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Abstract

We consider 2 class of singular Stwrm-Lioyvilie problems with 2 nonlinear convection and a
strongly coupling source. Our investigation is motivated by, and then applicd te, the siudy of
transonig gas flow through a nozzle, We are interesied in such solution praperties as the exact number
of soludons, the location and shape of boundary apd interior lzyers, and nonlinear stability and
instability of solutions when regarded as stationary solutions of the correspoading  conveclive
reaction-diffusion equations. Novel ciements in gur theory include a priori stimate for qualitative
bebavior of general soludons, a new clags of boundary layers for expapsion waves, and a local
unigqueness analysis for transonic solutions with interjor and boundary layers,

_ 1. Introduction
Consider the nonlinear Sturm-Liouville problem

eu” = f(x, u) — e(x)h(u)

with u prescribed at x = 0 and x = 1. We study properties of the solutions: their
number, their asymptotic shape for small ¢, and their stability and instability,
when viewed as stationary solutions of the corresponding time evolution equa-
tion. Our study is motivated by, and then applied to, the problem of transonic
gas flow through a nozzle. Novel clements in our theory include a new class of
boundary layers corresponding to €Xpansion waves, 2 prion estimate for qualita-
tive behavior of general solutions, and a local uniqueness analysis for transonic
solutions with interior and boundary layers.

For simplicity of presentation, we shall carry out our analysis for the model
problem

(1.1) eu” = f(u) ~ e(x)h(u), . u=u(x) &R, 0<xxg1,

(1.2) u(0) = u,, u(l) = u, .
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The flux function f(u) is assumed to be convex. This is motivated by gas
dynamics, where the sound speed depends monotonically on, the density. By
composition with a simple translation, we may assume that -

f"{u) >0 forall u underconsideration,
(1.3)

7(0) = f(0) = 0.

The function h(u) represents thé coupling of the source due to the geometry and
the gas flow. The following strong nonlinear coupling assumption is dictated by
physics:

(1.4) h{u) #0, K(u)#0 forall u underconsideration.

The function c(x) represents the strength of the source and may change sign. For
simplicity and definiteness, we make the following assumption:

(1.5) c{x)h(u) <0 for 0<xg1l andall « under consideration.

More general situations can also be treated with our analysis. “There are two
distinct cases:

(1.6) c{x)h'(u) <0 (stable case; diverging duct),
“(1.7) e(x)h'(u) >0 (unstable case; converging duct}.

Qur equation (1.1) may be regarded as the stationary cquation for the
convective reaction-diffusion equation

(18) o ), = e+ ()R (w).

In the stable case, (1.1)~(1.2) has a unique solution which is tme asymptotically
stable with respect to (1.8). In the unstable case, there may exist three solutions,
one of which has an interior layer and is nonlinearly unstable with respect to
(1.8); the other two are stable. '

We now relate our problem to nozzle flow. The quasi-one-dimensional model,
for isentropic viscous compressible flow through a nozzle is

(1.9), (pA), + (pod), =0,
(1.9), (poA), + (pv’4), + Ap, = p{4v.).,

where p,o, p.p and A = A4(x) arc the density, velocity, pressure, viscosity
coefficient-of the gas and the cross section of the nozzle. The pressure is 2 given




STURM-LIGUVILLE PROBLEMS AND APPLICATION 33

function of the density p. We assume that

(L) P(p) >0,  p(s) > 0.

This is satisfied by the polytropic gases where p(p) = ap’, $2 r > 1. The station-
ary equations are

(pod), =0,
{(pv'd), + Ap, = u(4v) .

The first equation can be integrated 10 yield a relation between v and p. This can
be used to eliminate one of the dependent variables and so yield a scalar equation
for one dependent variable. If p is eliminated, we get

(1.11) (8o, %)), = pu,, + e{x)k (o),
_ Pty Povp Ay _ A'(I)u
.(1_12)1 g(u,x),— A(x) v p(vA(x)) F‘A(I) ’
| AW (A
(1.12), c(x) (A(I))zpoucfio F(A(x)) s
(1.12), k(o) =,

where p; = p(0), v, = v(0) and Ay = A(0). From (1.10) we have

o Botody  poedy [ pgod, _ A(x)
g.(v, x) A(x) 7~ () ? ('-'A(x)) Faz)

- 2 4 ?
g..(v, x) = Pelodo ,( Pal% 0) (Po”vo) ..( Pcr”qu) > 0.

A(x) 7| vd(x) 4 (x) vA

The first equation shows that, for small viscosity g, g, > 0 if the flow is
supersomuc (ie., when o] 3 (p9/2), while g, < 0 if the flow is subsonic (i.c.,
when Jo| < (p7)!/?). We are interested in transonic flow, ie., when ju] is close to
the sonic speed (p)'2. Thus we assume that lel # 0, and so k{v) # 0. We see
that the nozzle equation (1.11) shares properties analogous to (1.3), (1.4) for the
model (1.1). For this reason, we will call the positive {negative) states u > 0
(u < Q) for (1.1) supersonic {subsonic) and call the zero state sonic. It is clear
from the above equations that for a converging duct, i.e., od’(x) < 0, we have
c(x)k’(v) > 0. This is the reason we called the unstable case (1.7) the converging
duct and the stable case (1.6) the diverging duct.
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Our main interest is in the properties of solutions for small & The inviscid
theory, ¢ = 0, has been worked out by Liu in {4]. This is reviewed in Section 2.
We also remark that a new type of boundary layer with algebraic decay exists.
They correspond to rarefaction waves connecting to the sonic state, Remark 2.1.
In Section 3 we present an analysis which shows that any general solution of
(1.1), (1.2) is close to one of the corresponding inviscid solutions. Qur analysis
differs markedly from the usual asymptotic analysis where solutions of viscous
equations are constructed based on the inviscid solutions. In the stable case (1.6),
it follows easily from the maximum principle that there exists al most one
solution. The inviscid theory predicts that in the unstable case there are one or
three solutions, depending on the data (L2). With the a prior qualitative
understanding obtained in Section 3, we show in Section 4 that.(1.1), (1.2} with
(1.7) has exactly one or three solutions by proving a local uniqueness theorem.
For solutions with no intedor layer, this'is done by generalizing and refining the
classical argument of Coddington and Levinson [2]. For solutions with interior
layer, a new argument is introduced for. the local uniqueness theorem.

In Section 5 we present a stability analysis for solutions of (1.1) viewed as
stationary solutions of (1.8).

There have been studies on singular nonlinear Sturm-Liouville problems: see
[3] and references therein. However, these studies do not consider modeis with
the strong coupling property (1.4). As we show here, this coupling property has
the regularizing cffect that viscous solutions are close to the inviscid solution.
In the absence of (1.4), the inviscid theory often offers too many solutions, most
of which do not correspond to viscous solutions. With (1.4) there arisc new
analytical difficulties, some of which are resolved here. It would be interesting to
study more general convectve reaction-diffusion equations such as the full
quasi-one-dimensional nozzle flow equations (cf. references in {4]).

2. Inviscid Theory
_ In this section we review the time-asymptotic states for
(2.1) u,+ f(u) o= c(x)h(u).

We then present a brief account of that theory. Except for boundary or interior
layers, the solutions of (1.1) should satisfy

(22) fu) = e(x)h(u)

as € — 0. Interior layers would tend 1o stationary shock waves (u_, u,) of (2.1)
satisfying the jump condition and entropy condition

(2.3) : fluy) = f(u), U < U

An inviscid boundary layer (u,, u,) at x = 0 would correspond to stationary
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waves of (1.1) at x = 0 which in turn satisfy approximately
Su), = e, w(0) =u, u(w)=u, u(w)=0,

since in the layer the source c(x)h{u) has Litle effect. Integrate the above
equation from x = x to x = eo to get

24)0 e (x) =1(u(x)) - (), (0} =u, u(e0) = u,.

In order for the above equation to have a solution, we necd

(2.4) (u— ug)(f(u) ~f{ug)) <0 forall u between u, and u,.
Thus an inviscid boundary layer {1y, 1) of (2.1) at-x = 0 would correspond to a
limit of viscous boundary layers of (1.1) if and only if (24) holds. Similarly, a
boundary layer (ug, 1,) at x = 1 satisfies

(2.5)0  eu(x) = f{u(x)) = fu), w(1) =u, w(—co)= s,

(2.5) (v = u)(flu) = f(1)) >0 forall u between u, and u,.
Conditions (2.4) and (2.5) can be related directly to clementary waves for
(2.6) u, + f(u), = 0.

There are two types of waves for (2.6). Two states u_ and v, can be connected
by a shock wave (u_, u,) with ‘speed

- f(u-t—) “f(u-)

u,—u_

a

U u,<u_. When u,>u_, (u_,u,)is a rarefaction wave propagaling with
characteristic speed f“(). This is so under the convexity condition f"(u) > 0,
(1.3). It can be seen easily that (2.4) holds if and only if {u,, uy) constitutes an
elementary wave for (2.6) with negative speed. Similarly, (2.5) holds if and only if
(o, u,) has positive speed.

Remark 2.1, Formal asymptotic expansion for boundary layers at x = 1 can
be performed to yield (2.5}, as follows: Write

u(x) = U(x) + u('q),




36 5.-B. HSU AND T.-P. LIU
where U(x) is valid outside the layer and therefore is close to being an inviscid
solution satisfying (2.2), and v(n) is valid in the layer. Plug the expression into
(1.1) and compare the coefficients of ¢} to obtain

v+ f(v) =0,
0@ =u,  v(e) = v(e) = 0.
Integrate above to yield (2.5},
v =—f(v), v(0)=u, v{o)=0.

From this we notice that in the case of a rarefaction boundary layer, u, > 0, v(7)
.decays algebraically as a consequence of (1.3). When f(u) has higher-order zeros
al u =0, the decay rate is lower. This is in contrast to the usual types of
‘boundary layers, where the decay is exponential. '

The above can be summarized as follows: Solutions of (1.1), (1.2) would tend
to inviscid solutions which satisfy (2.2) except for possible discontinuities. The
discontinuities at 0 < x <1,x =0 and x = 1, would satisfy (2.3), (2.4) and
(2.5), respectively. Such an inviscid wave pattern is called an asympiotic stale
because it represents the large-time state of solutions with given end states at
x = +oo (see Liu [4]). We now describe all the possible types ol asymptotic
states with given end states u, and u,.

Besides hypothesese (1.3) and (1.5) we further assume that

o

{v)
S(u)

(2.7) fim = (0.
lul— oo

Since c(x)h(u) < 0, (1.5), 2 solution u(x) of (2.2) moves toward the SORiC state
zero as x increases. Condition (27) ensures that given a state u there always
exists a state & such that & and u are connected by a solution of (22) with values
Zat x=0 and » at x = 1. Since (2.2) is singular at ¥ = 0, and f(0) = O by
(1.3), there are two states u* and u,, with u* >0 > u,, cach of which is
connected to u = O by solutions of (2.2). Given a state u # 0, define », uu < 0,
satisfying

 flu) = f(&)

so that v and # form a standing shock wave, (2.3). .
Consider first the stable case (L6), c(x)}h‘(x) < 0. It is easily shown that in
this case

(2.8) Cut > U,
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Case A, u, <,

Case Al. When u, > 0, the asymptotic state consists .of a backward wave
(u,, u,) at x = 0, a subsoenic stationary wave connecting u, at x = 0 and u = 0
at x =1, and a forward rarefaction wave (0, v,) at x = 1. The backward wave
(1, u,) 1s a shock (rarefaction) wave when u, > v, (4, < u,).

Case A2. When u, <0, the asymptotic state consists of a backward wave
(u,, &,) and a stationary wave (I, u,).

Case B. u, <u, < u,

Case Bl. When u, > 0, the asymptotic state consists of a supersonic station-
ary wave (u, u_) for 0 £ x < x,, a stationary shock wave (u_, u,)at x = x4, 2
subsonic stationary wave (u,,0) for x;<x <1 and a supersonic rarefaction
wave (Q, u,) at x = 1. The location x = x, and the states u_, v, of the standing
shock wave are determined uniquely by the left state u,.

Case B2 When u, <0 and &, < &, the asympiotic state consists of a
backward shock wave (u,, #,) and a subsonic stationary wave (i,, u,).

Case B3. When u, <0 and @, > &, the asymplotic state consists of a
supersonic stationary wave (u,u_) for 0 < x < x4, 4 standing shock wave
(., u,)at x = x; and a subsonic stationary wave (u,,u,) for x, < x < 1

Case C. u, 2 u”. Define », with 7, = u,

Case Cl. When u, > i, the asymptotic state consists of a stationary wave
(uy, ) and a forward wave (uy, u,) at x = 1,

Case C1. When u, <, <0and 1, > i, the asymptotic state consists of a
stalionary wave for x # x, and a stationary shock wave at x = Xq.

Case-C3. When u, <4, <0and 7, < z, the asymptotic stale consists of a

backward shock wave (u,, &, )at x = 0 and a stationary wave (i, u,).
Next we consider the unstable case (1.7), c(x)h’(x) > 0. In this case we have

(2.9) u, > u* >0,
Case D. u, < u*

Case D1. When u, 2 0, the asymptotic state consists of a backward wave
(u;, ue} at x = 0, a subsonic stationary wave {u,,0) for 0 < x < 1, and a forward
rarefaction wave (0, ¢,) at x = 1. .
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Case D2. When u, < 0, the asymptotic state consists of a backward wave
(u,, #,) at x = 0 and a subsonic statonary wave (4,, u)fort<x=<l

Case E. u* <u, Define v) by ity = u,.

Case El. When u, 2 0 and u* < u, < i,, there are three asymplolic states:

() a supersonic stationary wave (u, ;) for0 £ x <landa forward wave
(u, u,)at x=1,
(ii) a supersonic stationary wave (u,u_) for 0 £ x <X, stationary
shock wave (u_, u,) at x = X,, 2 subsonic stationary wave (u,,0) for
X < x < 1 and a forward rarefaction wave (0, u,) at x = 1; xg u_,u,
are uniquely determined by ug; :
(ili) a backward shock wave (u,, u,) at x =90, 2 subsonic stationary wave
{u,,0) for 0 < x <1, and 2 forward rarefaction wave (0, 2,) at x = L.

Case £2. When u, 2 0 and u, 2 #,, the asymplouc state consists of a
stationary wave (u,, i;) for 0 £ x < 1 and a forward wave (u,u,)at x=1

. Case E3. When u, < 0, there are three subcases: (i) if &, < u, < 0, then
an. asymplolic state consists of a stationary wave {u,, 1) and 2 forward shock
wive; (if) if &, 2 i,; then it consists of a backward shock wave (uy, &,) and a

, " stationary wave (i, u,); (i) if  <wu,<0 and ¥, > i, then there also
exists an asymptolic state which consists of transonic stationary waves with 2
stationary shock wave at x = x,, determined uniquely by u, and u,. _

Thus, given end states u, and u,, the inviscid theory yiclds three solutions
for Case El and also (iii) of Case E3. It can be shown easily that the above is
a complete description of asymptotic states and that an asymptotic state
depends smoothly on its end states.

3. A Priori Properties
As in Section 2, hereafter besides (1.3)—(1.5) we also assume that

. k()
3.1 m —— =0.
( ) lu|—= = f (“)
LemMa 3.1.  Any solution u(x) of (1.1) belongs 1o one of the following three
types:
Type 1. u{x) is stricily increasing;,

Type II:  u(x) is strictly decreasing;,
Type 1II:  u(x) has a unique critical point which is an absolute minimum.

Proof: This is an immediate consequence of the hypothesis (1.3),
c(x)h(u) < 0:
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LeMMA 3.2, There exists a positive constant M depending on u; and u_ and not
on e such that any solution of u(x) = u(x; €) of (1.1), (12) sarisfies

x <1

|[u{x)| < M, 0

A
A

Proof: The lemma holds trivially for monotone solutions. Let u(x) be a
Type III solution of Lemma 3.1 with minimum u(xe) at x = x,. Integrate (1.1)
from x = x, to x = 1, and use (1.5}, ch < 0, 10 obtain

W)+ () = /(u) ~ e(x)h(u(x)) dx
(3.2)
=u) + [elx)h(u(x))]ds.

Xo

Since #'(u) # 0 and u(x) is strictly increasing for x, < x < 1, h(u(x)) is
monotone for x; < x < 1. When

max h(u(x)) = h{u(1)) = k(u,),
Xgrsl

we have from (3.2} and u'(1} > 0 that
J(ulx0)) < f(u,) + h(w,) ['e(x) dx
o

which is bounded independent of ¢ and so the lemma is proved. When

Ior;lizglh(u(x)) = h(u(xo)),

we have again from (3.2) that
S(x0)) < 1, + h(u(x)) ['e(x) d.
Xy

This estimate and hypothesis (3.1) yield an upper bound independent of € for
f1(x4) | 2nd therefore for fe(x}, 0 x < 1.

LEMMA 3.3, Suppose thar u(x),a <x <, isa strictly increasing (decreas-
ing) solution of (1.1), (1.2) and tha u(x) > —C” (u(x) < Cé™), a<x<b,
for some C> 0. Thenb — g = O(1)e? as ¢ — 0,.
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Proof: We consider only the case when u(x) is increasing; the other case is
similar. Integrate (1.1) from a to x to obtain

ew(x) - ew(a) = f(u(x)) = f(u(@)) = [Tely)h(u(») .

Since  is increasing, u(x) > u(a) for x > a, and u(a) > —Ce/*, we bave from
(1.3) that f{u(x)) — f(u(a)) > — $C?¢/% Thus the above yiclds

ew'(x) 2 —%CIEVI-— fxc(y)h(u(y)) dy for a<x<bh.
Integrate this from a to b 1o yield
1 x
eu(b) — eu{a) 2 — -2~C1(b - a)e? - fhf e(p)h(u(y)) dydx.

By assumption, c(x)k(u) < 0, and from Lemma 3.2, |4} < M. Thus, the above
estimate yields '

2eM + %C_‘lem(b -a) 2 D(b~a),

for some positive constant I The lemmma follows immediately from this
inequality. :

In the following two lemmas we study the solution of (l.i),' {1.2) outside the
layers. In all cases we assume that x, — x, is of order one, i.e, X} — Xg > Ced/t
for sufficiently large C,and 0 € xp < x, £ 1.

LEMMA 3.4. Let u(x) be a solution of (1.1), (1.2). Set
2
€, = 3 a0 g LeCm1).
uisM .
o(x) = f(u(x))w'(x) = e(x)h(u(x)).

(i) Suppose thar u'(x) > 0, f(u(x})) < -8 for xg < x<x and
lp(xo))< Cie/*. Then I'P(x)lé Cie/*, xg £ X S Xy, for & sufficiently small.

(i) Suppose that w'(x) <0, f{u{x)) > &/* for xo < x < x, and lo(x) <
C,e7%. Then |p(x)|< C&/*, x5 < x £ x,, for & sufficiently small.

Proof: We shall prove (i); (i) follows by similar arguments. Suppose that
the conclusion fails. Then there exisis X, x, < X < x,, such that

lp(x)| g Ge/* for xp<x<X,




STURM-LIOUVILLE PROBLEMS AND APPLICATION 41

and either
(0 o(F) = G, ¢(x) 20,
or
(I1) ‘P(f) =-Gé g(F)s0
We treat (I); (II) is smular Relation (1.1) is the same as eu”(x) = @(x). With (I)
we have

u’(x) = Cie™34,
Fa(ZNu(2) + ()N (7))

= (E)(u(B)) ~ (2 (u(2))uw(F) 2 0
From the hypothesis f{u) < —¢/* (he above yields
Qe N
| T B((F)) - (R (u(F))u(F).
On the other hand, from (I) we have

S{u(2)(E) = e(F)h(u(z)) = €.,

and by Lemma 3.2, |u] < M. Since, by hypothesis, [(u) < —&/% it follows that

(3.3)

(7)< (muuun(n+qwﬁfm.

s M

This and (3.3) yield

Cie 1/z~~’.2|nl1521ir S (u )(( max Ic(x)h(u)!) e7V2 4 CF

l"ISM

+ ,max fe(x)h(u)|
srgl
luts M

+ max [c(x)h'(u)l( max |e{x)yh(u)fe ' + CI).
Osxxgi 05t
g M lufg M

This contradicts the definition of C, when ¢ is sufficiently small.
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PROPOSITION 3.5. Suppoese that u(x) is a solution of (L.1), (12) and s strictly
menotone over a subimterval (xg, %,) of (0,1). Then there exist C > 0 and a
subinterval (x5, x3) of (o %) such that, for sufficiently small’ ¢,

lp () [=] £ (u(x))u'(x) — e(x)h(u(x)) |5 C/* over (xy, x3) and
|xs — X} + %y = x| £ D
for some positive constant D independent of &.

Proof: In view of Lemmas 3.3 and 3.4, we only need to-show that, for
strictly increasing u(x), there exists x, with [p(x,)|s C&* and fxq, — xgf =
O(1)e*® and, for strictly decreasing u(x), there exists xy with lo(x;)< €&
and |x; — x,} = O(1)&*/® for any given C > 0. Consider the case u(x) is increas-
ing. Suppose that |@(x)]z €C&/% xy < x <X, for some X > Xq and C> 0.
There are two cases:

(1) _ p{x) > C&*  for x,<x<X,
ot
(1) . e(x) < =C for xp<x<X

In Case (I) we have from (1.1), eu”(x) = ¢{x), that u"(x}) > Ce™ % for xq < X
< X and so by integration

u(x) z Ce™¥4(x — xp) + (%0} 2 Ce™*(x — xp), XpgS X £ X,

Integrate again to obtain

u(Z) — (o) 2 S7(E = x0)

Since u is increasing, 2M = u(T) — u(x,), and also the above yields

12
F-x< (i',_“.i) = E.

Thus we have shown that |@(x,}]| < Ce/* for some X, xo < X3 < X + E. This

‘proves the lemma for Case (1). Other cases are treated similarly.

We next study boundary and interior layers.

LEMMA 3.6. Use the same notations as in Proposition 3.5.
(i) When u'(x) > 0, xy < x < Xy, then u(x) <0, xq.< x <Xy, and x, can
be chosen so that either eu”(x) 2z Ce/* and |u{x) = u(xo) |= o) for
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o2 X < x; or &u’(x) £ —C&* for x4 € x < x5 x, can be chosen so that
either xy = x; and f(u(x)) < = C,d/ or x; < x, and f'(u(x;)) = —C,/™.
(i) When u(x) <0, Xp < x <Xy, then u{x) > 0, xy < x < xy, and x, and
Xy can be chosen so that x, = x, and either x, = x) or x3 <x,. In the case
T3 <%, we have either |u(x) ~ u(x,)|< D for x; < x < x, or plxy) =
= Cy&* and f(u(xy)) = f(u(x,)) 2 — DV for some D > O independent of «.

Proof: (i) The second part is a direct consequence of (i} of Lemma 3.4. It
foliows from Lemma 3.3 that u(x;) < 0. Since u’(x) > 0 and u((x) is close to the
inviscid wave, by Proposition 3.5 we have u(x) < —C, x, < x < x,, for some
positive C independent of &. When X = Xy, (i) holds tdvially. If x, > x;, then
by (i) of Lemma 3.4 we may assume that |p(x;}|= &% and |@(x) |2 C,&*
for x4 < x < x,. There are two possibilities:

(1) o(x) 2 Ce for xy<x<x, and ¢(x,) = C7,
(I @(x) £ —Cé* for x,<x < x; and @(x,) = -G/

In (1), «”(x) > 0. Since p(x,) = C /¢ and u(x,) < —C

f(ry) = SoDRu(z)) | et
u'(x,) = f(ux;)) N S(u(x,)) C‘

for some C’ independent of &, Thus u'(x) < C’ for x4 < x < x,. From Proposi-
tion 3.5, |x; — x4l = O(1)*® and so we have

u(xy) = ux,) = [’u'(x) dx = 0(1) /2.

Case (II) corresponds o the case eu"(x) £ —C&* for x5 < x < x, in (i). This
proves (1).

(1) That x, = x, follows from (i) of Leruma 3.4, If xy < x;, then.by (i) of
Lemma 3.4 we may assume that fo(x;)]|= Ce* and le(x)|z Cg/* for
X3 < x < x; 50 long as f'(u{x)) > &/* When p(x,) = C,e'”* we can show, just
as in Case I above, that [u(x) ~ u{x,) |< D&’ for x; < x < x,. Consider next
the case o(x,) = —~C\&7* and p(x) £ — G for x; < x < x, and f(u(x))
> €/ In the case S (u(x)) 2 &/ for x; < x £ x), we see by integrating (1.1)
that

() = () = flu(x)) = f(u(x)) + [Telx)h(ulx) ds.

X
X3
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From @(x;) = —Cie/* and f'(u(x;)) 2 ¢/* we have

u'(x;) = —Ce/ + c(x;)h(u(xﬂ)
? f'(u(xy))

Thus in view of the above estimates and Proposition 3.5 we conclude that

= o(1)e” 4

L flu(x;)) — flu(xy)) = fxlc(x)h(u(x)) dx —eu(x,) + ew'(x;)

> [Te(x)h(u(x)) ds + eu'(x3)
= o(1)Ix;, ~ x5] + 0Q1) e
= 0(1) .

This completes the proof of Lemma 3.6.

LEMMA 3.7. Suppose that u(x) is a solution of (1.1), (1.2) and has a minimum
a1 x = xg not near the boundary x =0 or x = 1, i.e., C&/* < xy <1 = Ce¥® for
sufficiently large positive constant C. Then there exists Xy, X;, %) < Xg < X3, such
that @(xy) = ~Cie/%, p(x) = G/ |, = x| 5 D3 u(x) > 0> u(xy)
and | f(u(x,)) — f(u(x,))| < D& for some positive constant D.

I Proof: Since u'(x) > 0 for xo < x £ 1, and p(xy) = —c(xg)h(u(x,)) > 0
and uw"(xg) = £ 'p(x,), it follows from (1) of Lemma 3.6 that there exists
Xa. Xy > Xo, With @(x) = C1e"/* and {u(xy) — u(x,)| + |x; — 2ol = o(L)e¥®.
Moreover, u(x,) < —C for some positive C independent of e. Similarly, from
(i) of Lemma 3.6, there exists x, with x; < x, and @(x;) = —Cg"/*, u(x;) > C
and |x, — x| = O(1)e/%. It remains to verify the last estimate in the lemma.
Integrate (1.1) from X, to x, to obtain

e (x2) = eu'(m) = £(u(x2)) = f(u(x)) = [elx)(u(x)) d.

Since ¢k = O(1), |x, — x,] = O(1)e*/® and

e = 2L+ clIR(u())
: L)

which is bounded at x = x,, x, because |u{x)|> C there, we have

f(u(x3)) = f{u(x)) = 0(t)e + 0(1)(x, = x,) = (1),

This proves the lemma.
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THEOREM 3.8. Ler u(x) = u(x, ) be a solution of (L1), (1.2). Then for ¢
sufficiently small, u(x, €) is close to an inviscid time-asymptotic solution of (2.1)
with the same boundary data u, and u,. More precisely, there exists an inviscid
solution u(x,0) with boundary data u, and u, such that

() ¥ u(x,0) has a boundary layer (4, ) at x =0, then there exists
0 <x, = O(1)&*® such that u(x,) - up = O(1)e® and u(x) is monotone over
0,x, )%
( l(ii) if u(x,0) has a standing shock wave {ua, uy) at x = x;, then there exist
X3 X3, 0 <Xy <23 <1, Tsuch thar |u(x,) - uy| +|u(xy) = uy|= O,
|x3 = x50 = O(1)&® and u'(x) < 0 Jor x; < x < x3; ‘

(i) i u({x,0) has a~boundary layer (uy, u) at x =1, then there exists
xg, 1 = OM)e® < x, < 1, such that u(x,) — uy = O(1)e*® and u(x) is mono-
tone over (x4, 1), :

(iv) owtside all possible layers of the types {i)—(iii),

I £(u(x)) - e(x)h{u(x))| = 0(1)e* and lu(x) ~ u(x,0)| = 0(1) V5.

Proof: From Proposition 3.5 we see that a monotone solution (u(x) of (1.1),
(1.2} is close to being inviscid except for possible boundary layers. Lemma 3.6
says that the boundary layers almost satisfy the inviscid boundary conditions
(2.4) and (2.5). Consequently, we can find U, 4, i, and #, with the property that
(u,, #;) is an admissible inviscid boundary layer at x = 0, (), &4) an inviscid
stationary wave, (i, %,) an admissible inviscid boundary layer at x = 1, and
|y = @) + 7y — u(x,)| +|a, - u(x,)| + |u, — &) = O(1)e*%, for some Xy, X,
with the prescribed properties in (D), (iif), (iv) of the theorem. We denote by v{x)
the inviscid time-asymptotic state with boundary values @, and %, From the
inviscid theory of Section 2, there are at most three solutions to the inviscid
problem with given end states. Moreover, the inviscid stationary solutions and
the layers depend smoothly on its boundary values. Since {u, — Uy + |u, — ia,| =
O(1)e*%, we conclude that there exists an inviscid solution (u(x,0) with bound-
ary values u, and u, such that u(x, 0} is close to u(x) in the sense of {1)~(iv).

For a nonmonotone solution u(x), it follows from Lemma 3.1 that u{x) has a
unique minimum at x = Xo. There are two cases: (I) X, is close to x =0 or
*=1; (I) |xo] > Ce*® and jx, — 1| > Ce¥® for some large positive constant
C. In the case where Xg is close to x = 0, we have u'(x) <0 for0 < x < xg,
¥'(x3) = 0 and so, by integrating (1.1) from 0 to X3,

o) = e’ (0) = f{u(xa)) = S(u(0)) + [Celx)h(u(x) ax,

S (ulx0)) +1(u0) < [ex)n(u(x)) dx = 0(1)x, = O(1) .
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Thus u(x) has a boundary layer near x = 0 which satisfics the inviscid boundary
condition (2.4) except for a small error 0(1)&7%. Similarly, if x, is close to 1,
then u(x) has an admissible boundary layer at x = 1. Thus the above arguments
for monotone solutions can be applied to u(x) outside the layers and Case (I) is
treated accordingly. For Case (II) we apply Lemma 3.7 to locate x, and x, close
{0 Xg, X3 < Xg < Xy, 50 that u(x) has an interior layer in (x,, x3). The solution
u(x} is monotone over (0, x,) and over (x,,1) and so the above arguments for
monotone solutions apply again. This completes the proof of the theorem.

Remark 3.9. The above theorem does not yield an optimal thickness of the
layers and the distance between viscous and inviscid solutions outside the layers.
Suppose, for instance, that u(x) has a boundary layer at x = 0 and that u, > 0.
From Theorem 3.8, it is a shock layer, u'(x) <0 for 0 < x < xg #{(Xg) =

0, u(xy) < 0 for some x, > 0. Moreover, for ¢ sufficiently small, f{u,) <
f{u(xy)). From (1.1) we have

w(x) = 2 () () = e()h (D)),

w(x) = 1(u(2)) — f(u(xa)) * [Nl b, 05 %5 5

From the first identity and (L.5), ck < 0, we see that w”/(x) >0 for T < x <
X, u(X) = 0. Choose x;, X < x; < Xy, with

() ~ 1) = [eIla()) &
l”(xo) - “(xl)l = 0(1)|xo = xql,

for some positive bounded O(1). Since u'(xq} = 0, we have

Xg
() = Q)| < [Tenh(a() & for x < x <o
and so
ea'(x) = O(1)(x = %o,
for some bounded and positive O(1) and x) < X < Xq- Integrate to yicld

0(1)

l”(xo) _' ”(x_x)l =T X0 — xﬂz-
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Thus we have

o)

. jxg — x:fz = O(l)lxu = x,

Ixo = xyf = O(1)e, I”(xn) - U(X!)I = 0(1)5-

Between X and x;, we have

E

7)) = 7(ulxa))] > [Ce(r)n(u(y)) o,
e’ (x) = O()(f(u(x)) = f{u(x,)), X <x<x,.
Integrate it fro'm X 1o x;:

du = x, — X
[ TG =Ty = O = ),

O(1)eloge = O(1)(x, - ).

Thus we conclude that xy~ X = O(l)eloge, a similar estimate holding for
x = 0. Thus the thickness of the boundary layer is of the order ¢ log . The same
holds for other layers as well. Details are omitted.

4.' Local Uniqueness and Bifurcation

We want (o establish a local uniqueness theorem which, when combined with
the a prion estimates of the last section, determines the exact number of solutions
of (1.1), (1.2). For this we employ the shooting method. Let u(x) = u(x, ¢, B) be
a solution of (1.1}, with initial slope 8

(4.1) u(0) = u,, u’(0) = 8.

The following crucial lemmas establish the dependence of u(x}, x > 0, an the
mitral slope 8. Set

du{x)

(4.2) w(x) = 3
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It follows from differenuating (1.1) and using (4.1) that

ew” = [(u)w' + mw =0,

m = m(x) = (2 (u{x)) - f(ul)w(x),
(4.4) w(0) =0, wi(0)=1.

(4.3)

It is often convenient to rewrite {4.3) as
(4.5) ew” — {f{u)w) + c(x)h'(u)}w = 0.
The first lemma deals with the easy stability case, {1.6}.
LemMma 4.1.  Suppose that ¢{x)h'(u) < 0. Then w(x) > 0 for all 0 < x < L.

Proof: Integrate (4.5) repeatedly to yield, for 1 2 x> x" 2 @,

ew(x) = ex'(x') + f(ulx))w(x) = (D wlx) = [ewls) dr,
w(x) =-w(x’)cxp{£f‘-f~iu-¥-)-d§}

ot~ B8] o 20

- -}:-fx yf c(r)h'(u ))w(r)cxp{—Lyf:FEg) dE} dr.

Fa

Setting x” = 0, it follows since, by hypothesis, ¢h” < 0 that w(x) > 0 so long as
w(y) > 0 for 0 <y < x. By (4.4) it is clear that w(y) > 0 for y close to 0. This
proves the lemma.

THEOREM 4.2. Suppose that ¢(x)h’(u) < 0. Then (1.1), (1.2) have a unique
solution which tends to the corresponding inviscid solution as € — 0.

Proof: Uniqueness follows from Lemma 4.1 or by the maximum principle.
The existence of solutions is established by the shooting method. We defer this
until fater when we deal with the issue for the unstable case in Theorem 4.7,

For the remainder of this section we treat the more interesting and much
harder instability case c(x)h’(z) > 0. For this we need to look at the boundary
layers and interior layers separately. The first lemma on a single boundary layer
refines the classical result of Coddington and chmson {2). Throughout, we
assume that £ is small.
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LEMMA 43, Suppose that u(x) is a solution of (1.1), (1.2) and has only a
* boundary layer ar x = 0. That s, there exists Xy = O(1)e such that (2.4) holds with
uy = u(x,) and u'(x) = O(1) independent of € for x > x,. Then the soluzion w( x)
of (4-3), (4.4) satisfies w(x)> O for 1 2 x>0 and w(x) > —Ae ‘w(x) for
x> Deé’? and a constant A = Ce'2, where C and D ore positive constants
independent of .

Proof: -We first show that, for sore x, = (1},

w(x)) > Ce,- w'(x) = 0(1)e

(4.6)
U'(X)=O(1), xl§x= L

A

The latter estimate follows from the results of the last section, Remark 3.9,
since x, lies outside the layer. Our proof for (4.6) is carried out along the same
line as similar arguments in Coddington-Levinson [2), except for some refinement
due 1o the boundary layer. We note that in [2} the authors dealt with only the
subsonic case and we need o treat the transonic case. Integrate (4.5) from 0 to x
to yield :

@D ewa) = fwlx) = e~ [ () n(r) ds.
" Another integration results in an cxpressio.n for w(x):
(4.7), w(x) = -/:E(x,s) ds — %—j:c(r)h'(u(r))w(r)ij(x,.r) dsdr,
where
E(x,s) = cxp{%-[xf'(u('r)) df}_

Let £ = O(1)dn be such that fu(x)) < ~k <0 for §<xzg1, for some
k>0 and N = max(}/(u(x))}: 05 x < £). Set x; = £+ L2 where L =
1 + O()Nk™'. Then, for 0 5= ¢

E(s) < cxp{%’.(g _ 5)} < cxia{fvfo(l)s-m].

E(x.£) < cxp{':e—k-(x — E)} < cxp{—kLs‘l/‘.'}.

E{x,5s) < exp{(—&L + NO(1))?) < exp{ —ke'?},
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Thus, for x z x,,

j:E(x,s) &= f:E(x,s) ds + [:E(x,:)ds

A

f:cxp{ —ke V) ds 4 [cxp{- é(x -~ :)} ds

(728

2¢
a

Similarly, the second term in the right-hand side of (4.7}, can be writlen as the
sum of I, and I,, where

L=- f:c(r)h'(u(r))w(r)[ [Bzs)a+ [E(x1) dv] a,

1 p= s x
I,=— ?ff c{r}h (u(r))w(r)fr E(x,s) dsdr,

n

b < 5 [Twls)lfexp{—ke™2%) + £

dr < lk’lﬂw(s)[d;,

i s 22 [w(s)|ds, whete Je(x)i(u(x))] < n. 0<xsgl.

Combining these estimates we obtain

o)l s F + 3 Lns)las

and this in turn implies

2e 2nx :
pe(x)] < -E'CXP{T} ]
and '
2e 2xn 2xe 2n
10+ 11l s E{exn{ 32} - 1) s Bon{ ).
Thus

w(x) = f:E(x,-s) ds + x0(e).
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As in [2], we may show that by taking care of the boundary layer,

e B __0(sY) _ x0(e)
*) = gy - E 0 - 7 - e

for x 2 x,, and by (4.7}, we have

W51+ 00 +x00) + [exp{ 22 ~1)],

or —
w{x) = O(x ;‘E)““for—qx_g-x'l.
This proves (4.6).
Let A be a small positive constant to be determined later and set

w(x) = u(:c)cxp{—- .ti}
We have
wlx) = 2u(x) + o (x)exp - %}
From (4.6) we have |
o(x,) >'O, v(x) > 0,
provided that A 2 Ce? for some large C, By (4.3) and the above it follows that
eo” + (~f(u) + 20) v’

4.8 P .
(48) +[A =/ ()

+(u)u’ + c(x)h(u) o = 0.
In view of (4.7) we know that
L7 (u)e + c(x)h ()| = o(1),
for x; < x 5 1. By Theorem 3.8, outside the layer, x > x,, u{x} is close to the
inviscid stationary solution which is subsonic, f ‘(u(x)) < 0. Thus we can choose

A small such that the bracket in (4.8) is positive. One such choice is A = C&/? for
some large C. Thus the lemma is proved by the maxiroum principle.

LEMMA 44, Suppose that u(x) is a solution of (1.1), (1.2) and has only one
boundary layer atr x = ) or x = 1, but not both, and has no interior layer. Then the
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solution w(x) of (4.3) with either w(0) = 8, w(0) =1 or w(l) =0, w'(1) = 1
satisfies either w(i) > 0, w'(1) > —Ae7w(l) or w(0) < 0, w'(0) < Ae~'w(0) for
some A = C¢'/?,

Proof: Suppose that w(0) = 0, w'(0) = 1. The lemma is reduced to the
previous one if the boundary layer is located at x = 0. Suppose that the
boundary layer is located at x = 1. Then by the same argument as in the last
proof we can show that the solution w(x) of (4.3) with w(1) =0, w(1) = 1
satisfies W(0) < 0. Since the Wronskian w{x)w‘(x) — ®{x)w'(x) does not change
sign and is positive at x = 0, we see that w(1) > 0. Other parts of the lemma are
proved similarly.

LemMa 4.5, Suppose that u(x) is a solution of (1.1), (1.2) with only an interior
layer, that is, there exists xy and x°,0 < xy < x° < 1, such that |u'(x)]|= OQ1)
independent of e for x & (xg, x°), |x% — x4 = O(L)e, f(u(x)) = f(u(x)) +
O(1)e, u(x4) > 0 > w(x®). Then the solution w(x) of (4.3), (4.4) satisfies w(x) > 0
Jor x < xp w(x;}) =0, w(x}>0 forx> x, for some x, not in the imerior layer,
Xy > xg with |x; — xpl = O(1)e|log e[ Moreover, w'(x,} <0, and for some con-
stants C, D > 0, w'(x) < Xe"tw(x) or x > x, + D% and A = Ce'/2

Proof: The proof consists of three steps investigating the behavior of w{x)
before the layer, in the layer, and after the layer.

Step 1. Let A be a positive constant to be determined later and set
 fAx
(4.9) w(x) = o(x)exp{ F).

We have from (4.3), (4.4) that

(19 () = i) + oo ),
()L Ly B L P

v(0) =0, v(0)=1.

From Theorem 3.8 we know that u(x) is close to 2 supersonic inviscid stationary
wave for 0 < x £ x,. Thus we may choosc a small A such that (A2 —
S(u(x)A)e™! = ~1 for 0 < x < x,. Since m(x) is bounded over 0 < X £ Xq,

AP S . ;
s —f(u)-; +m <« -1, 02 2 < x,.

Thus, by the maximum principle, applied to (411), (49)-(4.11) imply that
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v(x} > 0, 0'(x) > 0 and
, A
wi> —w o for 0<x<x,

This and (4.3) yield

Afu
ew” = [{u}w' — mw > [ fl(z ) —m]w+ %f’(u)w',

and so, for small ¢,
N . .
e’ > if(u)w for 0 <xxx,

This and the initial data (4.4) for w yield

w(x) > cxp{f—;-f},
(4.12)

w(x) > Kil(cxp{—e—} - 1), 0

for some X, > 0.

A
114
A
S

- Step 2. Define x* by u(x*) = 0, x, < x* < x°. Integrate (4.5) from 0 to x*~,
to obtain

ew(x7) = e - f:.c(x)h’(u(,‘r))w(x) dx.

Since x* is within the layer we have from Lemma 44 that w(x)>0 for
0 < x < x*. Moreover, we have the estimate {4.12). Thus the above yelds
w'(x*} < 0 and we conclude that

w(£) =0 forsome %, Xq < X < x7,
{4.13)

wix) <0 for £<x<x

Step 3. We want to show that there exists x; > %, |x, — %| small, such that
w(x,} = 0. For the moment we assume that

(4.14) w{x)>0 for 0<x< x,,

for some x; > £ We have either x, = 1 or x; <1 and w{x;) = 0. From Lemma
4.4 we know that x; does not lie in the intedor layer. Integrate (4.5) from % to
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x, < x < x, then

ew'(x) = f(u(x))w(x) = f{u(2))w(2)

(4.15) )
_f; c(p)H (u(p))w(y) dy.

From {(4.14), (4.15) and #(Z) > 0 we obtain

(4.16) ew'(x) < f(ulx))w(x) for %<x<x,
‘Then (4.13), (4.16) yield

(4.17) - w'(x} <0 for £<x<ux,.

Let X =% + De!/* for some large positive constant D. Then ¥ is outside the
layer and ¥ > %, where X is charactenzed by »'(Z) = 0. Suppose (4.14) holds for
x; > X + Dellog ef for some large positive constant D,. Integrate (4.3) from X
to x: .

w'(x) E(x) = wi(%) lfi}(:)ﬁ(s)&(s) s,

£

(4.18) E(x) = cxp{ - %fo'(u(y)) d}'},

m(x) = e{x)h(u(z)) = f7(u(x))w(x).

Divide (4.18) by E(x) and integrate to obtain

w(x) =w(Z) + (@) [E() "
(4.19) | i
¢ [EO) & [m(s) EGw(s) s

From (4.14), (4.15), (4.17) we obtain
w(2) < T(f(u(2)) - 0Q)(% - 2))w(z).

Thus (4.19) and the above yield

w(z) < w(ic')[l L [(®) - E0(1)(:‘: ~ %) [_’E(y)-’dy]
(a20) -

-2 [E6 0 [m(a) B u(s)
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for ¥ < x g x,. Integrate {4.16) to obtain
w(s) < w(i)cxp{[&i.(f_))dr} for Xx<sgx,.

Since m(s) is bounded, the above estimate yields
Im()E(s)w(s) < Cw(Z) for Tcxxx,

for some C independent of e. This and (4.20) troply

o(x) < w(f){l L L) - oz - £) [E0) o
(4.21) )

+ Q“EL)EEU)”U - %) dy},
Take x = % + 2¢|log ef in (4.21). Then we bbtain
o) <l e LD Py Y01
(4.22) X (0(1)2¢)log ] — 0(1)5"‘J
<wim)1+ LB ()

for £ > 0 sufficiently small. It remains to show that the above bracket is negative
and thus contradicts (4.14). For this we expand E{y)~! by Tayior expansion,
taking note of the fact that w(X) =0, % is in the interior layer, and x> £ is
outside the layer,

(4.23) J(#(x)) = f(u(2)) + (2 - () (u(t)), F<i{<x
Since [p(x)|< €\ for x > x°,

o) = —CEA(u(x)  p(x)
L ) e Y

for some positive €, and x > %, Thus we have from (4.23) and (1.3), /" > 0, that

f'("(x))~>f'(u(f)) +E(x-—?;),‘ X <x<x,
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for some C independent of & Consequently,

E(»)”

uﬁéffmuna}

(4.24)

v

uméngﬁn+Eu—fna}

exp( = HQG Iy - Dfexp{ g5 (r = £}, Fey <
Let M =|f'(u(X))| Then

[ 1o > [l - el 5007}

> A_ffocxp{—A:’——-(y - i')}(l + -zge-(y - E)l) dy

- 5[1 - éxp{——?—-(; - ;)}] + %

Thus the bracket in (4.22) is negative-

To finish the proof we observe from (4.15) and w(x,) =0 that w'(x,) <0
Since x, is on the right side of the interior layer, we may apply Lemma 4310
—w(x)/w'(x,) to show that w(x) < 0 for x > x,.

Mx=X)€ 20-1 gz > e

o

LEMMA 4.6. Suppose that u(x) is a sohition of (1.1) which either has an

.interior layer not located within O(1)e of x = 0 or x = 1, or has no interior layer.

In the former case, the corresponding solution w(x) of (4.3), (4.4) has the property
that w(l)} < 0, and in the lotter case, w(l) > 0.

Proof: Using Lemmas 4.3-4.5 and Theorem 3.8, it remains to treat the case
where u{x) has cither an interior Jayer and-a rarefaction layer at x = 1, cf. (it) of
Case E1 in Section 2, or a boundary layer at x =0 and a rarefaction layer at
x = 1, ¢f. (iii) of Case El and Case D1 in Section 2. In all these cases the solution
is subsonic before the rarcfaction layer, which connects the sonic state zefo to the
positive state u, around x = 1. We treat the case without interior layer; the one
with the interior layer is similar. From Lemma 4.3 we have, before the rarefaction
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layer,
A
W) 20 ) > wlmen(-Tn-x)), x>,
(4.25)  w'{x) > ~Xe"lw(x),
A=Cé7? for x,x,x, in (%,1 —8),
for some positive constant C and x, X), X3 outside the layers, 0 < § < 1. By
Theorem 3.8, at x, the solution u(x) is close to the inviscid stationary sotution
v(x), which is sonic at x = 1. The equation (2.2) which v(x) satisfies is singular

at sonic. Thus v’{x) is large for x close to 1 Consequently we may choose
xp =1 — 28, so tha, for & small, u'(xy) 1s large and thus

(4.26) m(x) = c(x)h'(u(x)) = (u(x))u(x) < =m,, x4<x <],
for some positive constant mg indcpcndcm of &. For any given & > 0 we have
(4.27) =) < -, . Y<x<1-38,

for some C, > 0 depending only on 8. Integrate (4.3) 10 get

WE)E() = wlxo) + ["H(=m(s))E(s () o,
(4.28) )

E(x) = cxp{—'[j'[’—(-l;—(é—))— dg}.
From (4.27) we have
‘E(S)E“P{M}, ] xg<s<1—8.
This, (4.25) and (4.26) yield

LT m) Esywts)

If

-——____m"ws(x“) L:_Ecxp{— %(: - xo)}exp{gﬁ'g—ﬁ)’} @

- o) e (62N

E £

B (= 19) )
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Since C,; and § are positive constants independent of ¢ and A = Ce/2, the above
estimate yields, for small ¢,

fl—s%(—m(.r))E(:)w(:)ds‘» @l

This, (4.25) and (4.28) imply

1-31]
£

w(l = 8)E(1 = 8) > —he"w(xy) + [ 2(=m(s))E(s)w(s) ds > 0.

b
Thus we have
(4.29) wi(x)>0 for x=1-8.

This and (4.25), w(x) > 0 for x = 1 — §, implies that w'(x) >0 fort1 -8 < x
< 1. Indeed, from (4.3) if w'(X) =0 for some X,1 ~ 8§ < ¥ £ 1 and w(X) > 0,
then

ew”(X) = —m{Z)w(X),

which is positive by (4.26), 2 contradiction. Thus w{x) > 0for1 — 8§ <x < 1.
In particular, w(l) > w(l — §) > 0. This proves the lemma.

THEOREM 4.7. Suppose that ¢(x)h'(u) > 0. Then, for sufficiently smoll e,
(1.1}, (1.2) have one or three solutions which tend to the corresponding inviscid
solutions as e — 0. Moreover, (1.1), (1.2) have three solutions for small € in Case
El and (it} of Case E3 (in Section 2 for inviscid classification), and in other cases
there exists only one solution.

Proof: That there exist at most one or three solutions in each respective case
follows from the a priori estimate in Section 3 in linking the solutions to inviscid
solutions and the local uniqueness theorem as a consequence of Lemmas 4.4—4.6.
It remains to show the existence of a solution which is close to any given mviscid
solution. This is done by the shooting method. We shall carry out the analysis for
the case where there is 2 shock layer at x = 0 and a rarefaction layer at x = 1;
other cases can be treated by similar arguments. For simplicity, we assume that
e > u; > 0 and u, > 0. The inviscid solution consists of a shock layer (u,, u,) at
x =0, an inviscid stationary solutiocn (u,,0) satisfying f(u), = c(x)h(u) and a
rarefaction layer (0, ) at x = 1. We want to find a value a = a, so that the
solution u(x, a) of (1.1), with '

(0, «) = u,, u'(0, a) = a,

satisfies u(1, ag) = u,. For |l > 1,& < 0, ie., f(u)a — c(Oh{u,) < —Cd7*,




STURM-T10UYILLE PROBLEMS AND APPLICATION 59

we have from (i) of Lemma 3.4, that u(x, a) has a boundary layer at x = 0.
From (1.1), u” > 0 50 long as v < 0 and «' < 0. Thus u'(xy, a) = 0 for some
Xy > 0. By Remark 3.9 on the thickness of boundary Jayer, we have x5 = O(l)e. -
Integrate (1.1) over 0 £ x < x,, to get

~ea = (a0, @) = 1) ~ [“clx)(u(x, o)) s,
f(u(xu, c!)) + Otl)sma.x{h(u) : u(xu,a) <u< u,} = gaf + f(u,).

Thus from (2.7) we see that, as o —» — co, u(xgy, @) ~ — co. For the boundary
layer 10 exist at x =0 it is sufficient to have f*(u,)a < c(0)h(y,) ~ C,&/*. For
@ = a satisfying f'(u;)ey = c(0)h(u;) ~ ;&% the above identity yields

flu(xq, @,)) = f(u) — ey + O(1)e
= () = /()" {e (O () — G4} + O(2)e
=f(u) + O(1)e.

Thus, as e = 0, u(xq, @) = &, > 1., and so for small ¢, u(xy, @) > u,. Since
u(x, &) is close to being inviscid for x > x, 5o long as u(x, «) is not close to the
somic state zero, (i) of Lemma 3.4, it follows that, for small e, u(x, @) stays
subsonic for u(x,, a) < u, and becomes sonic at x = x{a) <1 for u(x,, a) >
u. The latter holds for a = ;. Moreover, once u(x(a), a) = 0 for x(a) < 1,
which is the case for a = a,, u(x, a) has a boundary layer at x = 1, Theorem 1.3,
and is strictly increasing for xy < x < 1. Moreover, from Lemma 3.5, if 1 — x(«)
> O(1)&/%, then u(x, a) becomes + oo before reaching x = 1. Since u(l, &) is a
strictly increasing function of a for a < &), Lemma 43, and u(l, ) =
o0, u(l, &) = —ooas @ = ~co, we see that there exists an «, < a, With #(1, ay)
= u,. Moreover, since &, < &, u(x, ag) has a shock layer at x = 0. By Thearem
3.8, u(x, ey) also has a rarefaction layer x = 1. We have thus constructed the
designated solution of (1.1). The proof of the theorem is complete.

5. Asymptotic Stability and Instability

In thus section, we study nonlinear stability and instability of stationary
solutions of

u, + f(z.r)_t = eu, -+ c(x)h(u),
(5.1}

w(0, N=u, u(l, ty=u_ u(x,0) = uy(x), 0gxsl.
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Let U(x) = U(x, ) be a stationary solution,
f(U) = U, + c(x)n(U),

U0) = u, U(1}) = u,.

(5.2)

Set w{x, t) = u(x, 1) = U(x). From (5.1}, (5.2) we have

w b [+ U)o, + U,)= oy + LUV, = () (V) + clx)h(w + U),
(5.3) w(0,0) =0, w(l,1)=0.

The lineanized equation is

w,+ [(U)w, + [(U)Uw=ew, + e(xYh'(U)w,

(54) w(0.1) =0, w(l,1)=0.

We shall use spectral analysis. Set w(x, r) = e*/g{x) and obtain from (5.4)

(5.5) eg” — ([(U)g) + c(x)H(U)g = Aq,
g(0) =0, - ¢(1)=0.

THEOREM 5.1. Suppose (1.6) holds, c(xYh'(u) <0, then every steady state
U(x) of (5.1) is asympiotically stable. When (1.7) holds, c(x)a'(u) > 0, then
steady states containing no interior layer are asymptotically stable, those containing
interior layer are asymptotically unstable.

Proof: A steady state U(x) is stable if the largest eigenvalue A is negative.

‘From linear Sturm-Liouville theory {see [1]} the eigenfunction g(x) correspond-

ing to the largest cigenvalue A is of one sign. We may therefore assume that
(5.6) g(x)>0, 0<x<1, ¢{0)=1, ¢()<0.

When c(x)A(u) < 0, we have, integrating (5.5), that

(57 elg'1) - ¢O) + [elx)R(U(=)alx) ds =2 [ a(x) dx.

From (5.6) and (5.7) it is ciear that A < 0 and so U(x) is stable.

When c(x)h'(1) > 0, we have two cases: (i) [/(x) contains no interior layer,
(i) U(x) contains an interior layer. In case (i), for A =A(e) is bounded
uniformly in g, then we may revTite (5.5) as

eg” — (f(U)g) + (e(x)(U) —N)g =0,

(-8) A0 =0, () =1
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which 1s of the samé form as (4.5). Thus it follows from Lemmas 3.3 and 3.4 that
q(1) > Q, which contradicts (5.5), g(1) = 0. In case (@) if A = X(&) becomes large
A > 1, then it follows from integrating (5.5) that .

(a(VEG)) = E(x) = 2E() [ (c(x)(©) = A)g(+) d,

E(x) = CXP{_ %_j;tf'{U)(f)} dr;

whence (by ch(U) — A < 0as A > 1) we have

g{x) > E%H-[:E(T) dr.

In particular, (1) > 0, again a contradiction. Thus, in (D), A <0 and U(x)is
siable,

" Finally we consider the case where c(x)r'{u) > 0 and U(x) contains an
interior layer. We want Lo prove by contradiction that A > 0. If not, then

e(x)A(U) = A >0

and so [rom adapting the proof of Lemma 4.5 to (5.8) we have g(1) < 0 which
contradicts (5.5), (1) = 0. Thus A > 0 and U{x) is unstable. This proves the
theorem.
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