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GLOBAL STABILITY FOR A CLASS OF PREDATOR-PREY
SYSTEMS*

SZE-BI HSU! AND TZY-WEI HUANG?!

Abstract. This paper deals with the question of global stability of the positive locally asymp-
totically stable equilibrium in a class of predator-prey systems. The Dulac’s criterion is applied and
Liapunov functions are constructed to establish the global stability.
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1. Introduction. The question of global stability in predator-prey systems is
an interesting mathematical problem. When the system has a unique positive equi-
librium, it is often conjectured that local and global asymptotic stability of the equi-
librium are equivalent.

Several well-known methods have been used to prove global stability of the unique
positive equilibrium of a predator-prey system. In [G] and [HSU}, the authors con-
struct a Liapunov function for the predator-prey system and establish the global
stability by LaSalle’s invariance principle [H]. The second method is to employ the
Dulac criterion to eliminate the existence of periodic orbits and prove the global sta-
bility by the Poincaré-Bendixson theorem. Interested readers may consult [HHW1]
and [K]. The third method is the method of comparison. In [CHL), Cheng, Hsu, and
Lin provided some important and effective criteria for the global stability of the posi-
tive equilibrium by the comparison method. The method is basically geometric. The
authors compare the trajectories of the system with that of an auxiliary system which
is obtained by “mirror” reflection. The method was generalized by Liou and Cheng in
[LC] and by Kuang in [K] for a Gause-type predator-prey system. The fourth method
is the method of limit cycle stability analysis. Cheng, Hsu, and Lin [CHL] were the
first to prove global stability by this method. The idea of this method is to prove
the nonexistence of periodic solutions by contradiction. Suppose there exist periodic
orbits, and we are able to show that all periodic orbits is orbitally asymptotically
stable. Then the uniqueness of the limit cycle follows. If the positive equilibrium is
locally asymptotically stable, we obtain the contradiction that it is in the interior of
a stable limit cycle. Interested readers may consult [CHL], [BHW], and K]

In this paper we study the global stability property of the following predator-prey
system:

gd—:: =TT (1 - %) - yp(z),

R )

z(0) > 0, y(0)>0, 7,5 K,h>0,
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764 SZE-BI HSU AND TZY-WEI HUANG

where z is the population of the prey and ¥ is the population of the predator. In
(1.1) we assume the prey grows logistically with carrying capacity X and intrinsic
growth rate 7 in the absence of predation. The predator consumes the prey according
to the functional response p(x) and grows logistically with intrinsic growth rate s and
carrying capacity proportional to the population size of prey. The parameter h is the
number of prey required to support one predator at equilibrium when y equals z/h. In
[HOJ, the functional response p(z) is classified into three types. When the functional
response p(z) is of type 1, i.e., p(z) = mz, then we have the following Leslie-Gower
model [LG]:

3—? =TT (1 - }i{) - MY,

(1.2) dy _ B @)}
at Y [8 (1 )|’
z(0) > 0, y(0) .~ 0.

When the functional response p(z) is of type 2, in particular, p(z) = Ais, then we
have the following Holling-Tanner models [Mj, [MAY], [R], [T}:

dz Ty me
husdn 1— =) - ==
a ( K/ Axa?
(1.3) dy _ 1— hy
at = Y° Z !
z(0) >0, y(0) > 0.
The saturating predator functional response %= used in (1.3) is of Michaelis-Menten

type in enzyme-substrate kinetics. The parameter m is the maximum specific rate
of product formation, = is the substrate concentration, and A (the half-saturation
constant) is the substrate concentration at which the rate of product formation is
half maximal. The functional response AL’_?; was proposed by Holling [HO] for “non-
learning” predators. The label nonlearning is a.bit misleading because even predators
capable of learning should exhibit this type of response when given only one type
of prey for which to search. According to Holling’s derivation [HO], [HHW2], R},
m = 1/t, and A = E%Z? where t5, is the handling time per prey item and c is the
encounter rate per unit prey density.
When the functional response p(z) is of type 3, in particular, p(z) = G o5 :

T (B7%)
(see [S]), then we have
d T maz?
== P R
dt “’( K) A+ 2)B+2)”

(1.4) %:y[s (1—%)]

z(0) > 0, y(0)>0.

The function (—A-%“(%:I—) is an S-shaped curve. The sigmoidal-type curves are indica-
tive of predators which show some form of learning behavior in which, below a certain
level of threshold density, the predator will not utilize the prey for food at any great
intensity. However, above that density level, the predators increase their feeding rates
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until some saturation level is reached. Holling reasoned that these animals tend both
to learn slowly and to forget the value of a food unless they encounter it fairly often.
Holling gave some field evidence that an S-shaped functional response is typical for
vertebrate predators with alternative prey available. ‘

We shall show in §2 that the positive equilibrium of (1.2) is a global attractor
in the positive cone. However, for some parameters in the Holling-Tanner model
(1.3), the positive equilibrium is unstable, and the model produces the interesting
phenomenon of stable limit cycle (see Theorem 3.2 (iv)). A study of several pairs
of interacting species, ranging from house sparrows and European sparrow hawk
to mule deer and mountain lion [T}, shows that the theoretical predictions of (1.3)
based on estimated parameter values are broadly in line with practical reality. The
local stability analysis of the positive equilibrium of the model (1.3) was done in
[MAY] and [M]. In [FM] the authors showed that the system (1.3) is persistent. In
[L] the author analyzed the following predator-prey model which is a generalization
of (1.3): ‘

%?’t- = zg(z) — yp(z) — 2f(z),
(1.5) d
EZZ" = yl(y/z),

where the constant z is the generalist predator density. The model (1.5) describes the
interaction of the small rodents and their predator, Tengmalm’s owl, in Fennoscandia.
It attempts to explain the multiannual microtine rodent cycle observed in boreal
Fennoscandia.

In §2 we derive the criterion for the local stability of the positive equilibrium of
(1.1). The models (1.2), (1.3), and (1.4) are written in nondimensional forms. Some
global results are also given for (1.2), (1.3), and (1.4).

In §3 we analyze the model (1.3). The global stability property of (1.3) is estab-
lished by the application of the Dulac criterion and the construction of the Liapunov
function. The application of the Dulac criterion to the system (1.3) is rather com-
plicated. We use the technique of separation of variables to construct an auxiliary
function H(z,y) for the Dulac criterion in the form of ¢(z)r(y). Unfortunately, the
application of Dulac criterion does not work for all parameter ranges. For the un-
solved part, we first convert (1.3) into a Gause-type predator-prey system. Then a
Liapunov function is constructed to obtain a partial result.

In §4 we analyze the model (1.4) by the methods similar to those in §3. The
analysis of (1.4) also does not cover all parameter ranges.

Section 5 is the discussion section, where the biological interpretations are given
for the results in §§3 and 4.

2. The models. We write the models (1.2), (1.3), and (1.4) in nondimensional
forms. Let

t= t, i(f) = m(t)7 ’g(l?) = my(t) s
2.1) K rK
‘ s sh A B
6""7:7 ‘B“‘Fn_v a"—_}?(—’ b——}%
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Then (1.2), (1.3), and (1.4) take the forms

dz
(2:2) W, (s-pY
dt y (6 ﬂx) ’
z(0) > 0, y(0) >0,
dz T
& (1 —2) =
dt #(l - 2) otz
(2.3) gg . Y
dt — y (5 ﬁz) ’
z(0) > 0, y(0)>0,
and
dz z?
® -z —
i S Rl e T o 1
(2.4) dy _ Y
dt_y(6_ﬂ5>’
z(0) >0, y(0) >0,
respectively.
For simplicity, we consider the following general model of (2.2), (2.3), and (2.4):
dx
= = 29(2) ~pl@)y,
(2.5) W (5-pY
a7 (6 ﬂz> !

z(0) >0, y(0)>0,

where g(z) and p(z) satisfy

(H1) g(1) = 0 and ¢'(x) < 0 for z > 0,

(H2) p(0) =0, p'(z) >0 for all z > 0.

The following lemma states that the system (2.5) under the hypotheses (H1) and
(H2) is as “well behaved” as one intuits from the biological problem. The proof is
easy and we omit it.

LEMMA 2.1. Let (H1) and (H2) hold. The solutions of (2.5) are positive and
bounded, and furthermore, there ezists T > 0 such that z(t) < 1, y(t) < 6/B for
t>T.

Obviously E; = (1,0) is an equilibrium of (2.5). Hypotheses (H1) and (H2)
immediately imply that the graph of g(z) and p(z)é /B has a unique intersection z*
satisfying 0 < z* < 1. Thus system (2.5) possesses a unique positive equilibrium
E* = (z*,y*), where y* > 0 satisfies

. _s
26) V=@ B

The variational matrix of (2.5) takes the form

J= [3‘11,]‘12],
J21, J22
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where
in=— (zg(x)) - p'(z)
Jiui = dz g P Y,
Jiz = —p(z),
AU\
Jja=p (w) )
. 20y
=§—- —.
J22 z
At Eq,

From (H1), —j—z(zg(z)) |z=1< 0. The equilibrium E; is a saddle point with the positive
z-axis as its stable manifold.
At E*,

J(E*) = (%(zg(z)) lo=ar —p'(z")y",  —p(z7) >

B2, § - 2pL

From (2.6), we rewrite

9 (29(2)) lomar —2(@")" = p(a" )W (5"),

dz
where h(z) = z;((f)) is the prey isocline of (2.5). Then
p(z*)W (z*), —p(z*)
J(E*) = 2
& -6
ﬁ 1

The eigenvalue A of J(E*) satisfies
2 X6 = pla W (@) + 6p(a") (5 W) ) =0,

Hence E* is locally asymptotically stable provided

(2.7) 6 —p(z*)W (z*) >0

and

(2.8) é - h'(z*) > 0.
B

In particular, from (2.7) and (2.8), E* is locally asymptotically stable if A'(z*) <0,
i.e., the prey isocline y = h(z) is nonincreasing at x = z*.

In the following we present a sufficient condition for the global stability of E* for
the system (2.5). The condition says that if the horizontal line y = y* divides the prey
isocline y = h(z) into two disjoint parts, then E* is globally asymptotically stable in
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the positive cone. In particular, if the prey isocline is nonincreasing on 0 < z < 1, E*
is globally asymptotically stable.
THEOREM 2.2. Let (H1) and (H2) hold. If

(m—z*)(a;g((;)) —y*) <0 for 0<z <1, z#25,

then the solutions of (2.5) satisfy

(2.9) lim z(t) =" and zlim y(t) =y".

t—o0

Proof. Construct the following Liapunov function:

TE—z Y-y
Vizg,y)= | =——d dn,
(z.9) /I () €+C/y- n

where ¢ > 0 is to be determined. Then the time derivative of V computed along the
solutions of (2.5) is

p () o)

z T

p(z)

+ C,B(y _ yv)y*(x - m*)w;*m*(y - y*) )

Let c= BE- Then

v &) (fzg(z) y> _cﬁ(y—y*)"’ <0

T p(x) - T

for 7,y > 0. Then (2.9) follows directly from Lemma 2.1 and LaSalle’s invariance
principle [H].

. Remark 2.3. For the system (2.2), the prey isoclineisy = 1 —z, which is monotone
decreasing. For the system (2.3), the prey isocline is y = (1 - z)(z + a), which is
monotone decreasing provided a > 1. Hence, for either case, the positive equilibrium
E* = (z*,y*) is globally asymptotically stable.

Remark 2.4. For the system (2.4), the prey isocline is y = h(z) =
An easy computation yields

(1=2)(a+z)(b+z)
u .

Q(z)

W) =<2,

where
Q(z) = =22 + z%(1 — (a + b)) — ab.

If a+b> 1 then A'(z) < 0 for all z > 0.
Let a + b < 1. Since

Q'(z) = 2z((1 - (a +b)) - 32),
Q(0) = —ab and Q1) =—(a+b)—ab-1< 0,
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then h(z) is monotone decreasing if and only if

Q(l—(a+b)) <0

3
or
(1 - (a+1b))* < 27ab.
If
(2.10) (1 - (a+b))* > 27ab,

then the prey isocline y = h(z) has one local minimum and one local maximum in
the interval [0,1]. From Theorem 2.2, if

(i a+b>1 or

(ii) a+b<land (1~- (a+b))® < 27ab,
then E* = (z*,y*) is globally asymptotically stable.

3. Holling—Tanner model. In this section we restrict our attentions to the
global stability of the system (2.3),

dzx T
P =z(l—z)~ panps flz,y),
(3.1) dy _

z(0) > 0, y(0)>0.

For the local asymptotic stability of E* = (z*,y*), it suffices to check (2.7) and (2.8)
with h(z) = (1 — z)(a + z). Then (2.8) becomes

¥ .
;——((1-—@)—2$)>0

or
—a—:l—;[(l —z*)a+z*) - ((1 —a) — 2z")z*] > 0,

which is automatically satisfied. (2.7) can be rewritten as the following:

(3.2) P(z*) > 0,
where
(3.3) P(z) =222 4 (a + 6 — 1)z + aé.

LEMMA 3.1. The equilibrium E* = (z*,y*) of (3.1) is locally asymptotically
stable if (3.2) holds, and E* is an unstable focus or node if P(z*) <O0.

Our basic hypothesis is (3.2), which implies that the positive equilibrium E* =
(z*,y*) is locally asymptotically stable. We divide the condition (3.2) into two cases.

Case 1. P(z) > 0 for all z > 0.

We note that from (3.3), P(z) > 0 for all z > 0 if and only if

(3.4) a+62>1
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or

(3.5) a+6<1 and (1-a—8)%—8ab<0.
Case 2

(3.6) a+6<1 and (1—a—6)°—8as>0.

Then P(z) = 2(z — a1 )(z — a2), where

1 2
alzz[l—a—é—-\/(l—a—& —8a6],

1 2
agzz{l—a—-é-{-\ﬂl—a—é) —8a6],
0<ay <ap < 1.

The condition (3.2) for local asymptotic stability can be reformulated as

(37) ag <z¥ <1
or
(3.8) 0<z* <a.

The instability condition for the equilibrium E* is
(3.9) a) < z¥ < .

For fixed 6§ > 0 satisfying (3.6}, the conditions (3.7), (3.8), and (3.9) can be expressed
explicitly in terms of the parameter 3 in the following:

(3.7) B> B,
(3.8)' 0<B<py,
(3.9) Bi < B < B,
where
fi= 0 i=1,2.

(‘i‘ - a;)(a+a;)’

We now state and prove our main results in this section.

THEOREM 3.2.

(i) Let (3.4) or (3.5) hold. Then the equilibrium E* = (z*,y*) is globally asymp-
totically stable in the interior of the first quadrant.

(if) Let (3.6) and (3.7) hold. Then the conclusion of (i) holds.

(iii) Let (3.6) hold. For (8 > 0 sufficiently small, z* = z*(B) is sufficiently close
to zero and (3.8) holds. Furthermore, the conclusion of (i) holds for § > 0
sufficiently small.

(iv) Let (3.9) hold. Then there ezists a limit cycle for (3.1).
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Proof. From Lemma 2.1 the solution (z(t),y(t)) of (3.1) is positive and bounded.
If (3.9) holds, then the equilibrium E* is an unstable focus, and part (iv) follows
directly from the Poincaré-Bendixson theorem. From the assumptions in (i) and
(ii), the equilibrium E* is locally asymptotically stable; by the Poincaré-Bendixson
theorem it suffices to show the global stability of E*, provided we are able to eliminate
the existence of periodic solutions. We prove (i) and (ii) by the Dulac criterion. For
(i), we construct

T

-1
H(m,y)=<a-_—i_—;> y 2, >0, y>0.

Then from (3.1) and the hypothesis in (i), an easy computation yiclds

O(fH)  O(gH) H(=,y)
5z + oy a+$(—P(m))§0, >0, y>0

Hence there are no nontrivial periodic solutions, and we complete the proof of (i).
For part (ii), we let

H(z,y) = £(z)r(y),
where £(z) and r(y) will be determined. Then
O(fH) , 9(¢H)

b= T o
- of 9 Lt @)
= e 5L+ 50 + 15+
_ i@y (@)
_H(a:,y)[l+6 2z + o) z(l-zx) ata) (a+ g(z):v(a-i-z))
"W s BY (o W)
# - B (2 T |
Let r(y) = y*2, where R will be determined. Then
"y, _
M~
and
A= H(x,y){l ~ 6+ RS — 2z + %m(l —z)
(3.10)

_y[%@ " (a:m)z <a+ Zé((j))x(a”))”

In (3.10), we choose £(z) = -z e”*. Then {(z) satisfies

—ﬂ—}i+ ! 2(a+£/(z))a:(a+x)>=0

or
é’(i) _ _atz BR a
(311 (z) z [ z (a+m)2}
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From (3.10) and (3.11), it follows that

A=H(.’E,y)<1—6+R5_2$__ﬁR(1~I)(a+x) B a(l—;;;))

(3.12) r a-+z

= H(z,y) I(z).

We rewrite I(z) in (3.12) in the following form:

Iu)z{Ré—ﬁRu‘x¥a+mq-— ! [a—am+&r+ﬂ@x+6—lﬂ

otz
:Rﬁ{u-m*iswm*)_(1-—m)ﬂfa+z)}_a_jqp(m)
:Rﬁm"ﬂ¥$+5)—a+mu—ag@—ag

To make I(z) <0 for 0 <z <1, we shall determine R > 0 satisfying

(3.13) %}E(I + a) (:1: + %) (& - 2%) < 3( - o)z —0z) for 0<z < 5
Let
— 113(1: -(11)(16—&2)
W(z) = (z+a)(z + =)(z —z*)
and
_z(z— o)

Q(z) = GG+ )
Then
(3.14) - W(z) = Q(z) + (z* — a2) z(z — o)

(z+a)(z+ =)(z - z*)’

For z € (0,01) U (@2,z*), (3.13) holds for any R > 0. From (3.14), the hypothesis
z* > a2, and the fact that Q(z) is increasing on (@1,1), it follows that

(3.15) W(z) < Q(z) € Qaz) for oy <z <02

Choose R > 0 such that %ﬁ = Q(azp). Then for z* <z <1, we have

R
(3.16) Wiz) > Q) > Qles) = 5
From (3.16) and (3.15), it follows that (3.13) holds. Thus we complete the proof for
part (ii).

To prove part (iii), we first reduce the system (3.1) to a Gause-type predator-prey
system by the following change of variable. Let

(3.17) u = yé(z),
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where £(z) is to be determined. From (3.1) and (3.17), it follows that

(3.18) %=u{<w(1—$)€g”(%)+5> ~y<i<(f))ﬁ‘x+§>}

Choose £(z) satisfying

(z)

(3.19) (1l —z) )

+6=0,

i.e.,

and

Thus we reduce (3.1) to the following system:

dz T U
P Ry P}

(3.20) du _ u?g LAY
dt zé(z)(1 — z)(a+z) ( +a:*>( =",
z(0) > 0, u(0) >0.

Consider the prey isocline of (3.20),

(3.21) u= h(z) = (1 -z){a+z)(z)

From (3.3), (3.19), and (3.21), it follows that

K (z) = {(z) {—2z —a+1-(1-z)(a+z) ;;HE_T)}
(3.22) ey

T

Thus the prey isocline v = h(z) has a local maximum and a local minimum at € = a2
and © = ay, respectively. Obviously h(1) = 0,lim_.o+ h(z) = +oo, and h'(z) > 0
for a; < = < ap and B/ (z) < 0 for z € (0,) U (az,1). Let & satisfy £ > 0 and
h(z) = h(az). Then 0 < & < ai. (See Fig. 1.) Let

(3.23) 0<z” <
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FiG. 1.

then it follows that
(3.24) (z — z*)(h(z) —u*) <0 for 0<z<l, z#z,

where u* = h(z*). Construct the following Liapunov function
T * u *®
-1 1 n—-u
(3.25) Viz,u) = / ———dn + —/ ——dn,
@) = .. a) B o M

where Q(z) = z2(1 — z)/(z + )
Then an easy computation and (3.24) yield

_ (z+ )

T z(1-z)(a+ )z

1% )(z-—x*)(h(a:)—u*) <0
Then the global stability of the equilibrium (z*,u*) of (3.20) follows directly from
LaSalle’s invariance principle. We note that when we fix é, then Z = #(8) is fixed.
Thus z* = z*(8) is a function of B satisfying limg—o z*(B) = 0 and, for B8 >0
sufficiently small, z* < Z. Thus (3.23) is satisfied, and we complete the proof of
part (iii). .
Remark 3.3. When & < z* < o, the positive equilibrium E* = (z*,u*) of
(3.20) is locally asymptotically stable. Unfortunately we are unable to establish the
global stability of E*. However, with the aid of the Liapunov function V in (3.25)
we are able to estimate the domain of attraction of E*. Let xo satisfy o) < o < 02,
h(z*) = h(zo) (see Fig. 1), and ¢ = V(zo, h(zo)). Then it is easy to verify that the set
{(z,u) : 0 < V(z,u) < co} is contained in the domain of attraction of E* = (z*,u*).

4. Model with type-3 functional response. In this section we discuss the
global stability of the system (2.4),

dz z2
It =z(l—1z)— my= f(z,9),
(4.1) dy _

i (5 - B%) = g(z,y),
z(0) > 0, y(0)>0.
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In Remark 2.4, we prove that if (i) a+b > 1 or (ii) a+b < 1 and (1-(a+ b))® < 27ab,
then the positive equilibrium E* = (z*, y*) is globally asymptotically stable. Hence
we restrict our attentions to the following case:

(4.2) a+b<1 and (1— (a+b))° > 27ab.

Under the assumption (4.2) the prey isocline y = h(z) = “—'ﬂ?ﬂy—'z—) has one
local minimum and one local maximum in the interval {0,1] and limg_o+ h(z) = +co0,
h(1) = 0. For the local stability of E* = (z*,y*), it suffices to check (2.7) and (2.8)
with h(z) = Qﬁ(_g?)_ﬁéﬁl It is casy to verify that (2.8) is satisfied and {(2.7) can

be rewritten as the following:

(4.3) | P(z*) > 0,
where
(4.4) P(z) = 22° + (a + b — 1+ 8)a® + (a + b)6z + ab(1 + 6).

LEMMA 4.1. The equilibrium E* = (z*,y*) of (4.1) is locally asymptotically
stable if (4.3) holds, and E* is an unstable focus or node if P(z*) < 0.
To find a necessary and sufficient condition for (4.3), we consider P(z) and

(4.5) P'(z) =6z +2(a+b—1+8)z+ (a+b)é
From (4.4), if ‘
(4.6) a+b—1+62>0

then P(z) > 0 for all 0 < z < 1. From (4.5), if

(4.7) a+b—1+6<0
and
(4.8) D=(a+b—1+86)7~6(a+b)s<0

then P'(z) > 0 for = > 0, and hence P(z) > 0 for al0 <z <1 If D>0and (47)
holds, then from P’(0) > 0 and P’(1) > 0 it follows that P'(z) = 0 has two positive
roots 0 < ¢; < ¢ < 1, where

_ —(a+b—1+6)——\/—§

ci =

6
and
—(a+b-1+8+VD
(49) Co = ( 6 ) .
If
(4.10) P(c2) >0

then P(z) >0 forall 0 <z < 1. If

(4.11) P(cy) <0
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then P(z) = 0 has two positive roots ay, &2 satisfying 0 < ¢ < o3 < cp < @2 < 1,
and P(z) can be written as

(4.12) P(z) = 2(z + ao)(z — 1) (z — @2),

where ag > 0. Under the assumption (4.11), the local asymptotic stability condition
(4.3) can be formulated as

(4.13) 0<zr <o
or
(414) g < ¥ < 1.

We now state and prove our main results in this section.

THEOREM 4.2.

() If P(z) 20 forall0 2z < 1 then the equilibrium E* = (z*,y*) is globally

asymptotically stable in the interior of the first quadrant.

(ii) Let (4.11) and (4.14) hold. Then the conclusion of (i) holds.

(iii) Let (4.11) hold. For >0 sufficiently small, z* = z*(B) is sufficiently close
to zero and (4.13) holds. Furthermore, the conclusion of (i) holds for §>0
sufficiently small.

(iv) If oy < z* < @z, then there exists a limit cycle of (4.1).

Proof. When a; < z* < a2, the equilibrium E* is an unstable focus or node.
Thus (iv) follows directly from the Poincaré-Bendixon theorem. As in Theorem 3.2
(i) and (i), it suffices to construct a function H(z,y) for Dulac’s criterion.

Let

H(z,y) = () y? >0 y>0,

where

3:2

) = G i e
Then from (4.1) and the hypothesis in (i), an easy computation yields

o(/H) , oH) ~P(z)
9z Oy (a+z)(b+z) ~

= H(z,y)

Hence we complete the proof of (i).
For part (ii), the proof is similar to that in part (ii) of Theorem 3.2. Let H(z,y) =
&(z)r(y), where

(4.15) r(y) =y
for some R > 0 to be chosen, and £(z) satisfies £(z) > 0,

BR ¢(z)
4.16 — —c =
(4.16) R p@)+ Gar) =0
where

2

(417) p(z) =
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Then from (4.15) and (4.16)

\_ OUH) | OgH)

0x Oy
(4.18) _ H(:c,y){l — 6+ R6— 2+ %x(l —a) - y{%@ + (@) + i((;)p(z)} }
= H(.’E, y)I(:v),
where
(4.19) I(z)=1-6+ R6—2z — p—-(lm-j(ga—? +p'(m)>m(1-—m).

From (4.17), we have

N R b)z? + 2abzx
(4.20) p(z) = USSR

From (4.17), (4.20), and (4.4), a routine computation yields

(4.21)
_ (a+z)(b+z)(1~=x) 1
I(z) = R6 - BR . +(a+z)(b+a:)
A -8) - 22)(z? + (a + b)z + ab) — [—(a + b)z? + z(—2ab+a+b) + 2ab)}
e aplat D)0+ 2)1tz)  Pla)
=R - pR z2 (a+z)b+zx)

From (4.1) and (4.12) we rewrite I(z) in the following form:

_ v (a+z)(b+z)(1 1) 20z + ag)(z — ) (T — @ )
I(z) = RO {;‘: B z? ] B (c(L)-i— z)(b+ ) :

_ RB[(CH- ) b+z )1~z (a+z)b+2)(1- :c)]

(=) 2

T+ ag)(z — an)(z — o2)
(a+z)(b+1z)

!

(z - z*)(z® + Az + b) 2z + ao)(z — a1)(z —’ag)

= RS z2 (a+z){b+x)

7

where

A= -m-l:(ab(gl:—l) +(a+b)> > 0.

To make I(z) <0 for 0 <z <1, we shall choose R > 0 satisfying

(4.22) %}E( +z)(b+ ) <$2 + Az + Z—?) (z —z*) < %(z + o)z — o )z — a2).
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Let
2 - —
W(z) = z°(z + o)z — oy )(z - as)
(a+z)(b+z)(2? + Az + 2)(z - 2%)
and
z? THay T - o
Q=) = 2+ Ac+ 2 a+z btz

Then

% (z + ap)(z — a3)
(a+2z)(b+z)(22 + Az + ;‘—f’)(:c —z*)

(4.23) W(z) = Q(z) + (z* — ay)

For z € (0,1) U (a2, z*), (4.22) holds for any R > 0. From (4.23), the hypothesis
T* > a2, and the fact Q(z) is increasing on (a1,1), it follows that .

(4.24) W(z) < Q(z) < Q(ag) for a3 <z < as.

Choose R > 0 such that %13 = Q(a2). Then for z* < z < 1, we have
R

(4.25) W(z) > Q) > Qloz) = B,

From (4.24) and (4.25), it follows that (4.22) holds. Thus we complete the proof of
part (ii).

As we did in part (iii) of Theorem 3.2, we let u = y€(z), where ¢(z) satisfies (3.19)
or {(x) = (—1—;—1)6; then a routine computation shows that (4.1) can be reduced to the
following system:

dz _ 14 z? U
@ =2l _z)_(a-i-:c)(b-{-a:)z—(zc—)’

(4.26) du Bu? . ab
A s s s Al ("”2 A 5‘*‘) ’

z(0) >0, u(0) > 0.

Consider the prey isocline of (4.26),

(4.27) w=H(z) = L= et ;ﬂ)(b +2)t(z)

From (3.19) and (4.4), an easy computation yields

H'(@) = 55 {2t (z) (1 - 2)(a + 2)(b + 2) + 26()[(1 - )0 + ) + )]

~(l-z)a+2z)(b+ r)l(z)}

(4.28) %l{m(l —z)(a+z)(b+ m)(

21 a:)) +z[(1 - z)(a + z)(b + z)]’

—(1-z)(a+ a:)(b+m)}

= —%(:BT)P(:E)
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Thus the prey isocline u = H (z) has a local maximum and local minimum at z = a9
and T = a,, respectively. Obviously, H(1) = 0, lim;_,o+ H(z) = 400, and H'(z) >0
for oy < 7 < 0z, and H'(z) < 0 for z € (0,1)U (a2, 1). The proof of part (iii) follows
directly by constructing a Liapunov function

-z 1 [“n—u*
V:/ —d +~/ ——dn,
z* Q(n) 7 /8 u* 772

z%(1 - x)
22 + Az + 27

where
Qz) =

As in Theorem 3.2 (iii), we complete the proof of part (iii).
Remark 4.3. Under the assumption (4.2), the prey isocline h(z) = Q‘—Z)(L?-)-Qﬂ

has precisely one local minimum and one local maximum at 23 and 3,0<z) <z2 < 1.

We claim that under the assumption (4.11), we have z; < a1 < ap < T2, 1.e., K(z) >0

for all @3 < & < ap. From (4.27) we have

(4.29) zH(z) = h(z){(z).
Differentiating with respect to = yields

(4.30) cH'(z) + H(z) = h'(z)€(z) + h(z)¢ (z).

Since H(z) has a local minimum and a local maximum at £ = a3 and T = Qg,
respectively, and £(z) > 0, € (z) <0 for 0 <z < 1, from (4.30) it follows that

B (o) = H{a;) ;(’;(i‘;‘i)gl(ai) >0

for i = 1,2. Thus we complete the proof of the claim.

5. Discussion. In this paper we restrict our attention to the analysis of the
predator-prey models (1.3),

-0)(-2)]
2(0) > 0, (0) >0,
and

ﬁf_m(l_f_)____ﬂfz___
dt ) AroBro)”

N )

z(0) > 0, y(0) >0
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These models assume the prey (which is usually referred to as the herbivore {T]) grows
logistically with intrinsic growth rate 7 and carrying capacity K in the absence of
predation. The predator consumes the prey according to the functional response p(z)
and grows logistically with intrinsic growth rate s and carrying capacity proportional
to the population size of the prey. The parameter h in the second equation of (1.3)
and (1.4) is the number of herbivores (prey) required to support one predator at
equilibrium when the predator density y equals z/h. The intrinsic growth rate s affects
not only the potential increase of the predator population, but also its decrease. If y
is greater than «/h, the predator population will decline, and the speed of its decline
is directly proportional to the instrinsic growth rate s. Species of small body size and
early maturity have high intrinsic growth rates. Frequently they also have low survival
rates and short lives, and thus their population tends to both grow and decline rapidly
[T). The saturated predator functional response p(z) used in model (1.3) is 435, which
is of Michaelis-Menten type with half saturation constant A and maximal specific rate
m. According to Holling’s derivation, A =1 /ctp and m =1 /tn where t; equals the
handling time per prey item and c¢ is the encounter rate per unit prey density [HOJ,
[HHW2]. The functional response is called Holling’s type-2 functional response, and
it suits the predators which have only one type of prey to search. The saturated
predator functional response p(z) used in model (1.4) is Holling’s type-3 functional
response (7;—;”)?—;3%—). The type-3 curve suits the predators which show some form
of learning behavior in which, below a certain level of threshold prey density, the
predator will not utilize the prey for food at any great intensity. However, above that
density level, the predators increase their feeding rates until some saturation level is
reached. The sigmoidal functional response is typical for vertebrate predators with
alternative prey available.

For the biological interpretations of Theorem 3.2 for model (1.3), there are three
important parameters a, 6, and B. From (2.1), a = A/K is the ratio of half-saturation
constant and the carrying capacity of prey, and 6 = £ is the ratio of intrinsic rate
of growth of predator and prey. The parameter § can be rewritten as 3 = 6 - %Lr—
Assuming that the growth of prey is not self-limited at equilibrium, hr is the number
of prey to replace the individuals killed by one predator per unit time, while m is the
maximal number of prey consumed by a predator per unit time [T]. The results in
Theorem 3.2 can be classified into the following cases.

Casel.a>1,ie., K <A

From Remark 2.3, if a > 1 then the prey isocline is monotone decreasing and the
cquilibrium E* is globally asymptotically stable. Hence, for the small prey carrying
capacity, the prey and predator approach constant values, and there is no limiting
periodic behavior. We note that in this case the result is independent of the sizes of
6 and .

Case Il.a<landa+62>1.

From Theorem 3.2(i) it follows that the equilibrium E* is globally asymptotically
stable when the prey carrying capacity K is greater than the half-saturation A, and
the ratio s/ is larger than 1 —a. Then the prey and predator approach equilibrium
E*, there is no limiting periodic behavior. In particular, when the intrinsic growth
rate s of the predator is greater than the intrinsic growth rate r of the prey, there will
be no limit cycle. We note that in this case, the result is independent of the size of B.

Case L. a+6 < 1, (1 —a—86)° —8a6 <0.

It is casy to verify that the necessary and sufficient condition for the above in-
cqualities is 6; < § < 1 —a where §; = 1+3a— 8aZ + 8a > 0. From Theorem 3.2(i),
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the equilibrium E* is globally asymptotically stable. Hence, when the ratio s/r is
not too small, the prey and predator approach equilibrium E*. We note that as in
Case 11, the result is independent of the size of 8.

Case IV. a+6 < 1, (1—a—6)° —8ab >0.

Then 6 satisfies 0 < § < 61. The numbers a;, o defined in §3 satisfy 0 < oy <
ap < 152, and the prey isocline of the system (3.1), ¥ = (1 — z)(a + z), attains its
maximum at T = %‘l There are three subcases.

Subcase (i). ap < z° < 1,16, (3.7) holds.

The condition is equivalent to (3.7), i.e., B > B2 where [ = U:-fm‘ Thus,
if § is sufficiently small (§ < 6,) and 8 is sufficiently large, then the trajectory of (3.1)
approaches the equilibrium E* as i — o0. Since ap < z* < land oz < l;——“— (thus,
in particular, if the equilibrium E* is at the right of the peak of the prey isocline),
then E* is globally asymptotically stable. We recall that 6 = 2 and 3=6- % When
the intrinsic growth rate of predator s is sufficiently smaller than that of prey, 7 and
the maximal consumption rate m is sufficiently small, then the prey-predator system
(1.3) has no limit cycle.

Subcase (ii). 0 < z* < a1, i.e., (3.8) holds.

The condition is equivalent to (3.8),ie., 0 < B < [y where B, = (T:&%%?LTXT)'
Thus if § and 3 are both sufficiently small (§ < 61,8 < 1), the equilibrium E*isa
stable equilibrium. Hence, when the intrinsic growth rate of the predator is sufficiently
smaller than that of the prey, and the maximal consumption rate is sufficiently large,
the system (1.3) has no limit cycle. '

Subcase (iil). oy < z* < a2, 1.e, (3.9) holds.

The condition is equivalent to (3.9, ie, A < B < (2. From Theorem 3.2
(iv), there exists a limit cycle for the predator-prey system. Thus it is a necessary
condition for the existence of the limit cycle that £ be sufficiently small. The condition
B; < B < P2 means that the maximal consumption rate cannot be too small or too
large for the existence of the limit cycle.

The biological interpretations of Theorem 4.2 for model (1.4) with type-3 func-
tional response are similar to those of model (1.3) with type-2 functional response. We
note that the constants A and B in the type-3 functional response are obtained from
the S-shaped curve by “curve fitting.” The results in Theorem 4.2 can be classified
into the following cases.

Case 1. ())a+b>1or (i) a+ b<land (1—(a+ b)) < 27ab.

The prey isocline of (4.1) is monotone decreasing, and the global asymptotic
stability of E* follows directly from Remark 2.4. From (2.1), we have a = '1% and
b= %. Hence, for small prey carrying capacity K, the prey and predator approach
constant values. The result in this case is independent of the sizes of § and 8.

Case Il a+b < 1and (1 - (a+b))3 > 927ab, 6§ > 1 (a+b).

From Theorem 4.2 (i) it follows that the equilibrium E* is globally asymptotically
stable. Under the conditions a + b < 1and (1 —(a+ b))® > 27ab, ie., the carrying
capacity K of prey is sufficiently large, if the ratio s/r is larger than 1 — (a+0b), then
the prey and predator approach equilibrium E*. In particular, when the intrinsic
growth rate s of the predator is greater than the intrinsic growth rate 7 of the prey,
there will be no limit cycle. We note that in this case, the result is independent of
the size of 8.

Case TIL a+b < 1, (1= (a+b))> >27ab; 0 <6 < 1—(a+b); (1 — (a+d) - 57—
6(a +b)6 < 0.
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As in Case III for model (1.3), the above conditions mean 0 < bp<b<1- (a+b),
where 6, = 2(a+b)+1—+/3(a + b)((a + b) +2). From Theorem 4.2(i), the equilibrium
E* is globally asymptotically stable. Hence when the ratio s/r is not too small, the
prey and predator approach equilibrium E*. The result is independent of the size
of 8.

CaseIV. a+b < 1, (1~ (a+b))* > 27ab; 0 < § < 1—(a+b); (1 — (a +b) - 6)%~
6(a +0)6 > 0; P(cy) > 0.

The condition (4.10), P(cz) > 0, means the ratio § is bounded away from zero.
It is easy to verify that when § = 0, we have cy = l—_-(;—*"lﬁ and P(cy) = ab —
%(1 ~(a+b))® < 0. The biological interpretation for this case is the same as in
Case III above.

Case V.a+b <1, (1= (a+18)*>27ab; 0 <6 < 1—(a+b); (1 - (a+b) —§)2 -
6(a + b)s > 0; P(Cz) < 0.

From the analysis in §4, the condition for asymptotic stability of E* is either
(4.13) or (4.14). The condition oy < z* < ¢ is the instability condition for E*.
From Remark 4.3, we have h'(q;) > 0, ¢ = 1,2, where h(z) = (—lﬂ(—a%)(b—f’l) is the
prey isocline of (4.1). Thus, in particular, if the equilibrium E*-is at the right of the
peak of the prey isocline or at the left of the bottom of the prey isocline, then E* is
a stable equilibrium. The biological interpretations basically are the same as those of
Case IV for the type-2 case. We omit them.

In §§3 and 4 we gave a global analysis of the asymptotic behavior of the well-
known Holling-Tanner model (3.1) and the model (4.1) with a type-3 functional re-
sponse. The mathematical results are by no means complete. In fact, we are unable to
prove the global stability of the positive equilibrium E* for the case (3.8), (4.13) in the
model (3.1) and (4.1), respectively. However, with a change of variable in (3.17) we
reduce (3.1), (4.1) to a Gause-type predator-prey system (3.20), (4.26), respectively.
By constructing a Liapunov function, we show that for 8 > 0 sufficiently small, E* is
globally asymptotically stable. :

There are two interesting problems that remain open. One is to prove the global
stability of E* for the case (3.8) and (4.13) for the model (3.1) and (4.1), respectively.
The other is the problem of the uniqueness of the limit cycle for the case a; < z* < as.
We conjecture that the reduced system (3.20), (4.26) should play an important role
in dealing with these problems.
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