T
ms
< — S*(t)dt
o) < 22 [ 5700
ulaz) = 0 as ag = 00
Jas, s.t.u(aly) = do

Use (Y, Z) coordinate
Y = 1 — T (to)

Z:IQ
P():(0,0)

Consider Poincare map P = P(Y, Z,az2) = (P1(Y, Z, a2), P2(Y, Z,a2)), Py is
a fixed point of Poincare map for any ay. See Fig. 39.
Apply Crandall-Rabinowitz theorem to P with A = as, Ao = a3.

P(0,0,a2) = 0,Vas.
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Consider the equation

S 1 m15’ 1 mQS
"t) = 1—=)— — _
S() TS( K) y1a1—|—Sx1 y2a2+5x2
x’—(mls —dy)x
L ai + .5 Lo
xh = maS —do)x
2 a2+S 2) L2,

Let + =L =1.
Y1

Qg

(G -1

We have shown that if by > by, b; = %i’ then xz5(t) — 0 as t — oo. Since
0 < A1 < A2, b1 < by, we can obtain that a; < as.

Assume 0 < A\ < Aoy < K, \; = > 0. \;=break-even concentration.

bras — baay

b1 — by
then tlim x9(t) = 0. Hence we consider the remaining case 0 < A; < Ay <
— 00

Consider the case if 0 < A\; < Ao < K, a1 < as, by < by, K <

b1a2 — b2a1

K, a1 < as, b1<b2, K >
b1 — by

Existence of positive solution

K—(Ll

Consider > A1, limit cycle T'y = (S5(t), 27 (t),0) exists and is unique
in S — x1 plane. (See Fig. 40)
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X

Consider bifurcation from I'y, construct Poincare map: 2 Ea.
Y =21(t) — x1(to)
Z = x5(t)
Take ay as bifurcation parameter
P(Y,Z a3) = (P1(Y,Z,a2), P2(Y, Z, az))

P(0,0,az2) = (0,0), Vas ((0,0)is a fixed point, or v is a periodic orbit)

Py(Y,0,a2) =0, Vas (since S — 1 plane is variant.)

Y
)\:ag, X(Z>

f(X,0) =0 for all A\ = as.

Define

To obtain the existence of positive solution, we shall apply Crandall-Rabinowitz
bifurcation Theorem from Simple eigenvalues.

Theorem 3.9. (Crandall-Rabinowitz theorem) Let f : U C R x R™ — R™ for
f € C*U,R™). f(A\,0)=0 for all A € R.
Let
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Lo = L(Xo), L1(A) = DAL(A) = L'(\)
Let Ly = L1(Xo), Ao is the bifurcation point satisfies

N(Lg) = null space of Lo = span{uyg),

and
Z = {Uo}l,
Liug ¢ RangeLo < Principle of exchange stability < a'(\g) # 0(Homework)
Then 35 > 0 and Ct-curve (A, ¢) : (=5,0) = R x Z, X = X(s),¢ = ¢(s),s €
(=6,0). such that
(i) A(0) = Xo.
(ii) 6(0) = 0.
(i11) f(A(s), s(uo + &(s)) = 0) for |s| < d.(See Fig. 41)
Consider

dzr
= — ()
dt Fr2)
Consider Linearization at x = 0
dy
at =D, f(A,0)y = L(\)y.

Let



(A(S) Slup +4(S))

»
Primary branch /)

Figure 41:

L(Xo) = Lo, a(Xo) =0, ¥(Xo) = uo.
Liug ¢ RangeLo 54 a/(Ao) 7é 0.

Remark on ODE([H], P. 105):

Floquet multipliers of (S*(t), x5 (t),0) are exactly the eigenvalues of D,P(0,0).

Floquet multipliers of (S5 (t), 25 (t), 0) are eigenvalues of Fundamental matrix
O(T), ®(0) =1 of ¢y = J(S*(¢),z5(¢),0)y, they are 1, p1 and pa, p1 < 1(since
limit cycle 71 in the S — x; plane is orbitally stable unique). ps(ag) = ps =

T moS*
eXp( 0 a2+sé'*(;t)) - dl)
Since
O 0,0,a2) 221(0,0,a2)
Y , U, A2 EYA , U, G2
D,P(0,0,a2) =

0P, P,
oY (0,0,02) EYA (070,a2)

oP, oP,
3Y (OaOaG/Q) GZ (0,0761,2)

0P,
0 97 (0,0, a2)

Hence %(0,0,ag) =p; <1and %(0,0,ag) = pa.
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Let Ao = a3 satisfies

T *
M)
o a5+ S*(t)

then pa(ad) =1.
Let
L(A) =D, f(A\,0)=D,P(0,a2) — I

W ()
o () =( e ) (2)-06)

we obtain

oP. .
(p1 — Dvy + E)—Zl(o,o,%)v2 =0.

T I 90:(0,0,a3)
0 Vg 1—p ’
pa(as) #0

Since pa(az) N\ in ag. By C-R Theorem and 1 — p; > 0, there exists positive
periodic solution.

Take

Open problem: 0 < \; < Ay < K, a1 < az, by < by, K >
Since the bifurcation results are local, we have existence of positive periodic

solution, where |ag — aj| < 0. Prove the global results shown in Fig. 42.

Ecological Monograph (1978)

r=20In2 ay =720

dlig m1:1n2 1.e. b1:2
do =1n2 mo = 41In2 by =4
’)’1:0.1

See Fig. 42 and Fig. 43.
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4 Lecture 4 Two Species Competing for Two
Complementary Resource and Two Substitutable
Resources in a Chemostat

Consider two species compete for two complementary resources S and R.
(e.g. nitrogen and phosphors) in a chemostat. The equations are:

= (8 - 5)D - igl(S R)xy — igg(S R)xs

(R(O) — )D — 791 (S R).’El — 792(5 R).’L’Q (1)
= (91(S, R) — D)1

= (92(S, R) — D)z

msls mrlR
a1 +S am + R

91(S, R) = min( )
msQS mTQR

92(S, R) = mm(a52 S i, R

Lieberg’s Law of minimum.

Analysis: S’ + yﬁl‘i + yﬁaj’g =S5O + D(S + yﬁxl + yﬁﬂfg)
Conservation Law:

1
S(t) + —x1(t) + —aa(t) = SO + O(e™PY)
Ys1 Ys2
Similarly we have
1
R(t) + —a1(t) + —x2(t) = RO + 0(e™PY)
Yr1 Yr2

Consider the limiting equations:

ysl

x5 =g (S(O y —x — %IQ,R(O) — =1 — izg) — D]xq (2)

{ 2y =[g1(S© — Lay — y%me(O) — =T — La:z) D]z,
y Yr2

We reduce the system of 4 equations to a competitive system of 2 equations.
The isolines of (1) take forms like Fig. 44 and Fig. 45.

Remark: The limiting system (2) and original system (1) have the same
solution behavior. We can find the proofs in [SW] (Appendix F, A Convergence
Theorem) and in [Z1](P. 17)

From Fig. 46. We can see species 1 is better competitor w.r.t. S and R.
st < Ag2, Ar1 < Apa, .. species 1 win.

From Fig. 37 . We can see species 2 is a better competitor for S, species 1
is a better competitor for R.
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Figure 44:

Species 1 is S-limited if species 1 is R-limited if Species 2 is S-limited if
species 2 is R-limited if
(R(O) - )‘Tl)
(S(O) — As1)

Ti be the ratio of steady state nutrient regeneration rate of equilibrium.

T =

Definition: We say species 1 is S-limited if 77 > C; = %

Definition: We say species 1 is R-limited if T} < Cy = %

(R(O) — Ar2)
(SO — N\go)

2 =

Definition: We say species 2 is S-limited if Tp > Cy = z—z

Definition: We say species 2 is R-limited if To < Oy = %2,

Yr2
[P .
Nej = ——51 i —1.9.
st (”SZ)—l
Qg .
Api = ——T0 = 1,9
i (mD”)_l
c; =2 =12
Yri
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Figure 45:

Assume

(H1) 0 < X1 < A2 < S0 < N\ < M\ < RO,

From Fig. 48. Species 1 has lower break-even concentration with respect
to both S and R. Hence we predict species 1 wins, species 2 lose.

From Fig. 49. Es; = (As1, RY, 2%1,0), R, > A, species 1 wins.

Either F, or E,q exists according to species 1 is S-limited or R-limited.

lim (S(¢), R(t), a1 (), 72(¢)) = Ear.

t—o0

lim (S(t), R(t), 21(t), 22(t)) = Ey1.

t—o0

(H2) )\rl < )\TZJASQ < )\sl~

Define
R(O) - ArQ

W

There are four cases.
Case 1: T* < (C1,Cs.

Then Ty < T* < (5. ", x5 is R-limited. But species 1 has lower break-even
concentration with respect to resource R, i.e., A\,1 < Ap2. Biologically we
predict x5 loses competition and x1 wins. Then (S(¢), R(t), x1(t), x2(t)) —
Eg if 2y is S-limited. (S(¢), R(t), z1(t), z2(t)) = Epp if 21 is R-limited.

93



58, ))=D

7| T
| ‘)/gl(s, R=D
A :
| |
f) | |
W 4, »

Figure 46:

Case 2: T* > (C1,Cs.

Then T7 > T* > (4. /. x1 is S-limited. But species 2 has lower lower
break-even concentration with respect to resource S, i.e., Aso < Ag1. Then
we predict that 2o win the competition. Then (S(¢), R(t), x1(t), z2(t)) —
Eg if 29 is S-limited. (S(¢), R(t), z1(t), z2(t)) = Epo if 9 is R-limited.
Case 3: C; < T* < (Cs.

Then To, < T* < Cy. . 19 is R-limited. C; < T* < T}. .. x1 is S-limited.
-.» species 2 has lower A\go < Ag1. species 1 has lower A\ < Apo.

S B = (A1, Ara, x5, o5,) exists and is GAS.

Case 4: Cy < T* < (.

FE. is unstable.

(a) x1 is S-limited, x5 is S-limited. (Fs1), (Es2) are LAS.
(b) x; is S-limited, x9 is R-limited. (Es1), (Er2) are LAS.
(c) @1 is R-limited, x5 is S-limited. (E,1), (Es2) are LAS.
(d) x; is R-limited, x5 is R-limited. (E,1), (E,2) are LAS.

Tilmman’s graph:

Cy < T* < (4. See Fig. 50.
C1 < T* < Cy. See Fig. 51.
Open problem:
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/gi(S, R)=D=isocline of x, = {x, =0}

At 508 By =D =isocline of x; :{Jﬁ':(}}
|
|

2 |

A [
|

[ | | >
GRS §

Figure 47:

xll = (gl(Sa R) - dl)xl
If I/Q = (gQ(Sa R) - dQ)IQ

dl;dQ # D
Osi [e7%3
)\Si = Tma 7)‘7"72 = Tm= .
() -1 (Ze)—1

Then there are no conservation laws. Prove same results holds as the
case dy = dy = D.

Open problem:

Consider n-species compete for two complementary resources with same D.
Prove there are at most 2 species survives, i.e. competitive exclusion principle
holds.(SIAP,2001,B.Li and Hal Smith.)

Open problem:

Jef Huisman consider n-species compete for m complementary resources.
For the case n = 9,m = 3, 9 species coexist in the periodic solution form 3
complementary resources.(Nature, 2000)

Two species compete for two substitutable resources S and R.

ds (0) 1 S 1 WHR

ds _ _S\p_ L a1 _ 1 ar

= (5 5) Ys1 1+%+%x1 Yoz 1+ 24 I T2

dR (0) , Hag , g

= = — — L 9s2 N T ar2

a = (7 —R)D = o S o1 — g o
ms1 S+ mrl R ) s i

dz ag a,.

G = n(Pi=—"9% - D)n
ms2a§3‘_ m(:glR

dry _ ago ap "t

& == — D)a




rA

o R=Dox =t

‘ﬁ(s, R=box =0

E (8, 4%, 0) S > A, when Species 1 s Rmited

L4

3

s
.

Figure 48:

We note that if R = 0, then 2} = (225 — D)z, if § = 0, then 2} =

as1+S

mea R

(ar1+R_ D),
Write

S R
(/\51 +S>T1 —Rl)
1+a51 ar
S R
(/\52 +>Tz _1)
14 S R

as2 ar2

) =x1D

+

xh = 9D

+

From Fig. 53. Species 1 has lower break-even concentrations Mg and
Ar1 w.r.t. both resource S and R. We predict that species 1 wins biologically.
However it is difficult to give a rigorous mathematical proof.

We note that the system has no conservation law even with same D.

Open problem:

Analyse the system’s global behavior. (Local analysis was already done in

[WHH].)
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5 E =0, Ry, o,
R >4
Species 1 wins
ik
i
¢
4 »
0 S
Figure 49:
SA
. Slope=C,
X, win ( i
(S( ), B ))
L coexistence region
Es,
E / Slope=C;
L gl gion
Slope=T"
5 X, win
Ay = —
Ay A,) C,<T <C
/'"_ﬁ-.
4] 1
— ',-;
Figure 50:
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%, e Slope=C;

{ S(o), R(o))
Bisiable

Slope=C;

=Y

Figure 51:
SA
Slope=C;
{ S(G), R(G))
coexistence  Slope=C]
1egion
Slope=T"
Ay |- —
(s, 4D < <y
;{_ﬂ -
/) 1 L
>
A A R

Figure 52:
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Figure 53:

99

Y



. ] __ .
5 Lecture 5 Monotone Dynamical System ~ with

applications to simple chemostat equations with

e L eress  [HW]

inhibition and May-Leonard model of three

. . [CHW]
competing species
Dynamics are divided into two cases: Chaotic-dynamics and Regular-dynamics.

Regular-dynamics: Solution tends to equilibrium points or solution approach-
es limit cycle. To deal with these cases, we usually use the following methods:

(i) Constructing Lyapunov functions.

(ii) When n = 2, use Poincare-Bendixsm Theorem to prove global stability of
LAS equilibrium and uniqueness of limit cycles.

(iii) When n > 3, Hopf Bifurcation indicates the possibility of occurrence of
periodic solution at some bifurcation points.

Consider O.D.E.:
o' =f(z), f+ DCR" > R"
f=(fitn)s 7= (21.20)

We generalize scalar differential inequalities to system.

Definition: a<b&a; <b;, 1=1,2,...,n.

Theorem 5.1. (Kamke’s Theorem) Let x' = f(z) be a cooperative system i.e.
8L(2) >0, i # j. If a(t) satisfies

{ 7’ < f(@)
z(0) < xp.
and @(t) satisfies
{ o' = fy)
©(0) = xo.
Then x(t) < ¢(t), t > 0.

Consider two solutions ¢, ¥ of ' = f(x), ©(0) < (0), then @(t) < 4(¢) for

all t > 0. Let ®(t,x9) be the solution x(t,xq) of

{251

Write
Dy (z9) = D(t, 20)

Definition: We say that ®(z) is a monotone flow, if z < y, then ®,(z) <
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Definition: We say that ®;(x) is a strong monotone flow, if z < y, then ®,(z) <
D,(y), Vt>0.Herea < b a; < b, Vi=1,2,...,n

(Hirsch): A cooperative system z’ = f(x) generates a strong monotone flow,
provided D, f(x) is an n X n irreducible matrix. Va € D.

Definition: A matrix is irreducible if it is not reducible. A matrix M is
reducible if it is of the form
A B
0 C

under permutation.

(Hirsch): For almost all initial point x, we have ®;(z) — e € E =set of
equilibrium points.

(Hirsch): Every periodic solution is unstable.

(Hirsch’s Convergence Theorem): Let ®;(x) be bounded for ¢ > 0, if 3T >
0, 3z € D, such that & < &7 (z) or Op(z) < z, then P4(x) > e € East — oo.

(Hirsch): No two points are ordered in the w-limit set w(x).
(i)Counsider a competition system of two equations:

95/1 = fi(z1,22)
%%c = f2<331»6?2)
gho <o, gk <o
Under the change variables (x1,22) = (y1,¥2), y1 = 1, Y2 = —Z2 , we obtain
that ,
Y1 = 91(y1,y2)
Yo = 92(y1,y2)

991 _ %(_1) >0

Jys  Ox

992 _ _@( —y2) > 0
83/1 8$1 Y1, —Y2) =

is a cooperative system.

(ii)(Hirsch) Let 2/ = f(z), x € R}, f: D C R® — R3 be a 3-dim.
competitive system z’ = f(z), i.e. ggj <0,1i#j. If o) be a bounded
solution, then Poincare-Bendixosm Theorem holds, i.e., w(¢(0)), the w-limit
set, is a periodic orbit if w(y(0)) does not contain equilibrium points.

Theorem 5.2. (Differential Inequalities for Two Species Competition system )[SW/

Oh oo 0F2

x/(t):f(x)v I ' Omy
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ai
az

(o )=e( 5
Ux@sm%%xO<Kf ()
{

Notation: d =

) fo aq < bl,ag > b2

and

(t))

u'(t) = f(u(t)),
u(0) is given.
and z(0) < u(0), then z(t) <g u(t) for ¢t>0.

Simple Chemostat Equations with inhibition

Consider the equation[HW]

#(0) = (Mo — Doy,
WY ap = (2 - i
P(t) = (PO — pyp — 2%
S(é))z 0( z1(0) >>o, 31;2(0)+ >Po, p(0) > 0.

where S(t) is the nutrient concentration, x1(t), z2(t) are concentration of micro-
organisms. The growth of x1(t) is inhibited by antibody P(t) and x2(t) con-
sumes antibody.

Scaling(Nondimensional Process )

S P
S5m0 P~ pw
TG0, 5O)
as 1
as — 75(0) , T2 — T2 5(0)72
t— Dt , m — ) ’m2_>32
K — ) d SO
PO PO DY
we obtain g g
mi mo
S'=(1-29)- nb _
( ) a1+ S az + sz
- my —nP _ 1
2! " Py 71,
xh = ( mS Dz
2 a +S (SPQv
T2
P =(1-P)—
( ) K+ P

Replace e by f(P), f(P) satisfies f(0) =1 and f’(P) < 0. (See Fig. 54)
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|
I
] |
] '
P
Figure 54:
Then (2) becomes
mlS mQS
S'=(1-8)—- P) —
( S) a1+5f( ) as + 87
m
24 = (——[(P) = a1,
(3) ai + .5
xh = ( mS 1)
2 ay +S 5P27
1)
P=(1-P)—
( ) K+ P
Conservation:
S +ax] +ahb=1—(S+x1 + x2)
we obtain

S(t) +x1(t) + 22(t) =14+ O(e™)
Consider limiting system:

m1(1 — X1 — 1’2)

T =
! (a1+(1—x1 —T3)
m2(1 — X1 71‘2)

(4) & (a2 + (1 — 1 — T2)
Pr=(1-p)- 2L
21(0) > 0, x2(0) >0, x1(0) + x2(0) < 1, P(0) > 0.

f(P) =1y,

— 1)5627

We note that system (3) and system (4) have the same solution behavior by
[SW](Appendix F) and [Z1](P. 17).
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Consider the important case mq > 1, mo > 1, and we have four parameters,
namely A1, Ao, Ay, A_.

ml)\l - m2>\2 —1
a; + M\ o as + Ao o
ml)\Jr miA~
1)=1, ——f(P")=1
TS (1) =1 )

where P*, 0 < P* < 1 is the positive root of (1 —2)(K + z) —dz(1 — A2) = 0,
we have A\; < A7 < AT.(See Fig. 55)

(] %] 3 4

Ayed <A <d" A<l <AT<AT Aed <h <A f<iT <t <y

' 1 n L N 1 " »
B BEEE L 2
Eis E,is E is
GAS GAS 3E =(xq, % F) GAS
Figure 55:

We have the following three equilibria:
E():(0,0,l) xlzzz:g:O,P:l

Ei=(1-X"0,1) 2o=0P=1,2y=1-\"
EQZ(O,I—/\Q,P*) T ZO,$2=1—)\2,P:P*

Eyis GAS,if Ay > 1, g > 1, i.e. 21 — 0,290 = 0 as t — oo.
B is GAS, if dg < A1 < A7 < AT,
Eyis GAS, if A\j < X2 < A7 < AT,
FEyis GAS, ifA <A™ < AT < As.
If A= < Ay < AT, then E. = (2}, 23, P*) exists,and if Ay > 1, we ob-
tain zo — 0 as t — oo.
Let A1 > 1, A2 > 1. Since z2(t) — 0, consider limiting equation, then

m1(1 — $1)
ap + (1 — 3?1)

m1(1 — 5131)

mf(P)*l)xlﬁ(

f(0) =1z

z1 = (
we obtain x; — 0 as t — oo, hence P(t) — 1.

Theorem 5.3. (Differential Inequality for Two Species Competition system)
Define: @ = ( “ > <Kk 5( 21 ) if frar < bi,az > by
2

a2
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fl(zlaxQ)

sev (0= (20 Y sansty0) = (740 ) < ptatn = ().

Let i(t) be the solution of

Then Z(t) <k u(t), Vt > 0.

Theorem 5.4. If0 < AT < \g, then Jim x1(t) =
oo

lim P(t) =1

t—o0

ry=1-\1, tligloxg(t) =0,

Proof. Since AT = W < A2, d &> 0 small, such that 0 < W <

A2. Since P(t) < 1+ ¢ for large t, then
fP@) > f(1+e),

ml(l—.’Lj—l‘Q)

14+¢)—1)xy,
a1+(1f:£17x2)f< )=z
mz(l—.’tl—l‘g)
a2+(1—m1—:z:2)

71 > (

— 1)&62.

zy < (
From above differential inequalities, it follows that

{ z1(t) > ui (),

To (t) S U9 (t)

where wuy (t), ua(t) satisfy u;(0) < 21(0), u2(0) > z2(0),

m1(1 — Uy — UQ)

ul = —1U,
1 a1+(1—u1—u2) )1
ul = ma(1 = u - up) — Dus
2 a2+(1—u1—u2)

By Fig. 56 when AT < g, i. e. 1 — AT > 1 — )y, we obtain that

a1

t l-——7r——~—>0ast
up (t) — m1f(1+5)—1> ast — o0

’LLQ(t) —0

Since uz(t) — 0, and x2(t) < wa(t) then x5(t) — 0, hence P(t) —
U

1land 1(t) » 2f =1— AT,
Theorem 5.5. If A1 < Ay < A7, then tlim z1(t) =0, tlim 2o(t) = x5 = 1— Ao,
lim P(t) = P*.

t—o00
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Wty =(1-4)
; >
E 78
Figure 56:
Proof. Since
1—x9)
zh < L ~ D,
27(6(,2+(1—$2) )2
we obtain
2o(t) <1—Aa+e, Vt>t..
Since P |
- +e€
p>1_p_t\ETA2TE)
a K+pP
we obtain
P(t) > P* +¢,
mi(l —x1 — x2) M

(E/l < ( f(P* +E) . 1)x1’

Sy s L R

a1 + (1 — 1‘1)
m2(1 — X1 — 562)
a2+(1—x1 7(132)
if myf(P*+4¢) <1, then z1(t) — 0. If my f(P* 4+ ¢) > 1 then from the above

differential inequalities, it follows that

{ w1 (t) < un(t),

z2(t) > ua(t).

/

T2 = ( - 1)513‘2

where " |
my —Ur — U2
U/ — P*+E “1Du 7
! (a1+(17u1*UQ)f( ) ) 1
m 1—u — U
Ul2:( 2( ! 2> _I)UQ

a2+(17u17u2)
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By Fig. 57, when Ao < A7, i.e. 1 — Xy > 1 — A~, we obtain that 75lim up(t) =
—00
0, tlim uz(t) = 1 — X +e¢, since 21(t) < uy(t) — 0, so z1(t) — 0 as t — oo,
—00
then xo(t) = 1 — Ay and P(t) — P* as t — oo. O

1+ =(1-4)

Figure 57:

Theorem 5.6. If \o < A1, then E; is GAS.
Proof. (Exercise!) O

Consider the case A~ < Ay < AT, then we can show the interior equilibri-
um E, = (21, T2, P.) exists and is unique.

Open problem: If E, is LAS, then E. is GAS.
Since the system (3) is a competitive system.

mi(l — a1 — z2)

7 <a1+((1_x1_m§)f< )= Dy, Linws, Lin P,
! my 1_1'1—5(}2 .

= -1
x5 (ag_i_(l_m%_@) Yoo, | in x;
Pl:(l_P)_Kf;' bin xo.

Then Poincare-Bendixson Theorem holds. If FE,. is unstable, then exists
limit cycle.
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Open problem: Prove the uniqueness of limit cycle.

[CHW]

Rock-Scissor-Paper Model of Three Competing Species

oy =z (1 — 21 — oo — fras) = fi(z1, 22, 23),
xh = xo(1 — Boxy — 2 — ax3) = fo(1,22,23),
xy = x3(1 — B3x1 — agxe — x3) = fo(1, 22, 23),
1‘1(0) >0, 33‘2(0) > 0, .133(0) > 0.

(H):0<Oéi<1<ﬂi, o + B > 2.
In above model, species x1, x2, x3 have same intrinsic growth rate ry =7y =
r3 = 1. From assumption (H), we have:

1 outcompetes xro as x3 =0,
xo outcompetes x3 as x1 = 0,
x3 outcompetes x1 as o = 0. (See Fig.58)

X

A

(0.0,

Figure 58:

Case 1: P* is LAS, then P* is GAS. (See [CHW])

Case 2:  P* is unstable, then exists one-dim stable manifold T, if zg ¢
T, w(zo) = O1JO2JOs.(See Fig. 59) (See [CHW])

We prove there is no periodic solution by Stoke’s Theorem. Suppose a peri-
odic solution exists with periodic orbit C. Construct vector field (M;, Ma, M3) =
(21,22, 23) X (f1, fa2, f3). Construct a surface S, where the surface S of the cone,
formed by joining each point on C to the origin O. ¢ = {(z1, xq, x3) : 222z =
c}. Since ¢, Mydy, + $o Mads, + § M3d,, = 0, then based on Stoke’s theorem,
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Figure 59:

we obtain §C Mld:cl + fC Z\4QCZI2 + fC Mgde = ff CUTZ(Ml,M27M3)ﬁdA =+
YUS
0. There is a contradiction.
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6 Abstract Theory of Two Species Competition
in Ordered Banach Spaces.[HSW]

The ordered Banach Space is denoted by X; with positive cone X?‘ , S.t.
Definition: z;,z; € X;,

T, < Ty <= T; — x; EX;',J’:i;ém,-.
T, LT <= T —x; € IntX;r.
Let x;,y; € Xi, x; < i,
[z, yi] = {u € Xy, <u <y}

[[xi,yi]] = {U c Xi,xi <L u <K yl}

Example: X; =R", X;" =R%, (finite dimensional case)
T =(21, 0y ) SY=(Y1y o0 Yn) = z; < yi, i =1,2,...,m
X; = C(Q,R"), X} =C(Q,R"), Q C R".(Infinite dimensional case)
v <P <= p(x) <P(x),Vr € Q.

Let
X=X xXg, XT =X x X,

IntXt = IntX{ x IntXy
K = X" x (-X5),
IntK = IntX|" x (—IntXy)

Then we have
xr = (Il,.’,EQ), T = (.fl,i’g).

(i)ordinary order:
<<= 21 < T1,T2 < Ta.
(ii)competitive order:
<k T 21 <T1,T2 < T
TLE T 21 < T1,T2 K Ta.
Consider two cases

e Monotone map T (discrete)
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e Monotone flow T; (continuous)
Case 1: let T: XT — X+ be continuous and satisfy

(D1) T is order compact and strictly order-preserving w.r.t <g. ie.
r<g T = T(:L‘) <K T(if)

T is order compact <= T'([z1,0] x [0,22]) has compact closure for all
x1,z2 > 0.

(D2) T(0) = 0, 0 is a repellering fixed point, ie. 3 bdd U of 0, such that Vz € U,
In =n(z), st. T"(z) ¢ U.

(D3) T(X; x{0}) € Xit x {0}, T({0} x X5) C T({0} x X5). s.t. there is a
unique Z; > 0, such that T'(&#1,0) = (Z1,0). and there is a unique &9 >
0 such that T(0,22) = (0,22). and T"(x1,0) — (Z1,0),Vz1 > 0,n — oo.
T7(0,z2) — (0,22),Vze > 0,n — 0. (See Fig. 60)

%

D, .

o0

=Y

Figure 60:

(D4) If z,y € X,z <k y, and either x or y € IntX ™, then T'(z) <x T(y).
Three fixed points Ey = (0,0), By = (£1,0), B2 = (0, Z2).

Theorem 6.1. Let (D1)-(D4) hold, Then w(x) C I, where I = [#1,0] x [0, &2].
and ezxactly one of following three holds

(a) There exists a positive fized point E. of T in I.
(b) T™(z) — E1 asn — oo. V(x1,22) € [,x; #0,i=1,2.

(¢) T™(x) = Es asn — o00. V(xy,29) € I,x; #0,i=1,2.
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Figure 61:

&=
=

Finally, if (b) or (c) holds. then V(x1,z2) € X/I,x; # 0,i = 1,2, such that
either T"(x) — E1 or T"(x) = Ea asn — co. (see Fig. 61)

Example:
Ut = dlAu + ’U/fl(t, u, U)7
vy = do Av + v fo(t, u,v).
91 Of2
— <0, =—=<0
v — 7 Ou
filt + w,u,v) = fi(t,u,v)
A monotone map T : (u(0,-),v(0,-)) = (u(w,-),v(w,-)) is a w-periodic map.
Case 2: let T} : Xt — X7 be continuous and satisfy

(C1) T; is order compact and is strictly order-preserving w.r.t <g. ie.

T; is order compact <= T ([z1,0] X [0, x2]) has compact closure compact,
for all z1, 22 > 0.

(C2) Tt(ﬁ) =0, 0 is a repelling equilibrium point, i.e. there exists a neighbor-
hood U of 0, s.t. Vx € U, 3¢, t =t(x), s.t. Ty(x) € U.

(C3) Ty(X;F x {0}) c X{" x {0}, T3({0} x X)
there exists a unique &1 > 0,s.t. T;(21,0) = (x ) Vit > O There ex-
ists a unique &9 > 0, s.t. Tt(0,$2) = ( ,&2),V and Ty(z1,0) —
(21,0),Vz1 > 0,t = oco. Ty(0,22) — (0,23), Ve > O t — oo. (see Fig.
62)

({0} x X). s

(C4) If v,y € X" & <k y, and either z or y € IntX™", then Ty(r) <k
Tt(y)7t > 0.

72



K>

& ):,\:(
X

on

=Y

Figure 62:

Three equilibrium points Fy = (0,0), By = (21,0), B2 = (0, &3).

Theorem 6.2. Let (C1)-(C4) hold. Then w(x) C I, where I = [£1,0] x [0, &2].
and exactly one of following three hold

(a) 3 positive equilibrium point E, of Ty in I.
(b) Ty(z) —» Ey ast — oo. Y(x1,22) € I,z; 0,0 =1,2.
(c) Ti(z) = E2 ast — oo. Y(z1,22) € I,x; # 0,0 = 1,2.

Finally, if (b) or (c) holds. then V(x1,z2) € X/I,x; # 0,i = 1,2, such that
either Ty(x) — Ey or Ty(x) — E2 as t — oo.(See Fig. 63)

l
[ N\

Figure 63:



Example:
Ut = d1AU + ufl (ua U)a

v = do Av + v fa(u,v).

df1 dfa
— < —= <0.
ov =0, ou =0

We have monotone flow T} : (u(0,z),v(0,z)) = (u(t,x),v(t, x)).

Dancer-Hess connecting orbits lemma:
Let u; < ug be fixed point of strictly monotone continuous map T.

T: U‘)U, 1= [Ul,’LLQ]

f(I) is precompact. Assume f has no fixed point other than wuy,us in I. Then

(a) Hzn}>o C I, Tpt1 > Tn, m z, =u, lim x, = us.
n— oo

li
n——oo

or (b) El{yn}iooo - Ia Ynt+1 < Yn, EIP Yn = U2, ILm Yn = Ul-(see Fig-
64)

=3

{v.}

Figure 64:

Dancer-Hess lemma continuous version: Let u; < us be equilibrium
point of strictly monotone continuous semiflow Tj.

T,: U—U, I = [u,us]

T:(I) is precompact. Assume T; has no equilibrium points other than u;, ug in
1. Then

(a) 3 full orbit v(t),v(t1) < v(t2) as t1 < ta. y(t) = w1, t = —o0, y(t) —
Uy as t — +o00.

or (b) 3 4(t). v(t1) < Y(t2) as t1 > ta, y(t) — w1, t — +o0, ¥(t) —
ug as t — —oo.(See Fig. 65)
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Next we prove Theorem 1.2. The proof of Theorem 1.1 is similar to the proof
of Theorem 1.2. Assume there is no equilibrium in I. Claim (b) (c¢) cannot hold
simultaneously. If not, we choose

~1(t1) near Es,

Ya(t2) near Ej.
So

71(t) <x 72(t2)
we obtain

Ti(mn(t)) <k Ti(v2(t2))

Since Ti(71(t1)) — E1 as t — oo ,and Ty(y2(t2)) — Es as t — oo, we ob-
tain By <k Fs, which is a contradiction to Fy < Fj.(See Fig. 66)
Next to show:
(a)(b) is incompatible.
(a)(c) is incompatible.
Consider (a) (c) holds
~1(t1) near Ex,

E, <7 (t).

we obtain
E, =T,(E,) <k Ty(n(t1)), Vt>0.

Since Ty(y1(t1)) = Ea as t — 00, B, < FEa, since Fy < E, < Fj, hence we
obtain a contradiction.(See Fig. 67)

In case that T;(z) has a positive equilibrium FE, .There are two cases:(see
Fig. 68 and Fig.69)

(a) w(z) = Ev, ¥ E, <x<E.

(b) w(x)=Fy, VY, E,. <z < Ej.

by Dancer-Hess Lemma

(6]
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Theorem 6.3. If W9(E;) (" Int(X) =0, where W5 (E;) is the stable mani-
fold of E;, then for every = € I, we have w(zx) € [E**, E,].(See Fig. 70)

From Theorem 6.2 and 6.3, we have two possibilities:(¥)
(i) if there are no positive equilibrium, then Ti(x) — E; or Ti(z) — Es.
(ii) if the positive equilibrium is unique, then T;(z) — E*.

These are elliptic problems.
Example: Two species competes for light in a water column.(See Fig. 71)

(1.1) { ur = Ditige — o1tz + (91(1(2,1)) — di)ua,
v = Doy — vy + (92(I(2, 1)) — da)us.

(1.2) I(x,t) = Ipexp[—kox — /Ol(klu(s, t) + kav(s, t)ds]
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Boundary conditions (No flux at x=0 and x=L)

(1.3) Dyug(x,t) —oqu(z,t) =0 at x =0,L. t >0,
' Dovy(x,t) — agu(x,t) =0 at © =0,L. ¢t > 0.

I1.C. (14) wu(x,0) =wup(x) v(z,0)=ve(z), 0<x <L

Du and Hsu" " prove the case of single population growth under the as-
sumption 0 < dy < dj (some kind of principal eigenvalue)
As v =0, u(zx,t) = G4(z). 4(z) is the unique steady state.(See Fig. 72).

[JLLW

Jiang Lou, Lam and Wang ( ]). prove Theorem 6.4 under special cone

K= Kl X (—Kl)
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Figure 71:

K, ={¢peC(0,L],R) : /01 ¢(s)ds >0, x € [0, L]}

IntK, ={¢ € C([0,L],R) : $(0) > 0, /w ¢(s)ds > 0, x € [0,L]}
0

IntK = IntK, x (—IntK,)

Theorem 6.4. The system (1.1)-(1.4) is a strongly monotone dynamical sys-
tem. w.r.t.<g, i.e. if (ui(-,0),v1(-,0)) <k uz(-,0),v2(:,0)) then (ui(-,t),v1(-,t)) <k
uz(+,t),va(-,t)) Vt>0.

Open problem: To find conditions such that (%) holds.

Unstired Chemostat[HWI] :
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Uy = dug, + ufr(S), (1)

St = dszm - ufl(S) - vf2(5)7
PDFE
vy = dugy + v f2(S5).

B.C. S,(t,0) = —8©  8,(t,1) +7S(t,1) =0
Ugp(6,0) =0 wug(t, 1) +ru(t,1) =0
v (6,0) =0 wvy(t,1) +rv(¢,1) =0

I. C. u(0,2) = up(z), v(0,2) = wvo(x), S(0,z) = Sp(x).

Step 1: Prove conservation law.

S(t,z) +ult,z) +v(t,z) = ¢(z) as t = oo uniform in x,

1
Blz) = SO(—" ~z).
Step 2: Consider limiting system.
up = dugy + ufl((b(x) — U= U)a
PDE { vy = dvgy +vfa(P(x) —u—v). @)

and verify if (u,v) <g (@,0), then Ty(u,v) <gx Ti(@,v) for ¢t > 0,i.e. it is
strongly monotone dynamical system, where

(u,v) <g (4,0) < u(z) < a(z), 9(z) <v(z), Vzel0,1]

We note that system (1) and system (2) have the same solution behavior by
[Z1](P. 17).
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Step 3: Prove global behavior of w(z,t) as v(x,t) =0,( v(z,t) as u(z,t) = 0)
lu(z,t) — @(z)] = 0 as t — oo, (|v(z,t) —0(z)] — 0 as t — o)
where @(z) is the unique steady state ( where 9(z) is the unique steady state).

Step 4: Stability analysis of (@,0) and (0, 9).
Linearization and principal eigenvalue.
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