Al

|5
CANADIAN A j?L D o
MATHEMATI UARTERLY } }
Volume 6, Number 2, Summer 1998 !

UNIQUENESS OF LIMIT CYCLES FOR A
PREDATOR-PREY SYSTEM OF
HOLLING AND LESLIE TYPE

SZE-BI HSU AND TZY-WEI HWANG

ABSTRACT. In this paper we study the uniqueness of limit
cycles of the Holling-Tanner model, an important predator-
prey model in mathematical ecology. We first transform the
system into a predator-prey system with Gause-type. The
reduced system is different from the classical one since the
prey isocline has two humps instead of one. We use the
method of reflections to estimate the Floquet exponent of the
limit cycle and derive a sufficient condition for the uniqueness
of limit cycles.

1. Introduction. In this paper we study the uniqueness of limit
cycles for the following Holling-Tanner model (10, 11]

_ 1 T mx
T K) Atz

(1.1) dy _hy
dt - Sy )

)

z(0) > 0, y(0) > 0,

where 7,m,s,h, A, K > 0.

The predator-prey system (1.1) assumes the prey grows logistically
with intrinsic growth rate r and carrying capacity K in the absence of
predation. The predator consumes the prey according to Holling type
IT functional response mz/(A+ z) and grows logistically with intrinsic
growth rate s and carrying capacity proportional to the population size
of the prey. The Holling-Tanner model is an important and interesting

Received by the editors on November 13, 1996, and in revised form on April 17,
1997,
AMS Mathematics Subject Classification. 34C35, 92A17.
ey words and phrases. Uniqueness of limit cycle, Holling-Tanner model,
predator-prey system, Liapunov function.
First author ‘was supported by Grant NSC 85-2121-M-007-029 from the National
Council of Science, Republic of China

Copyright ©1998 Rocky Mountain Mathematics Consortium

91




92 : S.-B. HSU AND T.W. HWANG

model of a predator-prey system in both biological and mathematical
sense. In [13] a study of several pairs of interacting species, ranging
from house sparrows and European sparrow hawk to mule deer and
mountain lion, shows that the theoretical predictions of (1.1) based
on the estimated parameter values are broadly in line with practical
reality. In [14] the authors use the model (1.1) to investigate the
temperature-mediated stability of the predator-prey mite interaction
between M. occidentalis and the McDaniel spider mite Tetranychus
medanieli McGregor on apple trees. From the experimental data, they
assume the parameters r, s,m in (1.1) are functions of temperature 7',
specifically

r = r(T) = 0.048[ezp(0.103T) — exp(0.369T — 7.457)],
s = s(T) = 0.089[exp(0.055T") — exp(0.483T — 11.648)],

(1.2) m=m(T) = 16(5;((1;1)))2 and K = 300 mites/leaf,

1 1
a = o5 mlte/leaf, ‘ h = a—i-s‘
They examined the qualitative properties of (1.1) with data (1.2) by
means of the numerical bifurcation code AUTO86. Their extensive
numerical studies showed that the unique positive equilibrium of (1.1)
is either globally stable or gives rise to a globally stable limit cycle,
there can also exist a range wherein multiple stable states occur. These

stable states consist of a focus and a limit cycle, separated from each

other in the phase plane by an unstable limit cycle. For the detailed
biological meaning, the reader may consult {14, 15, 10, 11].

Establishing the uniqueness of limit cycles for a predator-prey systems
has been an interesting mathematical problem in the past decade. In
1981, K.S. Cheng [1] was the first one to prove the uniqueness of limit
cycle for a specific predator-prey system with Holling type II functional
response by using the symmetry of prey isocline. Subsequently, Liou
and Cheng (9] further developed a method of reflection to extend the
class of predator-prey model for which the results are valid. Kuang and
Freedman [8) and Huang and Merrill (6] transform a class of predator-
prey model with Gause-type to a generalized Lienard system where the
results of uniqueness of limit cycles are available. S. Ding [2] studied a
kind of predator-prey system with Holling-type III functional response
and showed that the results hold.
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The difference between the system (1.1) and the Gause-type models
mentioned above is the shape of predator isocline. The predator isocline
of (1.1) is a straight line through origin in the phase plane, while those
of Gause-type models are vertical line, z = z*,z* > 0. To establish
the uniqueness of the limit cycle for the system (1.1), our first step
is to convert (1.1) into a Gause-type predator-prey model as we did
“in our previous paper [5]. It is interesting to note that the reduced
- gystem whose prey isocline has two humps, one local minimum and one
 Jocal maximum, instead of one hump discussed in most predator-prey

_ models (12].

~ We use the method of reflection developed in [9] to estimate the
- Floquet exponent of a limit cycle and derive a sufficient condition for
~ the uniqueness of limit cycles.

 The paper will be organized as follows. In Section 2 we introduce
_‘the nondimensional form of (1.1) and summarize the results of local
~stability of the positive equilibrium discussed in [5]. Then we transform
_ the system (1.1) into a Gause-type predator-prey system whose prey
_isocline has two humps. In Section 3 we give a sufficient condition
~ for the uniqueness of limit cycles of system (1.1). We employ the
~ techniques in [9] as well as a Liapunov function to prove the results.
- Although the condition is not optimal, our numerical studies show,
ﬁ"?"';however, that there is a large region in the parameter space where our
f;r_sufﬁcient condition of the uniqueness of limit cycle holds.

- 2. Preliminary results. In this section we summarize some basic
results in [5]. First we write the system (1.1) in nondimensional form.

: - opy _ Z() oo my(t)
t =rt, z(t) = i y(t)_. N
s sh A
=L A=l eTg

"hen (1.1) takes the form
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dz T
= —r(l1=-2)—-
dt 2 z) a+T
(2.1) dy y
Y _uls =82
dt B:l:

z(0)>0,  y(0)>0.

Obviously, from (2.1), there exists a unique positive equilibrium E* =
(z*,y*). Let

(2.2) P(z) =2z* 4+ (a+ 6 — 1)z + aé.

Lemma 1.2 [5]. The equilibrivm E* = (z*,y*) of (2.1) is locally
asymptotically stable if P(z*) > 0 and E* is an unstable focus if
P(z*) < 0.

We note from (2.2), P(z) > 0 for all z > 0 if

(2.3) a+62> 1.

If |

(2.4) a+6<1 and (1—a—26)%—8a6<0,
then P(z) > 0 for all  # 0.

If

(2.5) a+d<1 and (1-a—6)*—8ad>0,

then P(z) = 2(z — oq)(z — ap) where

alzi[l-a-é—ﬁ—a—5)2—8a5],

a2=%U~a-&+Jﬂ—a—6V—8wL

0<a; <ap <1

For the case (2.5) the local asymptotic stability of E* can be refor-
mulated as ‘

(2.6) ap < z* <1
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or
(2.7) 0<z* <
and the instability condition for E* is

(28) a; < ¥ < Q9.
We summarize the stability results from [5].

Theorem 2.2 [5].

(i) Let (2.3) or (2.4) hold. Then the equilibrium E* = (z*,y*) is
globally asymptotically stable in the interior of the first quadrant.

(ii) Let (2.5) and (2.6) hold. Then the conclusion of (i) holds.

(iii) Let (2.5) hold. For B > 0 sufficiently small, z* = z*(B) is
sufficiently close to zero and (2.7) holds. Furthermore, the conclusion
of (i) holds for B8 > 0 sufficiently small.

(iv) Let (2.8) hold. Then there ezists a limit cycle for (2.1).

We note that, in Theorem 2.2 (iv), the existence of a limit cycle
follows directly from the Poincaré-Bendixson theorem. The system
(2.1) is persistent [3]. In fact, we can construct a compact positively
invariant region [10]. So the Poincaré-Bendixson theorem is applicable.

Let

(2.9) uw=yl(z), Iz)= (1_‘”)6.

T
Then we reduce (2.1) to the following system

dz
dt

)
- %:ml()l—-x a+z)< )"’"‘”)




96 S.-B. HSU AND T.W. HWANG

Consider the prey-isocline of (2.10),
(2.11) u = h(z) = (1 - z)(a+ z)l(z).

From [5), if (2.5) holds then it follows that

(2.12) h (z) = ——l—(in—)P(:c) = _2Ua=) (x — o)z — a2).

T I

Thus, the prey-isocline u = h(x) has two humps, namely, a local
maximum at T = oy and a local minimum at = = &3. Obviously,
from (2.11), (2.9) and (2.12), we have h(1) = 0, lim,_o+ h(z) = +0o0
and h'(z) > 0 for a; < z < a3z and W(z) < 0 for z € (0,01) U (2, 1).
In [5] we introduced the following Liapunov function for the system
(2.10),

(2.13) V(a:,u):ﬂ/ i dn+/ "’T’);" dn

Q(n) u*

where
(1l -z
(2.14) o(z) = (7?&"-17/?)')

Then an easy computation yields

_ Blatas)
V= (1 - z)(a + z)l(z)

(z — z*)(h(z) — u’).

We shall repeatedly use these properties of Liapunov function V' in the
next section. Finally, we note that the problem of uniqueness of a limit
cycle of the Holling-Tanner model (2.1) is equivalent to that of the
system (2.10).

3. Main results. In this section we restrict our attention to the
reduced system (2.10). Rewrite (2.10) in the following form:

2 p@)lh(@) - ul = F(@,)
(3.1) du B
i P(z)u? = G(z,u)
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where
(z) = z 1
’ a+zl(z)’

Wa) = o z*)(w+ 2).

and h(z),l(z) are defined in (2.11) and (2.9), respectively.

Let (2.8) hold, i.e., a; < z* < ag. Then there exists =7, z} satisfying

(3.2)
0<zi<oy, oay<z3;<l and h(z}) = h(z}) = h(z*) =u*.
Introduce
* i "7"1"*
3.3 R(x) =V(z,u =,8/ dn.
(33 @ =View)=p [

Now we state our main result.

Theorem 3.1. Let a; < z* < ay. If
(3.4) R(z}) 2 R(z3),

then the system (2.1) has a unique limit cycle.

Remark 3.1. The condition (3.4) states that if z* is near oy, then we
have uniqueness of limit cycles.

We shall prove Theorem 3.1 by the followiné lemmas.

Lemma 3.2. Let a; < z* < ay. Then

i M or T ar.xt o
dm[*/’(ﬂ’t(x)] <0 forze] hj ) U [z, 1].

Proof. From (3.1) and (2.12), we have

p(z)h'(z) = 2z —on)(z — o)
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Let : )
. I\ — (X
) = oG+ oo
Then
w(z)h'(z) QQ( ) T — (g
= -—Q(z
Y(z)h(x) 6] T —zT*
and
d [e(z)h'(z)] 2|, |T— 0o ag — x*
dzx {d)(:r:)h(:r) B @(z) T — T* Q) (x —z*)?]
Since Q(z) is increasing on (ay,1), then from the above identity we
complete the proof of Lemma 3.3. 0

Before we prove our main results, we introduce the following nota-
tions. Let Q; = [0, ;] x RY, Qs = [0, ap] x R¥ and Q3 = [va, 1] x RL.
Define hy : (0,c1) — R, hg @ [a1,02] — R and h3 : [az,1] — R by
hi(z) = h(z), i =1,2,3. Then hi(z) <0 for z € (0, ), h4(z) > 0 for
z € (a1, ) and hy(z) < 0 for = € (g, 1]. Next we define the following
reflection maps

(3.5) Si: Qe — Q, Si(z,u) = (b (ha(z)), )
and
S, :Qy — Qs, S,(z,u) = (hy'(ha(z)),u).
In the followings lemmas we denote I to be a periodic orbit of (3.1) with
periodic T, T' = {(z(t),u(t)) : 0 < t < T} and (') to be the region

enclosed by T in the zu phase plane, T, = ,,([) = min{z(t) : 0 <t <
T}, zpr = opr(F) = max{z(t) : 0 <t < T} and I(I') = [Tm,zm]. Let

(3.6) Q4 = {(z,u) € UT) : u— h(z) > 0},
. O ={(z,u) e QUT) :u—h(z) < 1,
(3.7) us : I(I') — R7T such that graph uy =T Ny,

u_ : I(T) — R7T such that graph u_ =T NQ_.
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Then us = uy(r) satisfies

(3.8) = =

and

Lemma 3.3. (i)

hl
// (Q)da:du-—()
Qry u

(i) I(T') s not contained in [z}, z3] where x§, x4 are defined in (3.2).

Proof. From (3.1), it follows that

Y(z)dz 1 du

Then we have
o= [ vonmista -/Th<ug>>%;d..]gh52>du

//dx(ug)dd -

Hence, we complete the proof of (i). Now we prove (ii) by contradiction.
Suppose, on the contrary, I(I') C [x},z3]. Rewrite the Liapunov
function V in (2.13) as

(3.10) V(z,u) = / Ej—(—g—i— dn + /“ 7 ;zu* dn.

d:): du.

From the assumption I(T') C [z},z3], the derivative of V along the
periodic orbit I' satisfies
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‘However, this leads to the following contradiction:

T
0< /0 ;—tV(m(t),u(t)) dt
= V(z(T),w(T)) - V(z(0),u(0)) = 0.

Hence I(T') is not contained in [z},z3]. O

Lemma 3.4. Ifint I(T') D [z}, z3], then T is orbitally asymptotically
stable.

Proof. From (3.1), we have

1+ %0 = p@)h(2) + ¢ () (h(@) — v) + (@)

Since I' is a periodic orbit of (3.1), then

fp (gl: * ‘23) at = j{ p(z)h(x) dt.

It suffices to show that [4]

(3.11) %(p(a:)h'(:c) dt < 0.
r
Let ' =T UTy UT'3 UTy, see Figure 1, where
{(zyu)eT:z<z]} = AB
( DE 1’31<$<$2}_BC

(

{(=,

{(z,u) €T : 3 > a3} = CD
{(z,us(z)) €T 2] <z < 73}

II

~~

A.

I

Let AB = {(z(u),u) : up < u < ug}. Since p(z)h/(z) < 0 and
Y(x) < 0 for (z,u) € T'y, from (3.1) it follows that

(3.12) /F p(2)h! () dt = — / - "”(f';fz‘z)()z;gzg“)) du < 0.
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)'e a, X Xy 1
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Xm Xl at

FIGURE 1.

From (3.1) we have
(3.13)

/ o)k (@) dt = / h(z h’—Z)Jr )d

/ e —u+ )d“/j h(w)h/—(i(m) o

The change of variable y = hy ' (ha(z)) yields

B z* h’(iE) "
Aok

__ [P mME)
=), ) @
hy(y) 4

B A N b () i

- / (@) — us(@) *faz (@) = s (hy (@)
[uy (hg ' (ha(z))) — uy(z))hy(x) .

vr (ha(@) — ug (@) (ha(®) — uy (b (ha()))

I
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Since hy(z) < 0, uy(hy'(ha(z))) > uy(z), ha(z) — uy(z) < O,
ha(z) — ug(hg (hg( ))) < 0 for all z € (o, 23), it follows that the
integral I, < 0.

The above arguments and the change of variable y = hy ' (hi(z)) yield

x] /
12-—/ h() dx

- U+( ) h,
/ hi(z) - U+ / ha(y) — U+ (v) W
ot [

/ hi(z) —uy(z T hi(z) — uy( hOl(hl(l‘)))

[ () ( (@) —us@)]
vt (@) — e (hy (@) (b (2) = u (2)

< 0.

From (3.13) fr (z)W(x) dt < 0. Similarly, we have [i. ¢(z)h/(z)dt <

0 and [, @(z)h'(z)dt < 0. Hence, we establish (3. 11) and complete
the proofzof Lemma 3.4. w

Lemma 3.5. If a; < z,,, then T is orbitally asymptotically stable.

Proof. From Lemma 3.3 (ii) and the assumption a; < zr,, we have
zp > 15, Before we prove the lemma, we need to establish the following
claims.

Claim 1. (Q(I) N Q3)\S-(UT) N Q) # @ where the reflection map
S, is defined in (3.5). From Lemma 3.3 (i) and (3.5), it follows that

/
0—// h(m dr du
Q(r) u?
—// d:cd +// drdu
Q)N u? QNN u?
hY hY
:_// (Q)d:z:d +// (Qm)da:du.
SN, U QN U
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From the above identity, it is impossible that S,.(Q(I') N Qy) D
Q(I') N Q3. Hence, we prove Claim 1.

From Claim 1 we have S.(I'y) N\T'; # ¢, where I'y = {(z,u) €T : z <
az} and I'y = {(z,u) €T : 2z > as}.

Claim 2. #(S,(T ) I'%) <1, e, S(I)) intersects I'F in at most
one point where I'T =T, Ny, where Q04 are defined in (3.6).

We shall prove S,.(I';) intersects I'' in at most one point. Similar
arguments show #(S.(I') NT7) < 1. Let us(z) = uy(z) for z €
[, a2) and u3(z) = uy(z) for T € [ay, Tps] where uy (z) is defined in
(3.7). Set @(z) = uy(hy ' (hs(z))) for z € (a2, h3 ! (ho(zm))]. Clearly,
u(x) > ua(z) for all z € (a9, 23). Suppose S,([}) NT'F # @. Then
there exists 6 € (z3, 1) such that @(z) > uz(z) for all z € (z3,0) and

(3.14) w(0) = us(8), w'(0) < ujy(9).

To show #(S,(I')NT}) < 1, it suffices to show that, for = > 6, as long
as u(x), uz(z) > hs(z), we have @(z) < uz(z).

Let y = hy'(hs(z)). From (3.8), we have

) ud(y)  hiy(x)
Y) [hz(y) — uz(y)] ha(y)
y)  @(z)  hy(z)
y) [ha(z) — a(z)] hy(y)

Set = hy '[ha(8)]. Then (3.14), (3.15) and (3.8) yield

(3.15) =

(3.16) " O hal0) — us )]
@) [ e, w6
~ @) - 50 Lo " ) <
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Obviously, h3(#) — u(#) < 0 and 6 > 5. Then, from (3.16), it follows
that

(3.17) qf’(é) PG

o(6)hy(8) ~ e(8)hy(6)

Since ha(8) = hy(6) > 0, (3.17) can be rewritten as

~ ~

p(O)hy(0) _ ¢(0)h5(0)
»(B)ho(B) ~ V(0)ha(6)

(3.18)

The inequality oy < z,,, < 0 < z* < ag < x5 < 0 < ), (3.18) and
Lemma 3.2 yield that, for any « € (8,1), y € [0, é],

(oY) _ pO)hy(0) S POh3(0) _ p(z)hs(z

0 )
(3.19) D(y)ha(y) ¢(9A)h2(é) Y(0)hg(6) > Y(z)ha(z)

In particular, if we set y = hzl(h (2)), z € [0,zp] in (3.19), then
ha(y) = ha(z) > 0. Since hi(z) < 0, ¥(z) > 0, h4(y) > 0, Y(y) <
from (3.19) it follows that

(3.20) >
0]

For > 6 as long as us(z), 4(x) > hs(z), from (3.15) and (3.8) we have

(7 — u3)'(z) = P(y) hy(z) @ $)~
o(y) hy(y) [ha(z) — u(z)]
Pz (e
©(z) [ha(z) — us(z))]
_ u3(z) P(y) hs(z) ()
(3.21) [hs(z) — ua(z)] Le(y) ho(y) ()
L ¥W)hs(z)
e(y)hy(y)
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We claim that the curves u = u(z) and u = us(z) will not intersect
for z > 0. If they do, then there exist £, § < £ < zp,, such that
(%) = us(#) and @'(2) > uf(#). Settingz = Fandy = § = hy ' (ha(2))
in (3.20) and (3.21), yields
274 ~ I (A ~
#(3) - @) = 2l [P0 Y8

[ha(2) — us(2)] L(9) h2(9)  p(£)

This leads to a contradiction. Thus, we complete the proof of Claim 2.

Now we are in a position to prove Lemma 3.5. From Claim 2,
S.(I';) intersects I'},I'; at exactly one point C* and C~. Let C* =

(z4,v4), C7 = (z_,v_) and DV = (y4,v4), D™ = (y-,v-) satisfying
S5.(D*) =Cy, S (D ) = C_. The points P,Q are the leftmost and
rightmost points of I, respectively. Assume I'N{z = ap} = {A, F'} with
A= (ag,ua), F'= (az,up) ug > up and TN {z = z3} = {B, £} with
B = (z%,uB), E = (23,UEg), up > ug, see Figure 2. As in Lemma 3.4,
it suffices to show that (3.11) holds. Write

f o) () dt = / 4 / )
r C+BAD+ D+PD._

+/h +/A oh' dt.
D_FEC._ c-Qc+

Lety = hy Y (h3(z)). Then

o [ @
/@am plo)h(w)di = / (h(z) —us(2))

W@
“L (@) —u (@)

o hy(y) ,
+/a2 ha(y) — ua(y) dy

_ [ k(=) "
B /a;+ ha(z) — ua(z) ;
o k(=)
] et
_ /$+ hy(z)(a(z) — us(z)) i
oy (ha(z) = 4(z))(ha(z) — us(z))

< 0.
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Y

FIGURE 2.

Similarly,

/ . p(z)h/(z)dt < 0.
D

~-FEC_

Let D+/};D_ = {(y(u),u) : v € [v_,v4]} and 0_22C+ = {(z(u),u) :
u € [v_,vy]}. Rewrite (3.18) as

plyx)ha(ys) p(z+)hs(T4)
Y(ye)ha(ys) = Y(zs)ha(zs)

(3.22)

If y, > y_, then z, < z_. Obviously y(u) < y4, z(u) > z4 for all
v_ <u < wy. Then (3.22) and Lemma 3.2 yield

/

S o(y4)hy(ys) _ elz4)h3(z4) S phy

emy(wy  YH)h2(ys) ~ Y(z4)ha(zy) — Pha

pha

z=z(u)
On the other hand, if y; < y_, then z; > z_ and

phy
Yho

S e )ha(y) | plz-)ha(z-)  ph
z=y{u) B ’P(y SE._)hg(IE_) - th

J
~—

b )
]
—
v
~
<
—~

z=z(u)
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Hence, in either case we have

f phy phy

3.23 —= > —= for all u € [u_, v, ].
(3 2 ) th =y(u) ,()th ra(u) [ +]
Consider
(3.24)

wh'
/ ) <ph’dt:/ P b dt
D,PD_ D.PD_ Vh

e (¢, W
~ “d
/D+PD Wl( YY)

(from (3.9))

/ /
wh 1
= ~  7dr+ —(y(u)) - du,
L sy e+ )
Y- 1/ V. /
whs, 1
=/ = ik d
/y+ hda:+ ok (u))u u,
Vi hl 1
= Inhaly-) —Inha(yy) - | B2 (y(uw)).- du,
vy hl 1
Inha(z_) - Inha(z,) -sz (1))~ du

Simllarly, we have

T4 h/ vy (phl
_ h' dt = / —dz + z(u))— du,
/C'QQC+ SD z h v wh ( ( ))

3.25) =Inhs(zy) —Inhy(z_)

vt phy 1

+ (x(u))u du.

E v_ th
From (3.23), (3.24) and (3.25), it follows that

/A +/ . phldt <0.
DyPD_  Jo_qe,

ence, we establish (3.11) and complete the proof of Lemma 3.5. O

f’fi‘"Lemma 3.6. Ifz] <z, < aj, then T is orbitally asymptotically
g;stable
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Proof From Lemma 3.3 (ii) and the assumpfion z} £ z;m < ay,
we have zpy > z3. Let 2 = hy '(hi(%m)). Then ap < z < z*. The
following shows

. N
(3.26) / / (2”3 ) dz du
Q)N((0,z]xR+) U
/
QN U
h/
+ // 2(:) dz du
Q(O)N([ar, 2] xRF) U

/
=// (—hl(zx)>d$du
S (QT)N([a1, 2] x RT )\ ((T)NQ) u

>0

where the reflection map S; is defined in (3.5). Since the map

/
n(6) % // D) 4
QDN xR+) U

is continuous and strictly increasing on [ay, 2|, then from (3.26), i.e.,
n(Z) > 0 and n(a1) < 0, there exists a unique 2; € (a1, 2) such that

n(z1) =0 or

/
(3.27) // P2) i = 0.
AON(Om]xRF) Y

Set zg = h’l‘l(hg(zl)) and zy = h;l(hg(zl)). Then z,, < 2o < oy and
zg > 5. Let

I={(z,u) €T :z < 21},

ve ={(z,u) €T Ny 1 21 < < 02},
vo={(z,u) eETNQ_: 2z <z < o},
It ={(z,u) eTNQy 1 T 2> a2},
I ={(z,u) eTNOQ_ x> a},

where (14, Q_ are defined in (3.6), see Figure 3(a). First we claim that -
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FIGURE 3(a).

[(p(a:)h’(m) dt < 0.
r

'ylz{(m,u)ef‘:zmgmgzo},
722{(a:,u)€f‘ﬂﬂ+:zoga:§zl},
73:{(a:,u)6f‘ﬂﬂ_:zoga:§zl}.

bviously, J,, p(z)h'(z)dt <0 and

) B L h'(:c) z1 h'(IE)
e @i= [ e [ e

Z2Uys

here uy (z),u_(z) are defined in (3.7). Using the same arguments as
1 the proof of Lemma 3.4, we have fv' @(z)h'(z)dt < 0 for 1 = 2,3.

lence
Aw(w)h’(x) dt=/71+[/2+/y3 o(z)h'(z) dt < 0.

R Y SR I
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Using the same arguments of Claim 2 in Lemma 3.5 yields
#(S (y4)NTT) < 1,

and
#(Si(y-)NT7) < 1.

Next we claim that

(3.29) 29 < ITM.

Suppose, on the contrary, zg > Tp. Let us(z) = uy(z), ualz) =
u_(z) for z € [z1,ap] and uz(z) = ug(z), us(z) = u_(z) for = €
op, 2na] and a(x) = ualhy (ha(a))), ulz) = walhs’ (ha(e))) for = €

[a2,z2). Then u(x3) > ua(zy), i(zy) > us(zm), see Figure 3(a).
Obviously, @(z) > us(z) for € (az,zm). Similarly, u(z) < us(z) for

z € (ag,zar). Hence, we have

(3.30) Q(T) N Qs € So(QUT) N ([z1, 0] x RY)).

From Lemma 3.3(i), (3.27) and (3.30), it follows that

h'(: B!
o:// () da:du—// %) 4y du
ory U QO)N((0,z;]xR+) U

! /
:// h2(2$) d:z:du+// h3(2:1:) dx du
Q(D)N([z1,a2)xRT) U QN U
—hj(z)

//Sr(Q(F)ﬂ([zl,ag}xR‘r)\(Q([‘)ﬂQg) u
> 0.

dx du

The above is a contradiction. Hence, we complete the proof of the
claim (3.29).

Now we are in a position to prove Lemma 3.6. Since

/F¢(I)h’($)dt=/ﬁ+/7_+/r_+/rj+/;+<ph’dt,
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u

|
!
|
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|
1
!
1

X XyZoa,Z, Z X a, X; Z,X,,
FIGURE 3(b).

from (3.28) it suffices to show that

(3.31) /+/ +/ +/ eh' dt < 0.
- - oJdry Uy

There are three cases as follows.

Case 1. #(Sr(v4) NTF) = #(S:(v-) NT7) = 0, see Fig-
ure 3(b). Using similar arguments as in the proof of Lemma 3.5 yields
f7+ul‘;‘ p(z)h/(z)dt < 0, f%ur; p(z)h'(z) dt < 0.

Hence, (3.31) holds.

Case 2. #(S:(v4) OTF) = #(S,(v=) NT) = 1, see Figure 3(c).
Let S;(v4) NI} = {Cy} and S (v_)NT; = {C_ } Denote C, =
(z4,v4), Co = (z_,v_) and Dy = (y+,v+), D_ = (y_,v_) satisfying
S:(Dy)=Cy, Si(D_)=C_.

The points P,Q are the leftmost and rightmost points of I', re-
spectively. Assume I' N {z = 2} = {P, P} with P, = (21, up,),
Py = (21,up,), up, > up,; TN {z = 2*} = {4, F} with 4 = (2%, u4),
F = (z*up), ua > up; LN {z = z3} = {B, E} with B = (z},up),
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FIGURE 3(c).

E = (z3,ug), up > ug. Obviously, 25 < z, z_ < zp and 23 < y,,

y_ < z*. Write

[of o] oo
- 5ooJry Jyy
=/,\+ R +/,\+/,\ +/A<ph’dt.
p,D_. Jp_FEC. Jo_Qc, Jeo,BAD, JD.P,

Let y = hy '(ha(z)), u(z) = u_(y) for ay < z < zy. Then

/D, FEC_ oh' dt = /:_ h(g;)h_,_(i)_ @) dz,
:/y )_(%2 W

/ hs :r;)Bf u_(z) dz

/ e h’ (x) Pl

* /a2 hs(x —(CU) dr
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e Hy)(u-(z) - u(a))
/ dx

. (ha(z) — u(2))(hs(z) — u_(z))

< 0.

Similarly we have

/ - ph'dt <.
CyBAD,

DiPy = {(y4(u),u) : u € [y, v},
PD_ = {(y__(u),u) ‘u € [v-’um]}’

C_QC; = {(z(u),u) : u € [v_,v4]}.
As in (3.24) and (3.25), it follows that

B dt = nho(z) —Inha(ys) — [ 220, (u) L d
== VA - - u
p nhs(21 nha(y4 - ho Yy+(u Wi
’ “ea ‘Ph2 1
/pB oh'dt =nhafy.) ~Inha(z) ~ [ 7 FR ()7 du
2L~ v_
. V4 !/ 1
/ . ph'dt=Inhg(zy) - 1nh3(x_)+ Py 2 (2(u))= du.
c_qc, _ Pha u

Smce ho(y-) = ha(z_), ha(y+) = hs(zy), then from the above it
follows that

3.32) /A +/A +/ﬁ oh'dt
D,P PD_ C_QC+ :

Uy hl
/ Z;h:s ) du

u,,z (phl

-/ ¢h2(y_(u))-1;du
Vi LR ! 1

- j/‘j,j’ (4 ()= du.

From the inequalities |
| y-(u) <y_, v- <u<u,
Y (u) <yi, up <u<uy
(u) >z_,z4, vo <u<uv,
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and the fact that (d/dz){ph'/(v¥h)] < 0 for z € [og,2*] U |ag, 1]
(Lemma 3.2), (3.32) yields

I=/A +/ﬁ +/A oh' dt
D P PD_ C_QCy
1

Up, ‘Ph’, Upy (ph’

</ Pl dut [ E )idu
+ [ fen = [ e
+ uzz;( )i-du

- 25 (alw) 1

T g e

o[, e~ Gz e

Obviously the first term in the above is négative. Then, from (3.22),
we have [ < 0 and hence (3.31) holds. |

Case 3. #(Sy(v4)NTF) = 1 and #(S,(y_)NT'7) = 0, see Figure 3(d),
or #(S,(14) N T#) = 0 and #(5, (y) NT;) =

We only consider the first subcase, since the same arguments apply
to the second subcase. The proof is similar to those in Case 2 and Case
1. Let I'7 Nn{z = 22} = {G}, G = (22, u¢), see Figure 3(d). As in Case

2, we have
/ . (phl dt < 0.
C+BAD, ~

Using the arguments in establishing Case 1 yields

/A oh! dt < 0.
P,FEG

Dy Py = {(y(w),u) : u € [up,, v}

Let
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X\ Xy . 2, X a X, Z, Xu
FIGURE 3(d).
and
GQRC: = {(z(u),u) : u € [ug,v4]}-
Similar to the arguments in (3.24) and (3.25), we establish
V4 hl
/ . ph'dt =1Inhy(z1) — Inha(yy) — Libde” (y(u))l du
D+P1 ‘ 'u,p1 ¢h2 u
and
V4 !

/ . ph'dt =Inhs(zy) —Inhz(ze) + ohs (:E(u))—l— du

GQC+ [T ¥e 'wh':} u

vy hl 1
=lInhy(ys) —lnhy(z) + | 23 (a(w))-du

Up, 'd)h3 u

Upy SDhg 1
+ z(u))— du
Gt
vy /

phs 1 du.

<Inhy(ys) — Inho(z1) + . W13(1’3(u))u
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Then

V4 /
/ﬁ +/ ~ cph’dt</ cph3( (u ))-l—du
p,p, Jagc, Yhs

v+ (,Oh’
- . ¢h2(y(U)) du

phy why 1 "
</ [m( NRS. URILY

< 0.

Hence, (3.31) holds. 0

Proof of Theorem 3.1. First we show that any periodic orbit I" of
(3.1) satisfies I' N {(z,u) : * > 25} # O, i.e., zpr > x5. Consider the
Liapunov function V defined in (2.14) or (3.10). From the assumption
(3.4),

R(z1) = V(a],u") 2 R(z3) = V(23,v"),

the level curve L, = {(z,u) : V(z,u) = ¢} where ¢ = min{R(z}), R(z3)}
= R(z3) is a closed Jordan curve passing through (z3,u*). The region
Q. enclosed by L. is indeed a region of repulsion due to the fact that
V > 0 on Q.. Then the periodic orbit must pass through the line
z = z3 and hence zps > z35. Since we have shown that when zps > 23,
for any possible locations of I' (z,, < z} in Lemma 3.4, a; < z,, in
Lemma 3.5 and z} < z,, < «; in Lemma 3.6), I' is orbitally asymp-
totically stable. Then system (3.1) or equivalently system (2.1) has a
unique limit cycle. o

Remark 3.7. We note that the above techniques and arguments can
be applied to a class of predator-prey systems whose prey isocline
has two humps. For example, we can obtain similar results about
the uniqueness of limit cycles for the system with Holling’s type III
functional response:

(3.33)
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as we did in [5] for the global stability of the equilibrium of (3.33).
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