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STABILITY ANALYSIS FOR A CLASS
OF DIFFUSIVE COUPLED SYSTEMS WITH
APPLICATIONS TO POPULATION BIOLOGY
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ABSTRACT. In this paper we derive criteria for the local
stability of synchronized equilibria or limit cycles for a class of
lattice dynamical systems. We first prove a theorem of linear
algebra then the criteria are obtained by the application of
the theorem. The criteria reduce the stability of a large size
problen: or equivalently large matrix size eigenvalue probilem
to a smali cne. Several examples in population biology are
presented to illustrate the usefulness of the criteria.

1. Introduction. In this paper we shall derive criteria for the local
stability of certain synchronized solutions for a class of diffusive coupled
systems. We restrict our attention to the case where the subsystems are
identical and the synchronized solutions are either equilibria or limit
cycles. Many important biological models involving spatial effects take
the form of diffusive coupled systems, in continuous or discrete time,
expressed in one- or iwo-dimensional lattice systems. Consider the
identical subsystems of the following form

(1.1) %i-: = f(z), z€RF

where f is C7, f: Q C RF — R¥, Q is an open subset of REF. Jn this
paper we fitst study the one-dimensional lattice sysiem

lx; ,
(1.2) 52? = f(zi) + D(zioy — 23 +2i41), +=1,2, ., N
where z; € RF, D = diag (dy,dz, ... ,di), di,... ,dx > 0 satisfying the
periodic boundary conditions

(1.3)p To = TN, TNyl = T,
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or the Neumann boundary conditions
(13)N Tog =T, TN4+1 = IN.
Then we study the two-dimensional lattice systems:

d.’Eij

a4 d = f(zi;) + D(zij+1 + Tig-1 + Tiong +zipny — 424),

1<4j<N

where z;; € R*, D = diag(dy,... ,dk), d;i > 0,1=1,... k, satisfying
the periodic boundary conditions

Toj = TNj, T 415 = Lijs Tio = TiN, TiN+1 = i1
(1.5)p for 1<4,7<N
or the Neumann boundary conditions

To; = Tyg, TN41,j =TNj,  Tio = Til, TiN+1 = TiN,
(1.8)w 1<4,7<N.
Our method also works for the iterated maps

l,n+1 o f((l)n), 2" e Rk

with the corresponding discrete one-dimensional lattice systems
- ntio n n n ATl
(L.7) wp o= f(al) + D@y - 227 Fadyy)
and two-dimensionai lattice systems
; n+l . pro n n 3 ¥ LT
(1.8)  xT = fla) + Dl + o e, Faig - da:3f)
with periodic or Neurnann boundary conditions.

We also discuss the following type of “disperse-reproduce” models [8],
(4], [5]

mn+1 — f(’in)

i 5
- \
(1.9) #=D ) (% -ah).
| i<t
js—ji<1

(r,8)#(1,7)
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For the systems (1.7), (1.8) and (1.9), we only consider the stability of
the fixed points.

In Section 2 we first present a theorem of linear algebra. Then
we apply it to ohtain stability criteria for the systems (1.2), (1.4,
(1.7), (1.8) and (1.} with periodic boundary conditions and Neumanz
boundary condit:ons. In Section 3 we present some examples from:
population biolegy to demonstrate the usefulness of the criteria.

9. Main results. In the following we state and prove a theorem of
Jdgnbra which will be applied to obtain a necessary and sufficient
condition for the locel stability of synchronized equilibria {or limit
cycles) in various lattice systems intreduced in Section 1.

v

(SRR

Theorem 2.1. Let T = (t;;) be an n x n matriz with n linearly
independent eigenvectors, M = (mi;) and L = (lij) k x k mairices.
Assume the nk < nk matric A tokes the following form

T - i1l avys s —tin L
o) ) cta M et - —tonls
Le.d) A= : : ; .
'-';ln"L ' *—'tngL s iV! - tnnL

If spec (1) = {A1,. .. . A}, then

k23

(2.2) spec (A) = LJ spec (M — X\ L)

=1

where spec () denotes the set of eigenvalues of o square matric F.

Proof. Let {e;}7, be the standard basis of R™**. Consider the permu-
tation matrix P ¢ R P = ey ek, 5 €n-1)kt1re - s Sk E2ks

. enk]. Then, from (2.1), we have

Fmard, - In T migd, — T - migdn it
il g T maply — o -+ marly — LT

B=PTAP--

l meid T mgaly = e+ Mkl — Lo




82 R.-T. GONG AND S.-B. HSU

Since T has n linearly independent eigenvectors, an invertible matrix
Q € R™™ exists such that Q71TQ = A = diag (A1, Ag,...,An). Set
U =diag (Q,Q,...,Q) € R**>"* Then it follows that

mily — A mpoly —loA - muly — kA
C—U-'BU - maily, - lagA - maaly - lopA - maxln - Lok A
mialy = lah mualn < lgh o mgel, — Ll

and it is easy to verify that

M- X\L ,
PCP" =

L ' M -\, L

Hence the matrix A is similar to diag (M —A(L,... ,M — A, L) and we
complete the proof of the theorem. o :

Let z* be an equilibrium of the systemn (1.1) and the k x k matrix M
the variational matrix of f at z*, i.e., M = D f(z*). Obviously, the one-
dimensional lattice system (1.2) and the two-dimensional latticé system
(1.4) has synchronized equilibrium of the form (2*,z*,... ,z*). In the
following we first apply Theorem 2.1 to obtain a necessary and sufficient
condition of the local stability of (z*,...,z*) for the one-dimensional
lattice system (1.2) with boundary condition (1.3)p or (1.3)x. Then
we consider the two-dimensional lattice system (1.4) with boundary

condition (1.5)p or (1.5)y.

Theorem 2.2. For one-dimensional lattice system (1.2), the equi-

“librium (z%,... %) is asymptotically stable if and only if for each
1=20,1,...,N — 1, the matriz

(2.3) M; =M —2(1 - cosif) D

satisfies Re A < 0 for all A € spec (Ml) where 0 = 2r /N for the periodic
boundary condition (1.3)p and 8 = w/N for the Neumann boundary
condition (1.3)y.
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Proof. Let y; = z; — 2*, 1 =1,2,...,N. Then the linearized system
of (1.2) at (z*...z*) is

(2.4) yi = My; + Dlyic1 — 2y + 900, ¢=1,2,...,N.
Let Y = (y1,¥2,...,yn)T. Then (2.4) can be written as
Y =AY

where

D M —-2D D
D D M —-2D

for the periodic boundary condition (1.3)p and
M--D D
D M —-2D D
D M --2D D
D M-D.

for the Neumann boundary condition (1.3)y. Since the eigenvalues of

2 —1 -1
-1 2 —1
(25) Tpy = ’ :
-1 2 -1
-1 -1 2
and
1 -1
-1 2 -1
(2.6) Ty, =
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have the same form, 2(1 — cosif), i = 0,1,... ,N — 1 with 8 = (2x/N)
for Tp; and 6 = (n/N) for Ty1 (see [2, p. 66], [9, p. 558]). Apply
Theorem 2.1 with T' = Tpy and Ty, and L = D; it follows that the
eigenvalues of A are the eigenvalues of M;, i =0,... ,N — 1. Thus we
‘complets the proof of Theorem 2.2. o :

Assume Z(t) is a periodic solution of (1.1) of period w and M(t) =
Df(z(t)). Obviously (Z(t),...,%(t)), 0 <t < w, is a periodic solution
of (1.2). In the following we establish a criterion for the orbital stability
for the w-periodic solution (Z(¢),...,%(t)) by similar arguments in
"Theorem 2.2.

Corollary 2.1. For the one-dimensional lattice system (1.2), the
w-periodic solution (Z(t),...,Z(t)) is asymptotically orbitally stable if
and only if for each i =0,1,... ,N — 1, the periodic matriz

M;(t) = M(t) — 2(1 -~ cost0) D
has Floquet multipliers with magnitude less than one where 8 = (21 /N)
for the periodic boundary condition (1.3)p and § = (w/N) for the
Neumann boundary condition (1.3) .

Remark 2.1. For the one-dimensional lattice system (1.2), we may
consider the general form

dx;
(r.2y ";7' = f(@:) + D(ki—1mioy — (kicy + ki)zi + kizigr).
Then the matrix T in Theorem 2.1 takes the form
"k, + k{ —kq —kn
—ky ky + ko —ky
Tp, = ' :
—kn2 kn_o+kn1 —kn_1
""kn “‘kn—l kn-l + kn
or
ky -k
-k k1 + ko —ko
Ty = : ", .
—kn_2 kno+kny —kn-1

'—/Cnnl kn—l
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Corollary 2.2. For discrete one-dimensional lattice system (1.7),
the fized point (z*,...,z*) is asymptotically stable if and only if for
eachi=0,1,... ,N -1, the matriz

M; =M —2(1 —cosif)D
satisfles M| < | for eii A € spec(M;) where 8 = (2 /N) for perindic

bounda:y condition (1.3)p and 8 = w/N for the Newmann boundary
condition (1.3)N.

Next we consider the hwo-dimensional lattice system (1.4) with pe-
siedic houndary condition (1.5)p or Neunwna boundary condition
P Y
15N

Theorem 2.4. For lwo-dimensional lattice system (1.4), the equi-
librium (z*,...,x*) i asymptotically stable if and only if for each
i,7=0,1, . , N -1, e matriz
(2.1 Mij = M - 2(2 - cosif — cos j8) D
satisfies Re A < 0O for all A € spec(M;;) where 8 = 2u/N for the

periodic boundary condition (1.5)p and 6 = w/N for the Neumann
boundary condition (1 5y,

Proof Let wyj == .~ 2%, 4,7 = 1,2,...,N. Then the linearized
system of (1.4) at (z™ .. &%) is

(2.8) vl = Muyg o D(eien + Yig-1 F Yiers + Yivrs - 4ui),
v 1<4,j<N.
Let

\ , Ty N2k
(29) w="{(yi1r, ¥, Y21, Y2N, - YN, - - - ,yNN)f e RMF,

Under the periodic bovadary (1.5) p, the system (2.8) can be rewritten

(2.10) S o= Ay, AeRNHEXNE
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where
G H H
H G H
(2.11) A= ,
H G H
LH H G
(2.12)
M —4D D D
D M —4D D
G = ,
| | D M — 4D D
LoD D M — 4D
(213) H:: d]ag(D’D’ ,D)ERkaNk_

From (2.11), (2.12) and (2.13), the matrix A in (2.11) takes the form
of (2.1) in Theorem 2.1 with L =: D and the corresponding matrix T is

F -In —IN
—In F . —In
(2.14) Tp = ~ o 3
~In F Iy
TN : ~In F
where
4 =) -1
-1 4 1
(2.15) F=
» -1 4 -1
~1 -1 4

From the following Remark 2.2, the eigenvalues of Tp are

Nij = 2(2 — cosif - cos jd), 0<4,5< N-1, 8= %
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Apply Theorem 2.1, and we complete the proof for the periodic case.
For the Neumann boundary condition (1.5)y, the system (2.8) can be

rewritten as (2.10) with

G1 H
H G H
(2.16) A=
H G
H
where
(2.17)
rM—2D D :
D M -3D D
Gy = : ’
D M-3D
L D
(2.18)
rM—3D" D
D M-4D D
D M—4D
L D

c RNzkxNz.’c

H
Gy

c RNkXNk,

M-2D

e RNk)(Nkv

D
M-3D

From (2.16), (2.17), (2.18) and (2.13), the matrix A in (2.16) takes the
form of (2.1) in Theorein 2.1 with L = D and the corresponding matrix

T is
Fy Iy
Iy F —In
(219) Ty =
Iy E
"IN
where
2 -1
-1 3 -1
(2.20) F =
~1 3

2 2
ERN x N

Iy
F
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and

(2.21) F= . .
—1 4 -1
—1 3

From the following Remark 2.3, the eigenvalues of T are

Aij =2(2 —cosif —cosjf), 0<i,j<N-1, f=

==

Apply Theorem 2.1 and the proof for Neumann case follows.

Remark 2.2. To obtain the eigenvalues of the matrix Tp in (2.14), we
first rewrite the matrix F in (2.15) as

F =21 +Tp,,

where Tpy is the matrix in (2.5). Applying Theorem 2.1 with A =Tp,
M = Tpy, L = I and the corresponding matrix T = —Tp1, then it
follows that

spec(Tp) = | )spec(Tpy + M)

=

i=]

where spec (Tp1) = {A1,...,An}. Since A; = 2(1 — cos(i — 1)),

6 = (2n/N), ¢ = 1,...,N, it follows that the eigenvalues A;; of Tp
are

/\ij :/\,+/\J :2(2 — cosif — COS"}.H), OS’L,] SN*‘].

Remark 2.3. To obtain the eigenvalues of the matrix Ty in (2.19), we
rewrite the matrices Fy and F in (2.20) and (2.21) as

Fy=1+Tn,

F =21 +7TNy,
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where Ty is the matrix in (2.6). Apply Theorem 2.1 with A =Ty,
M = Twn1, L = I and the corresponding matrix T' = —T'n1, then it

follows that
N

spec (Tn) = U spec (Tn1 + Aid)
i=1
where spec(Tn1) = {M,...,An}. Since A = 2(1 — cos(i — 1)),
6 = (m/N), it follows that the eigenvalues A;; of T are

)\ij:)\i+)\j:2(2—cosi9——cosj9), 0<1,5<<N-—-1. o

Corollary 2.3. For the two-dimensional lattice system (1.4), the
w-periodic solution (Z(t),...,%(t)) is asymptotically stable if and only
if for each i,j =0,1,... ,N -1, the periodic matriz

M;(t) = M(t) — 2(2 — cosi8 - cos j0) D
has Floguet multipliers with magnitude less than one where 6 = (27 /N)

for periodic boundary condition (1.5)p and 6 = (w/N) for Neumann
boundary condition (1L.5)n.

Corollary 2.4. For ihe discrete two-dimensional lattice system (1.7).
the fized point (z*,...,x*) is asymptotically stable if and only if for
eachi,7=0,1,... ,N —1 the matric

My; = M - 2(2 — cos i) — cos j) D

satisfies |\ < 1 for ali X € spec (M;;) where 8 = (2n/N) for periodic .

boundary condition (1.5)p and 8 = (n/N) for Neumann boundary
condition (1.5} n.

At the end of this section we consider a discrete two-dimensional
lattice system which describes the “disperse-reproduce” mechanism in
the population models [8], [4]. Consider the following iterated map:

;5 = f(2i5)

(2.22) )
$5=D Z (75 = Ti5)
lr—iis1
ls—jl<1
(rys)#(i.7)
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where f : RF —» R*, D =diag(dy,...,dy), di >0,i=1,... k.

Let z* be a fixed point of f, M = Df(z*) and y;; = z;; — z*,
1 <4,5 < N. Then the linearized system of (2.22) at (z*,... ,z*) is

(2.23) Ui =M {yis + D }: (Yrs — Yij)
i<
ls—j<1
(r,8)#(1,3)
Let
. 2L
Y= (Y11y - YIN, Y2Lse o s Y2Ns - UNTs- o, YNN) € RTYE

Under the Neumann boundary condition (1.5)y, the system (2.23)
takes the form

7= Ay
where
G H )
H G H
(2.24) A= ,
H Gy
L=MD,
rM —5L 2L 1
oL M —~7L oL
él - ’ . ‘ . 3
2L M —TL 2L
L 2L M ~5L]
M —17L L 7
L M - 81, L
G = ' . ..
L M — 8L L
L L M- 7L
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2L L
L L L
=
L L L
L 2L

The corresponding matrix 7' in Theorem 2.1 is

Fy J
J F J
TN — . . )
J F J
L J Iy
where
-5 _9 .
2 7 -2
Fl = )
-2 7 -2
L -2 5 |
- 1 -
-1 8 —1
F‘ =
-1 8 ~1
L ~1 7
[—2 -1
~1 -1 -1
-1 -1 -1
L —1 -2

Since Fy, = 09Iy + 2J, F = 9Iy + J, we apply Theorem 2.1 with
A =Ty, L = J M = 9y, T = J, then the eigenvalues of
Ty are the set of eigenvalues of 91y — A;J where A; € spec (J),
i=0,...,N -1, Since J = Tny — 3y, then the eigenvalues of J are
A; = 2(1--cos10) -3 = ~(1-+2cosif),i=0,... ,N-1,0 = 7 /N. Then
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it follows that the eigenvalues a;; of Ty are 9—(1+2 cosi6)(1+2 cos j8),
1,7 =0,1,2,... ,N — 1. Again, by Theorem 2.1, the eigenvalues of A
in (2.24) are the set of eigenvalues of

j\/[ij = ]\4 - Oz,'jL = M(I - ai]-D),

1,7 =0,1,...,N — 1. Thus we have the following theorem.

Theorem 2.5. For the discrete two-dimensional lattice system
(2.22), with Neumann boundary condition (1.5)n, the equilibrium
(x*,...,2*) is asymptotically stable if and only if for each i,j =
0,1,...,N — 1, the matriz

Mij = AJ(] - aijD),

where
aj; =9 — (14 2cosif)(1 + 2cos58), 6=

==

satisfying |A| <1 for all X € spec (M;;).

Remark 2.4. For the system (2.22) with periodic boundary condition
(1.5)p, it is easy to verify that Theorem 2.5 holds with § = (27 /N).

3. Applications.

Predator-prey systems. Consider the following predator-prey system
with logistic growth for prey z in the absence of predation and Holling
type II functional response for predator v.

dz T me

it (1 - E) “aav=1Iy
3.1 di mz
G = (45 )y =aww

z(0)>0, y(0)>0

where v,m,d, K,a > 0. Let m > d and A = a/[(m/d) — 1]. If [(K —
a)/2] < A < K, then the equilibrium (z*,y*) is global asymptotically
stable [6] where z* = X, y* = (y/m)(a + 2*)[1 — (z*/K)]. When
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0 < A < [(K —a)/2], the equilibrium (z*,y*) becomes an unstable
focus, and a unique limit cycle exists for (3.1) [3]. Consider the two-
dimensional lattice system

dfl?i'
) o = f @i i) Hdi(@igan F @i b iy Ty - dij)
(3.2 -
dyi;
— = 9(@i5,Yig) + da(Wiger + Yag-1 i+ Uity — i)

1 <14, j < N, with the Neumann boundary condition
@)-G) G)-()
Yoj v ) YN+1,j yn; )’
Tio \ T » Ti,N+1 ) _ [ TiN
Yio yi1 ) Yi N+1 yin )’

1<4,j<N.

The variational matrix M of (3.1) at (z*,y*) is

(Kot e DI —a)/2) 3] —(ma*/(a+ 7))
M = ( [ma/(a + z*)%y* 0 ) :

It is easy to verify that if (K — a)/2 < a*, then for any nonnegative,
diagonal matrix E, the eigenvalues of M — E have negative real parts.
Thus, from Theorem 2.4, the synchronized equilibrium (z*,...,2*) of
(3.2), where z* = (z*, y*), is asymptotically stable.

If (K —a)/2 > x*, then from [3] the system (3.1) has a unique limit
cycle T = {2(¢) = (£(2),5(t)) : 0 < t < w}. To verify the orbital
stability of the periodic solution ((t),. .., 2(t)) from Corollary 2.3, we
need to compute the Flogquet’s multipliers of the periodic matrix

M;(t) = M(t) — 2(2 — cosif — cos jO) D,
where D = diag(dy, ds),dy,ds > 0,4,5=0,1,... ,N — 1. Since

o (AL (20 K)) ~ (mayf(a+5)?)  ~(ma/{a+ )
M) = ( (may/(a + z)?) (mz/(a+x)) — d)

z=E(t) 1
y=4(t)

from [3] it follows that [,"[(m&(t)/(a + Z(t))) — d]dt = 0 and A

f(0-5) - a5 <
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Then the Floquet’s multiplier Ay, Ay of M;;(t) satisfies 0 < AjAg < 1.
Obviously, if Aj, Ay are complex, then |A1| = |A2] < 1. If we conjecture
that if Ay, Ay are real, |Ai],|A2| < 1 for any di,dy > 0. That is, the
periodic orbit is orbital stable.

Brusselator, Consider the equations of “Brusselator” which is a
simple model of a hypothetical chemical oscillator,

éf :a~(b+1)a:+1'2y
dt
(3.3)
c_ig = bz — 2%y
dt '

It is easy to verify that the equilibrium (a,b/a) is locally stable if
b < a? + 1 and is an unstable focus if b > a® + 1. In [7, page 107},
the authors consider the case @ = 2, b = 5.9 and N = 2 for the system
(1.2) with Neumann boundary condition (1.3)n, i.e.,

z) =a— (b4 1)z, + 2ty + di(z2 - 21)
Yy = by — 2ty + da(y2 — w1)
Ty =a—(b+ 1)z + z3ys + di (21 — z2)
yh = by — ziys + da(y1 — ¥2).

(3.4)

With the fixed ratio dy/dy = 0.1, the authors varied the parameter
d; from 1.16 to 1.26 and found that the behavior of solutions changes
from periodic doubling cascade to chaos. Tet Z(t) = (Z(t),(t)) be an
w-periodic solution of (3.2). Applying Corollary 2.1, we may find the
w-periodic solution (Z(t), 2(t)) of (3.3) becomes orbitally unstable as
we increase the parameter d;.

Host-parasitoids models. Consider the following extension of the
familiar Nicholson-Bailey host-parasite equation which describes the
interaction between a population of herbivorous arthropods and their
insect parasitoids (1],

Hopy = Hyexp(r — (1 — Hy/K) —aP,) = f1(Hn, Py)

(3:5) Py = aH, [l ~exp(aPy)] = fa( Ha, Pr).
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Let E* = (H*, P*) be the fixed point of (3.5) and ¢ = H*/K. From [1],
(H*, P*) is a stable fixed point for some range of ¢. Now we consider
the spatial dynamics of host-parasitoid system. Let

(Hu)n (1 — p) (Hij)n + pr (Hij)n,
(Pij)n = (1= pP)(Pig)n + 1tp(Pij)n,
(Fz’j)n:% Z Hrs»

(r,8)#(i.9)

[T—“SI»
[s—jl<1

(Fij)n =39 >_: Prs
fr—ii<1,
fs—jls1

(r,s)#£(1,5)

(Hij)nt1 = fl((f{ij)m(Pij)ﬂ)

(Pi)nt1 = F2(Hij)n, (Pij)n)-

Then we may apply Theorem 2.5 with D = diag [(nH/8), (,uP/S)}
check the stability property of synchronized equilibrium (E*,..., E*
of the system (3.5) with Neumann boundary condition.

(3.6)
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