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DYNAMICS OF COMPETITION
IN THE UNSTIRRED CHEMOSTAT

S.B. HSU, H.L. SMITH AND PAUL WALTMAN

1. Introduction. The chemostat is a picce of laboratory apparatus
which plays an important role in microbiology [5, 2, 25, 29, 30].
T4 is used as a model of a simple lake, in the commercial production
of microorganisms and as a model for waste water treatment. The
Monod model of competition between microbial populations for a single
growth-limiting nutrient in the chemostat occupies a central position
in microbial ecology. It is a model which has mathematical tractability
and experimental confirmation.

The basic chemostat consists of three vessels. The first vessel, the feed
bottle, contains zall of the needed nutrients for growth in abundance
except one which is limiting. The nutrient is pumped at a constant
rate into the second, called the culture vessel or bio-reactor. The
culture vessel, whose volume is constant, contains microorganisms
which compete for the nutrient. The contents of the culture vessel
are pumped, at thie same constant rate, into the third vessel, called the
overflow vessel. Ii is assumed that the culture vessel is well mixed and
that all other relevant variables (temperature, pH, etc.) are constant.
The basic equations (for two competitors z; and 2, and nutrient 5)
are (29|
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SO is the input nutrient concentration, D is called the dilution or
washout rate, m,; and a;, 1+ = 1,2, are propertics of the organism.

" Received by the editors in revised form on October 4, 1994,
Research of the first author supported by National Council of Science, Republic
of China.
Research of the second author supported by NSF Grant DMS-9141550.
Research of the third anthor supported by NSF Grant DMS-9204490.

Copyright ©1994 Rocky Mouuniain Mathematics Consortium

461




462 S.B. HSU, H.L. SMITH AND P. WALTMAN

The principle result is that competitive exclusion occurs; only one
population survives.

In [27] and [9] a model for the unstirred chemostat was proposed. It
took the form

miSu  ‘myS,

St = dSe0 = a+S a+S
ut-—-dum+:1% O<z<l
vy = dvge + 5;1—2%’
with boundary conditions |
5.(6.0) = 5O
ug(£,0) = v,(1,0) = 0,

where r > 0, and initial conditions

S(0,z) = Sy(z) > 0
u(0,z) = uo(z) 2 0
U(O,:E) = UO(I) > 0.

The boundary conditions were derived in [9] where the constants were
interpreted in terms of the paramecters of the well-mixed chemostat
model. The steady state solutions of the equations above and their
stability properties were determined in [27) and [9]. The principal
result of [9] was persistence: that coexistence of both populations
was possible. However, no information concerning the behavior of
the coexisting solutions was given in [9]. Convergence of solutions to
single-population steady states was established in {10}, assuming that
no positive steady state exists.

In this paper we consider a more gencral model, and we attempt to
secure information about the asymptotic behavior of the coexistence
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solutions. The theory of monotone dynamical systems is used to
provide conditions for a generic solution to converge to a positive,
stable, steady state solution which may depend on the initial data.
If the positive steady state is unique, then it is globally asymptotically
stable. If not, then there exist two ordered positive steady state
solutions each of which is the omega limit set of a monotone heteroclinic
orbit whose alpha limit set is a single-population steady state, that is,
a steady state for which exactly onc population, u or v, is nonzero.
Every solution is attracted to the order interval determined by the two
distinguished positive steady states and an open and dense set of initial
data generate solutions which converge to a stable positive steady state
belonging to the order interval.

2. Preliminaries. We consider

Sy = dSe — ufi(S) — vf2(5)

(21) Uy = du” + Uf}(S), Uy = dvu::lr + Uf?(S)

with boundary conditions

Se(t,0) = =S, u,(t,0) = v,(t,0) =0
(2.2) Sz(t,1) +7S(t,1) =0
ug(t, 1) +ru(t, 1) =0, ve(t, 1) + ro(t, 1) =0

where r > 0, and initial conditions

S(0,z) = So(z) 2 0
(2.3) u(0,z) = ug(z) >0
v{(0,z) = vo({z) 2 0.

The growth functions f; will be assumed to satisfy:
(i) f:R4 — Ry and f(0) =05
(i) f is twice continuously differentiable and f'(S) > 0.

The Monod function, f(S) = mS/(a + S) considered in [9], is a
particular example of such an f.

We view (2.1)-(2.3) as a semi-dynainical system on C} = Cy x Oy X
C,, where C, is the cone of nonnegative functions in the Banach space
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C of continuous functions on [0, 1} with the usual supremum norm, |e|.
If ¢; € C then we write ¥ > (2 > 1) whenever ¥2(z) > ¥1(z)
(a(z) > ¥1(z)) for 0 < z < 1. The order interval [1fy,4)2] is defined
by

[Y1,92) = {¥ € C 191 <Y < 9o}

As noted in [9], for the system (2.1)-(2.3), there exists o > 0 such
that
|S(t, o) +ult, o) +v(t,e) — ¢| = O(e™*")
as t = oo, where ¢ = ¢(z) = SO(((1+r)/r) — z). Therefore, it is
necessary to first study the dynamics of (2.1)-(2.3) restricted to the

invariant exponentially attracting sct given by S + u+v = ¢. On this
set, (2.1)-(2.3) reduces to

= AUy + fi(p—u - 'U)“‘

(24) v = duyy + fo(@ — u —v)v

together with boundary and initial data taken from (2.2) and (2.3).
Equation (2.4) is biologically relevant in the region

Q={(u,v)€CyxCy:u>0,u>0,ut+v <o}

In particular, we assume that the initial data (uo,ve) € €.
Let

D(Ag) = {w e C*([0,1],R) : w,(0) = 0, w, (1) + rw(l) = 0}

and
A()’LU = dwg;:r, w e D(A())

Then using Stewart (28], Ag is closed in C and generates an analytic
semigroup {Up(¢)} on C. Define the analytic semigroup U(t) on
Cy x Cy by U(t) = (Up(2),Up(t)) and let I : @ —+ Cy x C be defined
by

F(u,v) = (ufi{¢p —u—v),vf2(d — u—v)).

By a solution of (2.4), we mecan a continuous function w = (u,v) :
[0,0) — § satisfying

(2.5) w(t) = U(8)w(0) + /0 Ut = 8)F(w(s))ds
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for 0 < t < o. We remark that if such a solution exists, then {14,
Theorem 3.1] as F is locally Lipschitz and {U(t)} is analytic, it follows
that w(t) is continuously differentiable on (0,0), w(t) € D(A) =
D(Ap) x D(Ap) for such ¢ and
w'(t) = Aw(t) + F(w(t)), 0<t<oao,

where A = Ag x Ag is the gencrator of {U(t)}. Since w(t) is differ-
entiable in C x C and belongs to D(A), it follows immediately that
w(t,z) = (w(t))(z) = (u(t,z),v(t,z)) is a classical solution of (2.4) for
(t,z) € (0,0) x (0,1).

Our first result says that (1.4) gencrates a smooth dynamical system
on §2.

Proposition 2.1. For each wy € Q there is a unique solution
w: [0,00) = Q of (2.5). The family of maps T = {T(t)}, defined
by

T(tywy = w(t),

salisfies the usual properties of a (nonlinear) semiflow on Q. Further-
more, T(t)w is continuously differentiable in w € Q and T(t) is com-
pletely continuous for each t > 0.

Proof. The existence of a unique globally defined solution in 2 follows
from [14, Theorem 5.1]. We provide some details. Observe that F' is
Lipschitz continuous on 2. Elementary maximum principle arguments
imply that U(¢)Q2 C Q for ¢ > 0. The remaining hypothesis to check is

lim A~ 'd(w + hF(w),Q) =0, weQ,
h—0+

where d(w, 2) is the distance of w to Q. Actually, it sullices to cstablish
that the limit inferior vanishes (sce [14, excercise 12]). As

w4 hF(w) = (w(l + hfi(¢ — u—v)),v(l + hfo(d — u—1v))),
where w = (u,v), it follows that w + hf'(w) 2 0 for h > 0 and
consequently
d(w + hF(w), Q) = d(u(l + hfi(¢ — u —v))
+ o1+ hf2(¢ —u—1v)),[0,¢])
= |[u(l + hfi(¢ —u—v))
+u(l+hfa(d —u—v)) - 4]

TR
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where [0, 4] is the order interval {) € C: 0 < ¢ < ¢} and [¥]4(z) =
max{v(z),0}, is the positive part of %. See [15, Lemma 2.1] for the
last equality. Set

zn = [u(l+ n"r (¢ —u—v))+u(l + 07 fo(d —u—v)) — B4

For each h = 1/n let z,, be a point where 2(2,,) = |2,|. By compactness,
we may as well assume that z,, = z¢ as n — oo. Let M be so large
that ufy(¢ — v — v) + vfa(p —u—v) < M for all (u,v) € Q. If
u(zo) + v(zo) < #(zo) then there exists N such that

d(zn) — u(z,) — v(zn) > m = (d(zo) — u(zo) — v(20))/2
for n > N. It follows that
utv—¢+ (ufilp—u—-v)+vfal¢p —u—v))/n<-m+M/n<0

when evaluated at z = z,, for all large n. Consequently, zn(2,) = 0
and therefore, lim, , nlzn] = 0. We are done in this case. If
u(zo) + v(zo) = ¢(zo) then

Zn(wn) < n-l(u(mn)fl(‘p(wn) —u(z,) ~ v(mn))
+ U(mn)fié(‘p(wn) - u(zp) — v(a:,,)))

S0
lim n|z,| < 1i_1)n w(z,) fi(@(an) — u(an) —v(zn))

+v(z) f2(p(xa) ~ u(z)) —v(z,)) =0
since ¢(zn) — u(zn) — v(z.) = 0 as n — oo.

The fact that T is continuously differentiable [ollows from [ 18, The-
orem 4.1]. The complete continuity of T°(t) is standard (14, Theorem
5.2]. o

3. An order property. In this scction we show that the reduced
system (2.4) defines a monotone system with respect to a certain partial
order. The partial order introduced reflects the competitive propertics
of the system and is crucial for determining the existence of limits for
some orbits.
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We introduce a partial order on Cy. x C'y. as follows. Let w; = (ui, i),
i = 1,2, be two points of C; x Cy. Deline wy <gwe (wy <k wo)
if and only u; < wp (w1 < up) and vy > wp (vy > we). Let
[wi, wolk = {w € Cy x Cy :wy S w<ycwat

Proposition 3.1. T'(t) has the following properties:

(1) If (uo,v0) € Q satisfies ug # 0 (vo # 0), then T(t)(uo,v0) =
(u(t),v(t)) satisfies u(t) > 0 (v(t) > 0) fort > 0.

(2) If wo and wy belong to the interior of  and satisfy wo <k wi,
wy # wy, then

T(t)’wo <K T(t)uu

fort > 0.

Proof. Assertion (1) is essentially contained in the Lemma of Martin,
[13], where it is proved that cither v = 0 or u > 0 for t > 0 and
similarly for v. Assertion (2) is a well-known consequence of the fact
that the partial derivative of fi(¢—u—v)u (f2(¢—u—v)v) with respect
to v (u) is negative in €. See, c.g., [17] or [19]. a)

By continuity of the semiflow and Proposition 3.1 (2) it follows that
T(t)wy <k T(t)w; for £ > 0 whenever wy <y wy. Thus T is a monotone
semiflow with respect to the partial order <x on 0. As a consequence,
(2.4) has no nontrivial attracting periodic orbits (sce 7, p. 30}). The
theory of monotone dynamical systems (sce, e.g., (7, 24)) suggests that
most solutions of (2.4) will converge to equilibrium. At least in one case
we show this to be the case (sce Theorem 5.2).

4. The boundary equilibria. Equilibrium solutions (also called
steady states and rest points) of (2.4) are solutions of the boundary
value problem

0 = duy, + fi1(¢ — u—v)u,
0 = dvgy + f2{¢p —u—v)v
uz(0) = v,(0) =0 <<l
ug (1) + ru(l) = vy (1) + rov(1) = 0.

(4.1)
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We begin by considering the boundary equilibria, that is, the equilibria
(u,v) for which at least one of u or v vanishes identically on [0, 1].

There are three types of equilibrium solutions on the boundary of §2,
Ey = (0,0), E; = (4,0) and E; = (0,9). As shown below, there is
exactly one of each type. The stability and nature of the attracting set
of each equilibrium depend on parameters of the system. For the well-
stirred chemostat model, the crucial parameter (the “lambda value”)
could be expressed directly in terms of parameters of the equation.
Here it will be expressed in terms of the largest eigenvalue of a boundary
value problem whose constituent parts come from the original equation.

Denote by A;, the largest cigenvalue of

Au = dug, + fl(¢)u
ux(0) =0, (1) + ru(l) =0,

and let 1; be the largest eigenvalue of
po = dvgg + f2(d)v
vz(0) =0, ve(1) +rv(1) =0.

The following proposition was established in [27] and [9] for f; that
are of the Monod type.

Proposition 4.1. If A; <0 then
th_}goT(t)(u,O) = Ey = (0,0)
for all (u,0) € Q. If A&y > 0 then there exists a unique nontrivial
equilibrium E; = (4,0) and @ > 0. In this case
tl_l’rgo T(t)(w,0) = Fy
for all (u,0) € Q with u# 0. If py <0 then
lim T'(¢)(0,v) = Ey

t—o0
for all (0,v) € Q. If py > 0 then there exists a unique nonirivial
equilibrium Ey = (0,7) and ¥ > 0. In this case

lim T(t)(0,v) = Ey

Lt—o00
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for all (0,v) € Q with v # 0. Finally, if (u,v) € Q is an equilibrium of
(2.4) distinct from E;, i =0,1,2, then v > 0 end v > 0.

Proof. As noted above, the result was proved in [27] and [9] in the
case that the f; are of Monod type. The proofs given in these references
extend to the current situation. We comment on the uniqueness of
the equilibrium E; = (&,0). The boundary value problem for @
can be recast as a fixed point equation v = KF(u) where K is a
strongly positive compact linear operator on C([0,1]) (the inverse of
the differential operator —du,, + a?u, together with the boundary
conditions) and F is a strictly increasing Nemytskii operator (from
the nonlinear term u[o? + f1(¢ — u)] where a is suitably large). It can
then be shown that 7" = K o F' is an increasing concave operator so
uniqueness follows from {11, Theorem 6.3]. See [23, Proposition 1.1]
for a similar argument. o

The content of the preceding lemma is that the problem is inter-
esting only if Ay > 0 and p; > 0. Indeed, if {u,v) € £, then
(0,v) <k (u,v) <k (uw,0). Let (0,5(t)) = T(t)(0,v), (u(t),v(t)) =
T(t)(w,v) and (i(t),0) = T(¢)(n,0). Then, by monotonicity of T we
have

(0,3(t)) <se (u(t),v(t)) < (u(t),0).

As a conscquence of Proposition 4.1, if A\; < 0, then @(t) — 0 ast — o0,
implying that u(t) — 0 ast — co. Similarly, if 4; < 0, then Proposition
4.1 implies 9(¢) — 0 as ¢ —» oo so v(t) = 0 as t — oo, In particular, if
A1 <0 and p3 <0 then (u(t),v(i)) —» (0,0) as t — co. Since our focus
in this paper is on the possibility for cocxistence, only the case Ay > 0,
w1 > 0 is of interest.

The next proposition examines the stability of Fg under this condi-
tion.

Proposition 4.2, If \; > 0 and ;1 > 0 then there exists e
neighborhood V' of Ey in Q such that for cach w € V, w # Ey, there is
a7 =T(w) >0 for which

T(r)w € V.

In other words, Eqo is a repeller in Q.
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Proof. Since A\; > 0 and py > 0, there exists & > 0 such that the
largest eigenvalues A = m and p = n of

Au = dugg + f1(d(1 = h))u
uz(0) =0, upy (1) +ru(l) =0

and
pv = dugz + f2(¢(1 — h))v
0(0)=0,  v,(1)+ru(1) =0

are positive. Let @ > 0 and ¥ > 0 be the corresponding cigenfunctions
and set

U={(u,v) € :u+v < ho}.

If (u,v) € U then fi(¢ —u—v) > fi(¢(1 - h)), i = 1,2. Consequently,
if (u,v) € U then so long as T(t)(u,v) € U, one has that

Uy 2 dugg + fl(¢(1 - h’))u» vy 2 dug, + f2(¢(1 - h))U

By Proposition 3.1, we may as well assume that cither u(0) > 0
or v(0) > 0 or both. Then there exists s > 0 such that cither
u(0) > st or v(0) > sv or both. Supposc the former holds. As
U(t,z) = e™'su satisfies the differential cquality corresponding to
the differential inequality for u above and it satisfics the boundary
conditions, a standard differential inequality argument [26, Theorem
10.1} implies that u(t,z) > U(t,2) so long as (u(t), v(t)) remains in the
closure of U. Clearly, this inequality caunot hold for all £ > 0 and so
the Proposition is proved. o

The stability properties of F; arc determined by the eigenvalue
problem associated with the variational cquation of (2.4) about Ej.
It is given by:

Ap = dpae + [f1(¢ —4) — f1(é ~ @)i]p ~ fi(¢ — @)iq

4.2
( ) ,\q:d(]mz“"fi’(d)‘ﬂ)q

with boundary conditions as in (4.1). The uext result summarizes the
local stability propertics of F;.
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Proposition 4.3. Let Ay > 0. Then Ey is locally asymptotically
stable (unstable) if the largest eigenvalue A = A, of

Aq = dgzo + f2(¢ — i)q
qw(o) =0, (II(I)-}""(I(l) =0
is negative (positive). The corresponding eigenfunction q; > 0. If Ay >

0, then it is an eigenvalue of (4.2) and a corresponding eigenfunction
is (p1,q1) where py is the unique solution of

Ayp = dpey + [f1($ — ) — [1(d ~ )ip — f1(¢ — )Tiqn,
p=(0) =0,  pus(1)+rp(1) = 0.
Moreover, py < 0. If Ay > 0 then puy > 0. An analogous result holds

for Ey. If py > 0 then Ey is locally asymplolically stable (unstable) if
the largest eigenvalue, A = Az, of

(4.3)

(4.4)

/\p == dp:v:c + fl (d) - f))])
pm(o) =0, pn:(l) + T]7(1) =0

is negative (positive). The corresponding eigenfunction py > 0 and if
Ao > 0 then the boundary value problem analogous to (4.4) has a unique
solution g and g3 < 0. If Ay > 0 then Ay > 0.

Proof. The validity of the principle of linearized stability is estab-
lished in (18, Theorem 4.2]. The linearization of (2.4) about E; lcads
immediately to the eigenvalue problem (4.2) (sec {27, 9]). The stabil-
ity assertion of the Proposition was cstablished in [9]. We show that
(4.4) has a unique solution which is negative when A; > 0. For sim-
plicity of notation set b = f{(¢ — %)% and a = f1(¢ — @) and note that
a > 0, b > 0. Choose a positive number s such that s — a > 0 and
s --b— A1 > 0. Then (4.4) takes the form

—bgy = Lp - (s = b— A1)p,

together with the boundary conditions, where Lp = —dp,, + (s — a)p.
Denote by A(m), the smallest cigenvalue of Lp = Amp where m(z) >0
is continuous and the boundary conditions are the usual ones. By [1,
Theorem 4.5],

Ms —b—Ay) > Ms).
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Since L@ = 1si and 4 satisfies the boundary conditions, it follows
that A(s) = 1 and that @ is the corresponding eigenfunction, thercfore
A(s —b—=A;) > 1. Then, by [1, Theorem 4.4}, the nonhomogencous
boundary value problem (4.4), reformulated above, has exactly one
solution p; and it is negative since —bg; < 0.

The inequality fo(¢—14) < fo(¢) together with Theorem 15, Chapter
1 of [21], implies that g; > Aj. This completes the proof. o

It is worth stressing that Ey cxists (p; > 0) whencver E; is unstable
in the linear approximation (A1 > 0). Similarly, E, exists if E, is
unstable in the linear approximation.

5. Principal theorems. In this scction we develop a technique
(suggested by the work of Matano and of Poldcik) for cstablishing the
existence of a heteroclinic orbit whose alpha limit is £; and whose
omega limit set is cither a positive equilibrium or Fy. The proof makes
use of ideas in [16] and [20] but docs not follow from any of their results
since T(t) is not strongly monotone in 3N [E2, E)] k.

Theorem 5.1. Suppose that

(5.1) A1>0 and Ap>0.
Then one of the following hold:

(1) There exists a monotone heteroclinic orbit connecting E, to E,.
That is, there exists
W (~00,00) = 0

satisfying

(56.2) T(t)W(s) = W(t+ s)

fort >0 and s € R,

(5.3) Ey <x W(ta) <y W(t)) <x Ei,
ifty < tg, and

(5.4) W(t) = ), L= o0
(5.5) W(t) = £y, | — —c0.
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Furthermore,
T(t)w — Es, t— 00

for every w = (u,v) € Q for which
Ey <icw <k By

and v # 0.

(2) There exists an cquilibrium E, = (u*,v*) satisfying u* > 0,
v > 0 and B2 <k E. <x Ei, and a monotone heteroclinic orbit
connecting Ey to E.. That is, there exisls W : (~00,00) = §2
satisfying (5.2), (5.3), (5.4) and (5.5) cwcepl thal Ey 1s replaced by
E.. Furthermore,

T(t)w — E., t— 00

for every w = (u,v) € Q for which
E.<xw<k Ly

and v # 0.

Proof. Let uy, = hp; -+ @ and v, = hq, for h > 0. Then (up,v) € Q2
and satisfies the boundary conditions for all small h. Furthermore,
(u,v) = (un,vn) satisfies

dugz + f1(¢ — v —v)u
= hd(p1)as + ditaz + f1(d — & = h(p1 + @1))(@ + hp1)
= h[A1p1 + fi(g —a)a(pr + q1) — f1(¢ — @)p1)
~ filp - )i+ fr(¢ -0 - h(p1+ @)@+ hp1)
= h{p1(A1 + fi(¢ — & — h{p1 + @) — fi(p — @)
+ah~f1(gp— @ — hipy + @) = [1{¢ —a)
+ hfi(é —a)(pr +qu)l}-

The terms inside the outer brackets tend to Aypy < 0 as h tends to
zero so it follows that

d(uh)xa: + fl ((15 —Uup = 'Uh)“h <0
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for small positive h. Similarly, v;, satisfies

d(n) sz + fa(d—un—va)vn = h{d(q1)zs + fo(d—i—h(q1+p1)) ]
= hqi[Ay— fo(@p—0)+ fo(p—2—h(p1+4q))]
>0

for small positive h since A; > 0 and q; > 0. Fix hg > 0 such that both
inequalities hold for 0 < h < hg. Standard comparison arguments (17,
Lemma 3.2, 15, Theorem 2.3] imply that if wy, = (ua,vs) then

Ey < T(Ww, <x wi <k E;.
By strong monotonicity (Proposition 3.1 (2)),
Ey <k T(t2)wn <x T(t)wn <x wn <x Er

whenever 0 < t; < t2 and 0 < h < ho. Consequently, {7, 16], the
positive orbit through wy, converges to an equilibrium solution:

E, = lim T(t)wy,.
L300

Clearly,
Ey <y En <xwp = By + hip1,q1) <k Er1.

Also, if 0 < hy < hy < hg then wy,, <x wp, SO T(t)wn, <k T(t)wh,
which implies that Ey, <x Ep,. Fix h satisfying 0 < h < hg. Since
En <k Ei + h(pi,q1), we can choose k > 0 such that b+ k < ho,
En <k E1 + (h + k)(p1,q1) = w4k and such that k is maximal with
these properties. Then, by monotonicity, Ey = T(t)En <k T(t)wnix
which implies that Ej, <x Ejyx. DBut then E, = Ej, since the
reverse inequality was noted above. Therefore, E, = Epyr <k
Ey + (h + k)(p1,q1) and, by the maximality of k, it follows that
h +k = hg. Consequently, E) = FEj,, and sincc h was arbitrary,
this equality holds for all h < hy.

Set E, = Ej,. It may be the case that E, = E». lfw = (u,v) € 2
satisfies B, <xgw<y E; and v # 0 then, by Proposition 3.1, we
may find h € (0, ko) such that E, <x T'(1)w <k wy, and monotonicity
implies that E, <x T(t + V)w <y T(t)wy for ¢ > 0. Therefore, as
T(t)wn, — E, as t — oo, the same holds for T(t)w.
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Set M = {wyp, : 0 < h < ho} and denote by O

w(M) = (] Closure ( U T(t)M)

520 t>s

the omega limit set of the set M. It exists, is nonempty, compact,
invariant, connected and contains both E; and E,. The existence
follows from the compactness of T'(¢) and the fact that the bounded
set  is positively invariant. That w(M) contains Ey and E, is obvious
and the remaining propertics of w(M) are standard [6, Lemma 3.2.1,
12, Theorem 2.1]. Indeed, since the order interval M C [E., E1] and
the latter is positively invariant, it follows that w(M) C [E., Ey].
E, cannot belong to w(M) by Proposition 4.2 since it is a repeller.
Finally {12, Lemma 2.1}, it is well known that for each z € w(M) there
exists a negative orbit through = in w(M), that is, there exists a map
X : (~00,0] = w(M) satisfying X (0) = z and T(t)X (s) = X (t +s) for
t>0,s <0such that t +s < 0.

We claim that w(M) C P where P = {w € Q: T(t)w <gw,t > 0} is
the set of “supersolutions” of T'(t). In fact, M C P and P is closed and
positively invariant by the monotonicity of T'(¢). It follows immediately
from the definition of w(M) that it is contained in P and thercfore
consists of supersolutions.

Since w(M) is connected, we may choose z € w(M) distinct from E;
and E,. Then E, <g z <y E, and z is not an equilibrium since the
only equilibria in [E., Fi]x are Ei, E. and possibly Eo if B, = Ea.
Consequently, T(t)z <x & for t > 0 and equality does not hold. Let
X(t) be a negative orbit through z in w(M) and extend X(t) for
t > 0 by defining it to be T(t)x for t > 0. If t; < i then
X(t2) = T(t2 — t1)X(t1) < X(t1) since X(t;) is a supersolution.
Therefore, X is monotone decreasing with respect to the ordering <i .
Now, if z = (u,0) then X () = (U(t),0) where U(t) = Ey as t = 00
must hold by Proposition 4.1 and U(t) = Eg as { - —oo must hold hy
monotonicity and compactness. The latter implics the contradiction
that Ey belongs to w(M). We conclude that z = (u,v) with v # 0.
But then by Proposition 3.1, it follows that X (t) > 0 for all ¢ and that
X is strictly decreasing; that is, X (t2) < X (t1) whenever t; < ta.
Therefore, E. <x X(t) <x Ep and both limits limy s +00 X (t) exist
and are equilibria. It is casy to see, by comparison with T'(¢)wy, for
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FIGURE 5.1. The two cases of Theorem 5.1. The box in (2) represents part
of the region of attraction of E..

some h that the positive limit must be E,. The only possibility for the
negative limit is E;. Therefore, we have established the existence of a
heteroclinic orbit as asserted. u]

Figure 5.1 illustrates the two cases of Theorem 5.1.

Obviously, a symmetric result holds if it is assumed that A > 0.

Theorem 5.2. Let Ay > 0, p1 > 0, hold and suppose that
(5.6) A >0, Ax > 0.
Then there exist equilibria E, and E,,, possibly identical, satisfying
By <x Euw <k Be < By

There ezists a monotone heteroclinic orbit connecling Ey to E,.. That
is, the conclusions of (2) of Theorem 5.1 hold. Similarly, there exists
a monotone heteroclinic orbil connecling Ey and E,. and E,. altracts
all points w = (u,v) satisfying Ey <y w <y Fuy for which uw # 0. The
omega limit set of every point w = (u,v) €  for whichu # 0 andv # 0
is contained in [E,., E.|k. Furthermore, there is an open dense set of
w € Q such that T(t)w converges to a stable equilibrium belonging to
[(Eux, Edk. If Evi = E,, then

T(Hw — E.,, t— 00
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for all w = (u,v) € Q for which u# 0 and v # 0.

Proof. Theorem 5.1 and its symnictric analog for Ey imply the
existence of E, and E,, satislying By <y E..<x F. <y E). Also,
E, attracts all points w = (u,v) satislying F, < w <y, E; and v # 0;
E,. attracts all points w = (u, v) satisfying Ey <;c w <y E,. and u # 0.
If w = (u,v) € Q, then (0,v) <j w <y (u,0) and monotonicity implies
that T(£)(0,v) <k T(t)w <y T(t)(w,0) for all t > 0. As T(¢)(0,v)
converges to Ey (or to Ep if v = 0) and T(¢)(u,0) converges to By
(or to Ey if u = 0), it follows that the omega limit set of w is contained
in [Ey, E1]x N Q. Furthermore, if w € [E9, E1]k and u # 0 and v # 0,
then the omega limit set of w is contained in {F.., E.]x. Indeed, by
Proposition 3.1, we may as well assume that v > 0 and v > 0 and
therefore Eo + h(pe,q2) <k w <y E1 + h{p1,q1) holds for some h > 0.
As T(t)(E;+h{p;, q;)) converge to E,, ifi = 2 and E, if ¢ = 1, the claim
follows by a comparison argument. Finally, if an omega limit point of
w belongs to [E.., E.]x then it follows that Ey <x T(t)w <x E) for
some t > 0 and therefore the entire omega limit set must belong to
[Eu» E*]K .

Suppose that w satisfies u # 0 and v # 0 and let w denote its omega
limit set. If z = (z,y) € w satisfics z # 0 and y # 0 then invariance of
w implies that z > 0, y > 0 and B2 <, z <y F;. The omega limit
set of z must belong to [E., E. ]k since z € [Eq, E2]x and it must also
belong to w. But then, as observed above, w C [E.., E.]k. Therefore,
w C [Eyx, Ei] g if w contains a point z = (z,y) with x # 0 and y # 0.

If every point z = (z,y) € w satisfies cither & = 0 or y = 0, then, since
E; does not belong to w and by conncctedness and invariance of w, it
follows that either w = E) or w = Ey. Assume that the former holds
(the argument in the other case is similar). We have that w(t)+v(t) — @
as t = 0o. Fix s > 0 so small that the largest eigenvalue, A = ¢, of

A = dqes + f2(dp — 10— s)q
3:(0) =0,  gu(1)+rq(1)=0

is positive. Denote by o the corresponding positive eigenfunction.
There exists tg > 0 such that for all ¢t > ty, we have fa(¢ ~u —v) >
f2(p — @ — s). Let § > 0 be such that v(tg) > 68. Then, for ¢t > to

vy 2 duge + fo(p— @ —s)v,  wv(to) 2 6D
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FIGURE 5.2. (1) The case that E, = E..; (2) The case that they are distinct.
The box represents the attracting order interval [E.y, Eu] k.

so [22, 26, Theorem 10.1] by comparison
v(t) > 6vectt )t > ¢,

This contradicts the boundedncss of the solution w(t) and we conclude
that w = E; is impossible. We have shown that w C [E.., Ei]k.

Theorem 2 in [24] establishes the convergence to a stable equilibrium
for an open and dense subset of §2. u]

Figure 5.2 illustrates two cascs of Theorem 5.2.

A positive equilibrium of (2.4) is an cquilibrivm w = (u, v) for which
w > 0 and v > 0. It is a challenging problem to (ind all positive
solutions of (4.1) and it remains an open problemn to provide suflicient
conditions for the uniquencss of a positive equilibrium (E.. = E,)
under the hypotheses of Theorem 5.2. This same issue is unresolved
in the case of the Lotka-Volterra system with constant coefficients and
diffusion. See [3] and [4].

Because of the monotonicity properties of (2.4), the stability of a
positive equilibrium (u,v) is determined by a single simple eigenvalue
of the eigenvalue problem
(5.7)

AU = dUsg + [fi(¢ —u—v) = f1(¢ —u—v)ulU = fi(¢ — v —v)uV

AV = dV,, — fold —u—0)oU + [fa(d — v —v) — fo@ —u—vp]V
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where U and V must satisly the same boundary conditions as u and
v (see (2.2)). A standard application of the Krein-Rutman Theorem,
as in [1, Chapter 1, Section 3], implics that (5.7) has a unique real
eigenvalue, A = A, which is strictly larger than the real part of all
other eigenvalues and is simple and that there exists a corresponding
eigenfunction W satisfying 0 <x W. The positive equilibrium (u,v)
is asymptotically stable (unstable) if A, < 0 (Ay > 0).

Just as we constructed a monotone heteroclinic orbit emanating from
Eq in case A > 0, a similar construction works at a positive equilibrium
w provided A, > 0. Indeed, two monotone heteroclinic orbits may
be constructed, one which is monotone increasing and conunects w to
a larger equilibrium (possibly E)), and another which is monotone
decreasing and connects w to a smaller equilibrium (possibly Ez).
These orbits are constructed using the line segments w & AW where
0 < h < hg, 0 <x W is the principle cigenfunction of (5.7) and hg > 0
is sufficiently small.

In our next result, we address the stability of the equilibria in
Theorems 5.1 and 5.2.

Proposition 5.3. (1) Let the hypotheses of Theorem 5.1 hold. If
alternative (1) of Theorem 5.1 holds then Ay < 0; #f alternative (2)
holds then A, = Ag, <. If Ay <0, allernative (2) holds and A, <0,
then there exists an equilibrium w salisfying By <x w <k E, and
Ay > 0.

(2) Let the hypotheszs of Theorem 5.2 hold. Then A, < 0 and
Ave = Ap,, <0. If these equilibria are distinct and A, < 0 and A, <0
then there exists an equilibrium w satisfying Fo. <x w <i FE. and
Ay 2 0.

Proof. If the hypotheses of Theorem 5.1 hold and alternative (1) holds
and As > 0 then we may argue exactly as in the proof of Theorem 5.1
for the case of Fy, that B is unstable from above (i.c., for the semiflow
restricted to {w : E < w}). As it is obvious from alternative (1)
of Theorem 5.1 and standard comparison arguments that E, is stable
from above, we conclude that Ag < 0.

Suppose that alternative (2) of Theorem 5.1 holds. If A, > 0 and
0 <yx W, is the corresponding eigenfunction of (5.7) where w = E,
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then we may argue exactly as in Theorem 5.1 for the case of Ej, that
for small positive b, T(t)(E. + hW) converges to E;. But this would
contradict (2) of Theorem 5.1. We conclude that A, <0.

Suppose that (2) of Theorem 5.1 holds and A, < 0 and A, < 0. The
arguments used in the proof of {16, Lemma 3.1] can be used to prove
the existence of an equilibrium wy satislying Eo <x wo <k FE.. If
Aw, > 0 then we are done; if Ay, < 0 then the same argument gives
an equilibrium wy satisfying wo <x wi <k E.. Again, if Ay, 20
we are done while if A,, < 0 then we find another equilibrium w;
satisfying w; <g wy <y FE.. Either eventually this process yields
an equilibrium wy, satisfying A, < 0 or we may construct a sequence
{wyn} satisfying By <x wn <k wny1 <x E.. Since the sequence
is monotone and precompact, w, — w as n — o0 where w is an
equilibrium necessarily satisfying A, = 0. In cither case, we can find
an equilibrium w € [Ey, E,]) satisfying A, > 0.

Suppose that the hypotheses of Theorem 5.2 hold. From above, we
know that A, < 0 and a similar argument cstablishes that A,, < 0.
If both inequalities are strict then we argue as above to obtain an
equilibrium w as asserted. This completes our proof. D

Remark 1. Consider the case that F,, # E. and make the generic
assumption that A, < 0 and A,. < 0. By Proposition 5.3, there cxists
an equilibrium w satisfying F,. <) w <y £, for which A, > 0.
Let’s make the generic assumption that strict inequality holds, that is,
that w is unstable. In this case, we may argue cxactly as in the proof
of Theorem 5.1 where we constructed a monotone heteroclinic orbit
emanating from Ej, that there exist two monotone heteroclinic orbits
Ui : (~o00,400) = 2, i = 1,2, and two equilibria w; and wy satislying
Ay, €0 and

Eu <k w; <k Ui(t2) <x Ur(t1) <x w <g Ua(t)
<k Uslta) <y wz <k E.

whenever t; < to and

Ui(t) = w, t— —00
U;(t) = w;, t — oo.
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L]

Wi

Wy

FIGURE 5.3. The monotone heteroclinic orbits of Remark 1. Of course
wy = E, or wy = E.. are possible.

Figure 5.3 illustrates the equilibria and the lieteroclinic connections.
Clearly, this process can be continued provided the cquilibria w; are
nondegenerate.

Remark 2: If both A; < 0 for ¢ = 1,2 so that F, and F; are
asymptotically stable, then it can be shown that there is an equilibrium
w satisfying Fe <xg w <y Ej and A, > 0. A proof of this can be
given using degree theory and is technical since one must account for
the unstable equilibrium FEy. A proof in the finite dimensional case,
which can be extended to include the present case, is given in {25,
Proposition E.2, Appendix E]. For a proof in the case of an infinite
dimensional discrete model of competition, sce [8].
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