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Abstract, In this paper we study the asymptotic behavior of the
solution »(x) of initial value problem (1.1) which arises from a
mathematical model describing the large deformations of a heavy
cantilever by its own weight.

1. Introduction. In this paper we are concerned with the
asymptotic behavior of the solutions of the following initial value
problem:

v/ (x) + xsinu(x) =0,
(1.1 v’(0) =0,
v(0) = @, 0<a<n.

The qualitative behavior of the solutions v(z, @) of (1.1) is
important to the studies of the following mathematical model (1.2)
which describes the large deformations of a heavy cantilever by its
own weight (See [2] or [3]):

v (2) + xsinv(x) =0,

(1.2) (0)=0, vD)=r—-« 0<a<uz

In [2] the authors studied the two-point boundary value problem
(1.2) by using shooting method. From the uniqueness of the
solutions of the initial value problem (1.1), it follows that

v(z, @) =v(x, a + 27),
v(z, —a) = - v(x, a),
v(x, 0) =0, v(x, ) = z.
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Hence we restrict ourselves to study the case 0<a <<w=.
First we introduce the following Liapunov function
(13) V(@) = (1= cos o(2)) -+ - (@)%
" where 'v(z) = -v(x, a).

It is easy to verify that

) o Vi()=-= %(M)zsox

Then we have
>1 —cosv(x) < V(x) V() =1—cosae,

and it follows that |v(x)|<e for all x>0. We rewrite the
equation in (1.1) as

(15) o)+ s (1;()‘1)&@- = 0.

Let 0 <o < min (sinv/v). Using Sturm’s cemparison theorem [1],

0=v<a

we compare (1.5) with |
(1.6) v/ (x) + ov(z) =0 ..

which is oscillatory over [0, ). Thus the solution »(x, @) is
oscillatory over [0, ) for 0 <<a < z. Moreover, from (1.3) and
(14) the solution w#(x, @) is oscillatory with the decreasing
amplitudes. In the next section we shall prove that

£-00

(1.7) limo(x, a) =0 for 0<e<uw.

Consequently, if we denote the Zero of v by <Xy <o << x1 <-
then we have |2 — 2/-1|— 0 as I — oo; or, more prec1se1y,

(18) x?”——-x?’.’,——»—g’x as [ o,
2. Main results. The purpose of this section is to establish

(1.7). First, we make the following change of variables:

(2.1) y =2 u(, a) =9z a).

Then we have
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3
Ve = 7— :L‘”z u_,

: 9 3 .-
Vex = T + Rk Vaiy,

vx,+a:sinv=%x[u”+ uy+~§—sinu].

3y

Thus (1.1) becomes

(2.2) Uyy + 317 uy + %sin u =0,
(2.3) u(0) = a, O<a<ng,
(2‘4) u,(O) = O-

We note that (24) follows directly from L’Hospital rule. Let
0 <e¢ <d be any two real numbers. Multiplying #, on both sides
of (2.2) and integrating the resulting identity from ¢ to 4 yields

(2.5) 5 @ = e+ [ 4y

+ —3~ (cos u(c) — cosu(d)) = 0.

Let O=pro<rme<nmi<-- <y <--+ and 7~’1<Ta<“'< Tohey <<t oo
be the local maxima and local minima of u(y) respectively. Since
v(x, a) is oscillatory over [0, o) with decreasing amplitudes, from
(2.1) so is u(y, a). Assume

(2.6) iim u(ren) = €20,
and
2.7) l{im #(rens1) = 7 < 0.

Now we state the following lemma and we defer the proof to
the end of this section.

LEMMA 2.1. There exists C = C(a) > 0 such that

(2.8) l7e —raa| S C for all k>1.
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Assume that (2.8) hold. From (2.6), (2.7), (2.8) and Cauchy-
Schwarz inequality it follows that for each £>1

£ —n <lu(rw) — u(ra-1)|
=| [ ww a
< 1@l ay
<(ras — r2r-1)'"? [/;Tk (uy(y))? dy]”z

k—1

<cn [* @wra]”

k-1
or
£—q s 2 7o T
(2.9) S|, S ay) "
Letting ¢ =0, d=rs in (25) and k— o, we have that
> 1 2
(2.10) Jy o w@dy <.

Considering the following inequality

(2.11) I W gy s> LT () dy,
L. Y Tk ¥ Thry
we see that (2.9) and (2.11) imply that
e (uy(Y))? 1 (6—9p)*
2.12 AINILL gy >
( ) ‘/;k——1 Y Y Th C

From Lemma 2.1 and limsw7s= + o0, there exists ky >0 such
that

(2.13) 15 1

TH 2781

, for every & = k.

From (2.12), (2.13), (2.8), we have that for k= ko
Jr o gy 1 G-

Th—s Yy 2781 C
(2.14) =1 (é:z)z .c_ 1
C Th-1

2

L(e—n\ [ 1
22<C>f ydy'

Tg-1
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Summing up (2.14) over k >k, yields

> (u,(9)) g~ 1 6*77>2 = 1

Therefore & — 7 = 0 since otherwise (2.15) and (2.10) would lead
to a contradiction. Since ¢ >0 and 7 <0, we have that é=72=0
or lim,.«#u(y) =0. Thus we complete the proof of (1.7).

Proof of Lemma 2.1:

Let w(y) = 4% u(y). Then (2.2) becomes

5 4 sinu(y) .
(2.16) i+ (g * o gy )P

Since
5o < 4%‘-%’)—5;1 for all 3 >0
where
o= Sine
a ?
we compare (2.16) with
(2‘17) Wyy + (% 50) w = 0-

Let 2, <2, <---<z;<--- be the zeros of #(y). Then from Sturm’s -

comparison theorem it follows that

|2; — 2121 £ =C/2

-
v 450/ 9
or

76 — re—1| < C for all kB>1,

and Lemma 2.1 is proved.

Since w and # have exactly the same zeros in (0, o), it
follows from (2.16), (1.7) and Sturm’s comparison theorem that
|z, — 21— (3/2) = as [ —co. Thus (1.8) holds.
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