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This paper is devoted to the investigation of an unstirred chemostat system modeling 
the interactions of two essential nutrients (i.e., nitrogen and phosphorus), harmful 
algae (i.e., P. parvum and cyanobacteria), and a small-bodied zooplankton in an 
ecosystem. To obtain a weakly repelling property of a compact and invariant set on 
the boundary, we introduce an associated elliptic eigenvalue problem. It turns out 
that the model system admits a coexistence steady state and is uniformly persistent 
provided that the trivial steady state, two semi-trivial steady states and a global 
attractor on the boundary are all weak repellers.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Harmful algal blooms (HABs) have been a serious problem in many coastal and inland waters world-
wide [4,7]. It was known that the algal species, Prymnesium parvum (golden algae), is responsible for 
fish-killing problem, and results in major economic damage [5]. In a reservoir, P. parvum competes for 
nitrogen and phosphorus with cyanobacteria, which also excrete allelopathic cyanotoxins that inhibit the 
growth of P. parvum. A small-bodied zooplankton population consume both types of algae for growth, but 
the dissolved toxins produced by P. parvum also inhibit zooplankton ingestion, growth and reproduction. 
In order to understand such complex interactions and reactions in an ecosystem, the authors in [6] pro-
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posed a well-mixed chemostat system to explore the dynamics of nutrients, P. parvum, toxin(s) produced 
by P. parvum, cyanobacteria, cyanotoxin(s) produced by cyanobacteria, and zooplankton.

A natural approach to the spatial heterogeneity is to use “unstirred” chemostat, where we will remove the 
assumption that interactions of nutrients and species proceeds in a well-mixed, spatially uniform habitat. 
The unstirred chemostat can be regarded as a spatially distributed habitat in which inflow of nutrients occurs
at one point and outflow at another, with diffusive transport of nutrients and organisms between these points 
[3,14]. For simplicity, we ignore the equations of toxins proposed in [6] and assume that inhibitory effects 
are directly determined by the densities of harmful algae. Accordingly, we modify the model in [6] to obtain 
the following unstirred chemostat model:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂R
∂t = d∂2R

∂x2 − q1rf1(R,S)u1e
−αu2 − q2rf2(R,S)u2, x ∈ (0, 1), t > 0,

∂S
∂t = d∂2S

∂x2 − q1sf1(R,S)u1e
−αu2 − q2sf2(R,S)u2, x ∈ (0, 1), t > 0,

∂u1
∂t = d∂2u1

∂x2 + f1(R,S)u1e
−αu2 − q1g1(u1)Z, x ∈ (0, 1), t > 0,

∂u2
∂t = d∂2u2

∂x2 + f2(R,S)u2 − q2g2(u2)Z, x ∈ (0, 1), t > 0,
∂Z
∂t = d∂2Z

∂x2 + G(u1, u2)Z, x ∈ (0, 1), t > 0,

(1.1)

with boundary conditions

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂R
∂x (0, t) = −R(0), ∂R

∂x (1, t) + γR(1, t) = 0, t > 0,
∂S
∂x (0, t) = −S(0), ∂S

∂x (1, t) + γS(1, t) = 0, t > 0,
∂ui

∂x (0, t) = ∂ui

∂x (1, t) + γui(1, t) = 0, t > 0, i = 1, 2,
∂Z
∂x (0, t) = ∂Z

∂x (1, t) + γZ(1, t) = 0, t > 0,

(1.2)

and initial conditions
{
R(x, 0) = R0(x) ≥ 0, S(x, 0) = S0(x) ≥ 0, x ∈ (0, 1),
ui(x, 0) = u0

i (x) ≥ 0, Z(x, 0) = Z0(x) ≥ 0, x ∈ (0, 1), i = 1, 2.
(1.3)

Here R(x, t) and S(x, t) denote the complementary nutrient (nitrogen and phosphorus) concentrations at 
position x and time t; u1(x, t) and u2(x, t) represent the densities of P. parvum (golden algae) and cyanobac-
teria, respectively; Z(x, t) represents the density of small-bodied zooplankton population. R(0) and S(0) are 
input concentration of nutrients; qir and qis, i = 1, 2, are the constant nutrient quotas; qi, i = 1, 2, is the 
constant algal quota; the constant γ in (1.2) represents the washout constant. We also assume that nutrients 
and algal species have the same diffusion coefficient d. The term e−αu2 describes the inhibitory effect on 
u1(x, t) from u2(x, t). The response function are given by fi(R, S) = min{hir(R), his(S)}, i = 1, 2. The 
nonlinear functions hir(R) (his(S)) describe the nutrient uptake and growth rates of species i when only 
nutrient R (S) is limiting. We assume that the functions hir(R) and his(S) satisfy

hir(0) = 0, h′
ir(R) > 0 ∀ R > 0, hir ∈ C2, i = 1, 2.

An usual example is the Monod function

hir(R) = mirR

Kir + R
, his(S) = misS

Kis + S
.

Both types of algae are consumed by zooplankton, and consumption of the algae supports the growth of 
the zooplankton. Further, P. parvum u1(x, t) also inhibits the growth of zooplankton. The function g1(u1)
represents the relationship between zooplankton and P. parvum, which simultaneously include positive and 
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negative effects on the growth of the zooplankton, depending on the density of u1(x, t). Then g1(u1) takes 
the following form:

g1(u1) = m1zu1

K1z + u1 + ηu2
1
, or g1(u1) = m1zu1

K1z + u1
e−βu1 .

The cyanobacteria u2(x, t) only inhibits the growth of P. parvum u1(x, t), and has no negative effects on 
zooplankton Z(x, t). The function g2(u2) represents the relationship between zooplankton and cyanobacteria 
u2(x, t), and g2(u2) is increasing in u2, and hence, g2(u2) takes the following form:

g2(u2) = m2zu2

K2z + u2
.

Then G(u1, u2), the growth rate of zooplankton, takes the following types

G(u1, u2) = g1(u1) · g2(u2), (1.4)

or

G(u1, u2) = min{g1(u1), g2(u2)}. (1.5)

The organization of this paper is as follows. In Section 2, we study the well-posedness of system (1.1)–(1.3). 
Section 3 is devoted to the study of the global dynamics of system (3.1)–(3.3) modeling the interactions of 
P. parvum and cyanobacteria, that is, the subsystem of (1.1)–(1.3) where we put Z(x, t) ≡ 0. Basically, we 
show that the semiflow generated by system (3.1)–(3.3) admits a global attractor A0 ⊂ Int(C([0, 1], R4

+))
when the semi-trivial steady-state solutions of (3.1)–(3.3) are both unstable, by appealing to the theory of 
uniform persistence and chain transitive sets. In Section 4, we investigate the coexistence of harmful algae 
(i.e., P. parvum and cyanobacteria) and zooplankton for system (1.1)–(1.3). The main difficulty is that 
the zooplankton-extinct steady-state solution of system (1.1)–(1.3) is not necessarily unique, that is, the set 
A0×{0} may not be a singleton. To address this general case, we first introduce a continuous function, m(x), 
involving in A0 (see (4.3)), and the principal eigenvalue of an eigenvalue problem associated with m(x) (see 
(4.7)) becomes a crucial index that determines whether M3 := A0 × {0} is a uniform weak repeller in the 
sense of (4.8). Then we use persistence theory to establish the existence of a positive (coexistence) steady 
state and the uniform persistence for system (1.1)–(1.3) under the assumption that its compact invariant 
set M3 := A0 × {0}, trivial and semitrivial steady states are all weak repellers. A brief discussion section 
completes the paper.

2. Well-posedness

We first study the well-posedness of the initial-boundary-value problem (1.1)–(1.3). Let X = C([0, 1], R5
+)

be the positive cone in the Banach space C([0, 1], R5) with the usual supremum norm. In order to simplify 
notations, we set v1 = R, v2 = S, v3 = u1, v4 = u2, v5 = Z and v = (v1, v2, v3, v4, v5). We assume 
that the initial data in (1.3) satisfying v0 = (v0

1 , v
0
2 , v

0
3 , v

0
4 , v

0
5) := (R0, S0, u0

1, u
0
2, Z

0) ∈ X. For the local 
existence and positivity of solutions in the space X, we appeal to the theory developed in [8] where existence 
and uniqueness and positivity are treated simultaneously (taking delay as zero). The idea is to view the 
system (1.1)–(1.3) as the abstract ordinary differential equation in X and the so-called mild solutions can 
be obtained for any given initial data. More precisely,⎧⎪⎪⎨

⎪⎪⎩
v1(t) = VR(t, 0)v0

1 +
∫ t

0 T (t− s)B1(v(s))ds,
v2(t) = VS(t, 0)v0

2 +
∫ t

0 T (t− s)B2(v(s))ds,
v (t) = T (t)v0 +

∫ t
T (t− s)B (v(s))ds, i = 3, 4, 5,
i i 0 i
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where T (t) is the positive, non-expansive, analytic semigroup on C([0, 1], R) (see, e.g., [13, Chapter 7]) such 
that v = T (t)v0 satisfies the linear initial value problem

⎧⎪⎪⎨
⎪⎪⎩

∂v
∂t = d ∂2v

∂x2 , t > 0, 0 < x < 1,
− ∂v

∂x (0, t) = 0, ∂v
∂x (1, t) + γv(1, t) = 0, t > 0,

v(x, 0) = v0(x).

For N = R, S, we assume that VN (t, s), t > s, is the family of affine operators on C([0, 1], R) (see, e.g., [11, 
Chapter 5]) such that v = VN (t, s)v0 satisfies the linear system with nonhomogeneous boundary conditions, 
with start time s, given by

⎧⎪⎪⎨
⎪⎪⎩

∂v
∂t = d ∂2v

∂x2 , t > 0, 0 < x < 1,
− ∂v

∂x (0, t) = N (0), ∂v
∂x (1, t) + γv(1, t) = 0, t > s,

v(x, s) = v0(x).

The nonlinear operators B1, B2, Bi : C([0, 1], R+) → C([0, 1], R), i = 3, 4, 5, are defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

B1(v) = −q1rf1(v1, v2)v3e
−αv4 − q2rf2(v1, v2)v4,

B2(v) = −q1sf1(v1, v2)v3e
−αv4 − q2sf2(v1, v2)v4,

B3(v) = f1(v1, v2)v3e
−αv4 − q1g1(v3)v5,

B4(v) = f2(v1, v2)v4 − q2g2(v4)v5,

B5(v) = G(v3, v4)v5.

By standard maximum principle arguments (see, e.g., [13, Chapter 7]), it follows that VN(t, s)C([0, 1], R+)
⊂ C([0, 1], R+), ∀ t > s, N = R, S and T (t)C([0, 1], R+) ⊂ C([0, 1], R+), ∀ t > 0. Since g1(0) = 0 and 
g2(0) = 0, it follows that Bi(v) ≥ 0 whenever vi ≡ 0, i = 1, 2, 3, 4, 5. Hence, B := (B1, B2, B3, B4, B5) is 
quasipositive (see, e.g., [8, Remark 1.1]). By [8, Theorem 1 and Remark 1.1], it follows that the system 
(1.1)–(1.3) has a unique noncontinuable solution and the solutions to (1.1)–(1.3) remain non-negative on 
their interval of existence if they are non-negative initially. More precisely, we have the following results:

Lemma 2.1. For every initial value function v0 ∈ X = C([0, 1], R5
+), system (1.1)–(1.3) has a unique mild 

solution v(x, t, v0) on (0, τv0) with v(·, 0, v0) = v0, where τv0 ≤ ∞. Furthermore, v(·, t, v0) ∈ X, ∀ t ∈
(0, τv0) and v(x, t, v0) is a classical solution of (1.1)–(1.3), ∀ t > 0.

For N = R, S, we consider
⎧⎪⎪⎨
⎪⎪⎩

∂WN

∂t = d∂2WN

∂x2 , x ∈ (0, 1), t > 0,
∂WN

∂x (0, t) = −N (0), ∂WN

∂x (1, t) + γWN (1, t) = 0, t > 0,
WN (x, 0) = W 0

N (x), x ∈ (0, 1).
(2.1)

Then WN (x, t) satisfies (see, e.g., [3])

lim
t→∞

WN (x, t) = wN (x), uniformly in x ∈ [0, 1], (2.2)

where wN (x) = N (0)(1+γ
γ − x).

Next, we show that solutions of (1.1)–(1.3) are ultimately bounded.
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Lemma 2.2. Any solution with initial value function in X of the system (1.1)–(1.3) exists globally on [0, ∞). 
Moreover, solutions are ultimately bounded.

Proof. We first consider the case where G(u1, u2) takes the form (1.5). Let

YR(x, t) = R(x, t) + q1ru1(x, t) + q2ru2(x, t) + min{q1q1r, q2q2r}Z,

and

YS(x, t) = S(x, t) + q1su1(x, t) + q2su2(x, t) + min{q1q1s, q2q2s}Z.

Then YR(x, t) satisfies

∂YR

∂t
= d

∂2YR

∂x2 + {min{q1q1r, q2q2r}min{g1(u1), g2(u2)} − q1q1rg1(u1) − q2q2rg2(u2)}Z

≤ d
∂2YR

∂x2 , x ∈ (0, 1), t > 0.

That is, YR(x, t) satisfies
⎧⎪⎪⎨
⎪⎪⎩

∂YR

∂t ≤ d∂2YR

∂x2 , x ∈ (0, 1), t > 0,
∂YR

∂x (0, t) = −R(0), ∂YR

∂x (1, t) + γYR(1, t) = 0, t > 0,
YR(x, 0) = Y 0

R(x), x ∈ (0, 1).
(2.3)

Comparing system (2.3) with (2.1), it follows that YR(x, t) ≤ WR(x, t), x ∈ [0, 1], t > 0, where we have put 
N = R and Y 0

R(·) ≡ W 0
R(·) in (2.1). Thus,

lim sup
t→∞

YR(x, t) ≤ wR(x) := R(0)(1 + γ

γ
− x), x ∈ [0, 1]. (2.4)

Similarly, we can show that

lim sup
t→∞

YS(x, t) ≤ wS(x) := S(0)(1 + γ

γ
− x), x ∈ [0, 1]. (2.5)

From Lemma 2.1, (2.4), and (2.5), it follows that R, S, u1, u2, and Z are ultimately bounded.
For the case where G(u1, u2) takes the form (1.4), it follows that

G(u1, u2) = g1(u1) · g2(u2) ≤ m1zg2(u2).

Setting

YR(x, t) = R(x, t) + q1ru1(x, t) + q2ru2(x, t) + q2q2r
m1z

Z,

and

YS(x, t) = S(x, t) + q1su1(x, t) + q2su2(x, t) + q2q2s
m1z

Z.

By the same arguments as before, we are able to show that YR(x, t) and YS(x, t) are ultimately bounded. 
So are R, S, u1, u2, and Z. �
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By the strong maximum principle and the Hopf boundary lemma (see [12]), we have the following result.

Lemma 2.3. Let

(v1(x, t), v2(x, t), v3(x, t), v4(x, t), v5(x, t)) := (R(x, t), S(x, t), u1(x, t), u2(x, t), Z(x, t))

be the solution of system (1.1)–(1.3) with initial data v0 ∈ X. If there is a t0 ≥ 0 such that vi(·, t0) 
≡ 0, for 
some i ∈ {1, 2, 3, 4, 5}, then vi(x, t) > 0, for all x ∈ [0, 1] and t > t0.

3. Dynamics of harmful algae

In this section, we put Z = 0 in (1.1)–(1.3) and consider the following system:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂R
∂t = d∂2R

∂x2 − q1rf1(R,S)u1e
−αu2 − q2rf2(R,S)u2, x ∈ (0, 1), t > 0,

∂S
∂t = d∂2S

∂x2 − q1sf1(R,S)u1e
−αu2 − q2sf2(R,S)u2, x ∈ (0, 1), t > 0,

∂u1
∂t = d∂2u1

∂x2 + f1(R,S)u1e
−αu2 , x ∈ (0, 1), t > 0,

∂u2
∂t = d∂2u2

∂x2 + f2(R,S)u2, x ∈ (0, 1), t > 0,

(3.1)

with boundary conditions
⎧⎪⎪⎨
⎪⎪⎩

∂R
∂x (0, t) = −R(0), ∂R

∂x (1, t) + γR(1, t) = 0, t > 0,
∂S
∂x (0, t) = −S(0), ∂S

∂x (1, t) + γS(1, t) = 0, t > 0,
∂ui

∂x (0, t) = ∂ui

∂x (1, t) + γui(1, t) = 0, t > 0, i = 1, 2,
(3.2)

and initial conditions
{
R(x, 0) = R0(x) ≥ 0, S(x, 0) = S0(x) ≥ 0, x ∈ (0, 1),
ui(x, 0) = u0

i (x) ≥ 0, x ∈ (0, 1), i = 1, 2.
(3.3)

3.1. A single population model

For i = 1, 2, we first consider the following system related to the single population model of (3.1)–(3.3):
⎧⎪⎪⎨
⎪⎪⎩

∂R
∂t = d∂2R

∂x2 − qirfi(R,S)ui, x ∈ (0, 1), t > 0,
∂S
∂t = d∂2S

∂x2 − qisfi(R,S)ui, x ∈ (0, 1), t > 0,
∂ui

∂t = d∂2ui

∂x2 + fi(R,S)ui, x ∈ (0, 1), t > 0,
(3.4)

with boundary conditions
⎧⎪⎪⎨
⎪⎪⎩

∂R
∂x (0, t) = −R(0), ∂R

∂x (1, t) + γR(1, t) = 0, t > 0,
∂S
∂x (0, t) = −S(0), ∂S

∂x (1, t) + γS(1, t) = 0, t > 0,
∂ui

∂x (0, t) = ∂ui

∂x (1, t) + γui(1, t) = 0, t > 0,
(3.5)

and initial conditions
{
R(x, 0) = R0(x) ≥ 0, S(x, 0) = S0(x) ≥ 0, x ∈ (0, 1),
u (x, 0) = u0(x) ≥ 0, x ∈ (0, 1).

(3.6)

i i
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Note that if we put u2 = 0 (u1 = 0) in (3.1)–(3.3), then we obtain the system (3.4)–(3.6) with i = 1 (i = 2).
For i = 1, 2, introducing the new variable WiR(x, t) = R(x, t) + qirui(x, t) into (3.4)–(3.6), then WiR(x, t)

satisfies (2.1) with N = R. Hence,

lim
t→∞

WiR(x, t) = wR(x) := R(0)(1 + γ

γ
− x), uniformly in x ∈ [0, 1].

Similarly, introducing the new variable WiS(x, t) = S(x, t) + qisui(x, t) into (3.4)–(3.6), it follows that

lim
t→∞

WiS(x, t) = wS(x) := S(0)(1 + γ

γ
− x), uniformly in x ∈ [0, 1].

Then we conclude the limiting system of (3.4)–(3.6) takes the form, i = 1, 2,

⎧⎪⎪⎨
⎪⎪⎩

∂ui

∂t = d∂2ui

∂x2 + fi(wR(x) − qirui, wS(x) − qisui)ui, x ∈ (0, 1), t > 0,
∂ui

∂x (0, t) = ∂ui

∂x (1, t) + γui(1, t) = 0, t > 0,
ui(x, 0) = u0

i (x) ≥ 0, x ∈ (0, 1).
(3.7)

We denote λ0
i to be the principal eigenvalue of the eigenvalue problem

{
dϕ′′(x) + fi(wR(x), wS(x))ϕ(x) = λiϕ(x), x ∈ (0, 1),
ϕ′(0) = ϕ′(1) + γϕ(1) = 0,

(3.8)

with the corresponding positive eigenfunctions uniquely determined by the normalization.
By similar arguments to those in [10,16,18], we have the following results on the global stability of system 

(3.7).

Lemma 3.1. For any nonnegative initial function u0
i (x), i = 1, 2, with qiru0

i (x) ≤ wR(x) and qisu0
i (x) ≤

wS(x), there exists a unique nonnegative solution ui(x, t) of (3.7) defined for t > 0. Furthermore,

(i) If λ0
i ≤ 0, then lim

t→∞
ui(x, t) = 0, uniformly for x ∈ [0, 1].

(ii) If λ0
i > 0, then there exists a unique positive solution u∗

i (x) with qiru∗
i (x) < wR(x) and qisu∗

i (x) < wS(x)
on [0, 1] such that

lim
t→∞

ui(x, t) = u∗
i (x),

uniformly for x ∈ [0, 1] provided that u0
i (·) 
≡ 0.

With Lemma 3.1, we can adopt the arguments in [17, Theorem 2.2] to lift the dynamics of the limiting 
system (3.7) to the system (3.4)–(3.6) by using the theory of chain transitive sets [15,19].

Lemma 3.2. For any nonnegative initial function (R0(x), S0(x), u0
i (x)) with u0

i (x) ≥ 0, there exists a unique 
nonnegative solution (R(x, t), S(x, t), ui(x, t)) of (3.4)–(3.6) defined for t > 0. Furthermore,

(i) If λ0
i ≤ 0, then lim

t→∞
(R(x, t), S(x, t), ui(x, t)) = (wR(x), wS(x), 0), uniformly for x ∈ [0, 1].

(ii) If λ0
i > 0, then there exists a unique positive solution (R∗

i (x), S∗
i (x), u∗

i (x)) on [0, 1] such that

lim (R(x, t), S(x, t), ui(x, t)) = (R∗
i (x), S∗

i (x), u∗
i (x)),
t→∞
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uniformly for x ∈ [0, 1] provided that u0
i (·) 
≡ 0. Here, u∗

i (x) is defined in Lemma 3.1, and

R∗
i (x) = wR(x) − qiru

∗
i (x), S∗

i (x) = wS(x) − qisu
∗
i (x), i = 1, 2. (3.9)

3.2. Coexistence of harmful algae

This section is devoted to the study of the global dynamics of system (3.1)–(3.3). From Lemma 3.2, it is 
easy to see that system (3.1)–(3.3) has the following possible steady-state solutions:

(i) Trivial steady-state solution E0 = (R, S, u1, u2) = (wR(x), wS(x), 0, 0) always exists;
(ii) Semi-trivial steady-state solution E1 = (R, S, u1, u2) = (R∗

1(x), S∗
1(x), u∗

1(x), 0) exists provided that 
λ0

1 > 0, where (R∗
1(x), S∗

1 (x), u∗
1(x)) is the unique steady-state solution of system (3.4)–(3.6) with i = 1

(see Lemma 3.2 (ii));
(iii) Semi-trivial steady-state solution E2 = (R, S, u1, u2) = (R∗

2(x), S∗
2(x), 0, u∗

2(x)) exists provided that 
λ0

2 > 0, where (R∗
2(x), S∗

2 (x), u∗
2(x)) is the unique steady-state solution of system (3.4)–(3.6) with i = 2

(see Lemma 3.2 (ii)).

Of course, there may be additional steady-state solutions as well and these must be positive. The two algae 
can coexist if a positive steady-state solution exists.

In order to investigate the local stability of E1 for system (3.1)–(3.3), we consider the following linear 
system:

⎧⎪⎪⎨
⎪⎪⎩

∂u2
∂t = d∂2u2

∂x2 + f2(R∗
1(x), S∗

1(x))u2, x ∈ (0, 1), t > 0,
∂u2
∂x (0, t) = ∂u2

∂x (1, t) + γu2(1, t) = 0, t > 0,
u2(x, 0) = u0

2(x) ≥ 0, x ∈ (0, 1).
(3.10)

Then we denote Λ0
1 to be the principal eigenvalue of the eigenvalue problem

{
dϕ′′(x) + f2(R∗

1(x), S∗
1 (x))ϕ(x) = Λ1ϕ(x), x ∈ (0, 1),

ϕ′(0) = ϕ′(1) + γϕ(1) = 0,
(3.11)

with the corresponding positive eigenfunctions uniquely determined by the normalization. For the local 
stability of E2 for system (3.1)–(3.3), we consider the following linear system:

⎧⎪⎪⎨
⎪⎪⎩

∂u1
∂t = d∂2u1

∂x2 + f1(R∗
2(x), S∗

2 (x))e−αu∗
2(x)u1, x ∈ (0, 1), t > 0,

∂u1
∂x (0, t) = ∂u1

∂x (1, t) + γu1(1, t) = 0, t > 0,
u1(x, 0) = u0

1(x) ≥ 0, x ∈ (0, 1).
(3.12)

Then we denote Λ0
2 to be the principal eigenvalue of the eigenvalue problem

{
dϕ′′(x) + f1(R∗

2(x), S∗
2 (x))e−αu∗

2(x)ϕ(x) = Λ2ϕ(x), x ∈ (0, 1),
ϕ′(0) = ϕ′(1) + γϕ(1) = 0,

(3.13)

with the corresponding positive eigenfunctions uniquely determined by the normalization.
Introducing the new variable WR(x, t) = R(x, t) + q1ru1(x, t) + q2ru2(x, t), and WS(x, t) = S(x, t) +

q1su1(x, t) + q2su2(x, t) into (3.1)–(3.3), respectively. Then WN (x, t) satisfies (2.1) with N = R, S, and 
hence,
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lim
t→∞

WN (x, t) = wN (x) := N (0)(1 + γ

γ
− x), uniformly in x ∈ [0, 1]. (3.14)

Let Ω = C([0, 1], R4
+) be the positive cone of the Banach space C([0, 1], R4) with the usual supremum norm. 

By (3.14) and similar arguments to those in Lemma 2.2, we can show that any solution with initial value 
function in Ω of the system (3.1)–(3.3) exists globally on [0, ∞), and solutions are ultimately bounded. Let 
Π(t) : Ω → Ω be the semiflow generated by system (3.1)–(3.3). Then Π(t) : Ω → Ω is compact, point 
dissipative, ∀ t > 0. By [2, Theorem 3.4.8], it follows that Π(t) admits a global compact attractor in Ω. 
Setting

Ω0 = {(R0(·), S0(·), u0
1(·), u0

2(·)) ∈ Ω : u0
1(·) 
≡ 0, u0

2(·) 
≡ 0}, ∂Ω0 = Ω\Ω0.

Theorem 3.1. Assume that

λ0
i > 0 and Λ0

i > 0, i = 1, 2. (3.15)

Then Π(t) : Ω → Ω is uniformly persistent with respect to (Ω0, ∂Ω0) in the sense that there exists η̃ > 0
such that

lim inf
t→∞

ui(·, t, Q0) ≥ η̃, i = 1, 2, ∀ Q0 ∈ Ω0.

Further, system (3.1)–(3.3) admits at least one positive steady-state solutions

(R̃(x), S̃(x), ũ1(x), ũ2(x)).

Proof. By the same arguments in Lemma 2.3, it follows that for any Q0 ∈ Ω0, we have

u1(x, t,Q0) > 0, u2(x, t,Q0) > 0, ∀ x ∈ [0, 1], t > 0.

This implies that Π(t)Ω0 ⊆ Ω0 for all t ≥ 0. Let

M̃∂ := {Q0 ∈ ∂Ω0 : Π(t)Q0 ∈ ∂Ω0, ∀ t ≥ 0},

and ω̃(Q0) be the omega limit set of the orbit O+(Q0) := {Π(t)Q0 : t ≥ 0}. We further prove the following 
claims.

Claim 1. ω̃(ϕ) ⊂ M̃0 ∪ M̃1 ∪ M̃2, ∀ ϕ ∈ M̃∂ , where M̃i = {Ei}, i = 0, 1, 2.
Since ϕ ∈ M̃∂ , we have Π(t)ϕ ∈ M̃∂ , ∀ t � 0. Thus u1(·, t, ϕ) ≡ 0 or u2(·, t, ϕ) ≡ 0, ∀ t � 0. In case 

where u1(·, t, ϕ) ≡ 0, ∀ t � 0. Then (R, S, u2) satisfies (3.4)–(3.6) with i = 2. By Lemma 3.2, it follows that 
either

lim
t→∞

(R(x, t, ϕ), S(x, t, ϕ), u2(x, t, ϕ)) = (wR(x), wS(x), 0), uniformly for x ∈ [0, 1],

or

lim
t→∞

(R(x, t, ϕ), S(x, t, ϕ), u2(x, t, ϕ)) = (R∗
2(x), S∗

2 (x), u∗
2(x)), uniformly for x ∈ [0, 1].

In case where u1(·, t0, ϕ) 
≡ 0, for some t0 � 0. Then the strong maximum principle and the Hopf boundary 
lemma (see [12]) implies that u1(·, t, ϕ) > 0, for all t > t0. Thus, u2(·, t, ϕ) ≡ 0, ∀ t > t0, and hence, the 
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(R, S, u1) equation in (3.1)–(3.3) satisfies (3.4)–(3.6) with i = 1, for all t > t0. Again, from Lemma 3.2, it 
follows that either

lim
t→∞

(R(x, t, ϕ), S(x, t, ϕ), u1(x, t, ϕ)) = (wR(x), wS(x), 0), uniformly for x ∈ [0, 1],

or

lim
t→∞

(R(x, t, ϕ), S(x, t, ϕ), u1(x, t, ϕ)) = (R∗
1(x), S∗

1 (x), u∗
1(x)), uniformly for x ∈ [0, 1].

This ends the proof of Claim 1.

Claim 2. For i = 0, 1, 2, M̃i is a uniform weak repeller for Ω0 in the sense that there exists δ̃i > 0 such that 
lim supt→∞ ‖Π(t)Q − M̃i‖ ≥ δ̃i, ∀ Q ∈ Ω0.

We only show the case where i = 2 since the other cases can be proved in a similar way. From the fact 
that Λ0

2 > 0, we may assume that there exists an ε0 > 0 such that Λε0
2 > 0, where Λε0

2 is the principal 
eigenvalue of the eigenvalue problem

{
dϕ′′(x) + [f1(R∗

2(x), S∗
2(x))e−αu∗

2(x) − ε0]ϕ(x) = Λ2ϕ(x), x ∈ (0, 1),
ϕ′(0) = ϕ′(1) + γϕ(1) = 0.

The positive eigenfunction corresponding to Λε0
2 can be uniquely determined by the normalization, 

and we denote it by ϕε0(x). By continuity of f1, we can choose δ̃2 > 0 such that if ‖(R2, S2, u2) −
(R∗

2(·), S∗
2 (·), u∗

2(·))‖ < δ̃2, then

f1(R2, S2)e−αu2 > f1(R∗
2(·), S∗

2 (·))e−αu∗
2(·) − ε0. (3.16)

Then we show that

lim sup
t→∞

‖Π(t)Q− M̃2‖ ≥ δ̃2, ∀ Q ∈ Ω0. (3.17)

Suppose, by contradiction, there exists Q0 ∈ Ω0 such that lim supt→∞ ‖Π(t)Q0 − M̃2‖ < δ̃2. Then there 
exists t0 > 0 such that for t ≥ t0 and x ∈ [0, 1], we have

‖(R(x, t,Q0), S(x, t,Q0), u2(x, t,Q0)) − (R∗
2(x), S∗

2(x), u∗
2(x))‖ < δ̃2.

It then follows from (3.16) that

f1(R(·, t, Q0), S(·, t, Q0))e−αu2(·,t,Q0) > f1(R∗
2(·), S∗

2 (·))e−αu∗
2(·) − ε2, t ≥ t0. (3.18)

With (3.18), it follows from the third equation of (1.1) that

{
∂u1
∂t ≥ d∂2u1

∂x2 + [f1(R∗
2(·), S∗

2 (·))e−αu∗
2(·) − ε0]u1, x ∈ (0, 1), t ≥ t0,

∂u1
∂x (0, t) = ∂u1

∂x (1, t) + γu1(1, t) = 0, t ≥ t0.
(3.19)

Since Q0 ∈ Ω0, we can further show that u1(x, t, Q0) > 0, ∀ x ∈ [0, 1], t > 0. Thus, there exists a 
sufficiently small number a > 0 such that u1(x, t0, Q0) ≥ aϕε0(x), ∀ x ∈ [0, 1]. Note that û1(x, t) :=
aeΛε0

2 (t−t0)ϕε0(x), t ≥ t0, is a solution of the following linear system:
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{
∂u1
∂t = d∂2u1

∂x2 + [f1(R∗
2(·), S∗

2 (·))e−αu∗
2(·) − ε0]u1, x ∈ (0, 1), t ≥ t0,

∂u1
∂x (0, t) = ∂u1

∂x (1, t) + γu1(1, t) = 0, t ≥ t0,
(3.20)

with initial data û1(x, t0) := aϕε0(x). Then the comparison principle implies that

u1(x, t,Q0) ≥ û1(x, t) := aeΛε0
2 (t−t0)ϕε0(x), ∀ x ∈ [0, 1], t ≥ t0.

Since Λε0
2 > 0, it follows that u1(x, t, Q0) is unbounded. This contradiction proves the result in (3.17). Thus, 

Claim 2 holds.
Define a continuous function ρ : Ω → [0, ∞) by

ρ(Q) := min
3≤i≤4

{ min
x∈[0,1]

Qi(x)}, ∀ Q := (Q1, Q2, Q3, Q4) ∈ Ω.

By the strong maximum principle and the Hopf boundary lemma (see [12]), we can prove that ρ−1(0, ∞) ⊆
Ω0 and ρ has the property that if ρ(Q) > 0 or Q ∈ Ω0 with ρ(Q) = 0, then ρ(Π(t)Q) > 0, ∀ t > 0. That is, 
ρ is a generalized distance function for the semiflow Π(t) : Ω → Ω (see, e.g., [15]). By the above claims, it 
follows that any forward orbit of Π(t) in M̃∂ converges to either M̃0 or M̃1 or M̃2. Further, M̃0, M̃1, and 
M̃2 are isolated in Ω and W s(M̃i) ∩ Ω0 = ∅, ∀ i = 0, 1, 2, where W s(M̃i) is the stable set of M̃i, i = 0, 1, 2
(see [15]). It is easy that no subsets of M̃0, M̃1, M̃2 forms a cycle in M̃∂ .

Since Π(t) : Ω → Ω admits a global compact attractor in Ω, it follows from [15, Theorem 3] that there 
exists an η̃ > 0 such that

min
ϕ∈ω(Q)

ρ(ϕ) > η̃, ∀ Q ∈ Ω0.

This implies that the uniform persistence stated in our theorem is valid. By [9, Theorem 3.7 and Re-
mark 3.10], it then follows that Π(t) : Ω0 → Ω0 has a global attractor. It then follows from [9, Theorem 4.7]
that Π(t) has an steady-state solution (R̂(·), Ŝ(·), ̂u1(·), ̂u2(·), Ẑ(·)) ∈ Ω0. �
Remark 3.1. From Theorem 3.1, we see that Π(t) : Ω → Ω is uniformly persistent with respect to (Ω0, ∂Ω0)
provided that (3.15) is met. It follows from [9, Theorem 3.8] that Π(t) : Ω0 → Ω0 admits a global attractor 
A0. Since A0 ⊂ Ω0 and A0 = Π(t)(A0), we further have A0 ⊂ Int(C([0, 1], R4

+)).

4. Coexistence of harmful algae and zooplankton

In this section, we explore the possibility of coexistence of harmful algae and zooplankton. That is, we 
are going to establish the existence of positive (coexistence) steady-state solutions of system (1.1)–(1.3). 
Since zooplankton population growth rate G(u1, u2) takes the form (1.4) or (1.5), it follows that G(0, u2) =
G(u1, 0) = 0. This implies that the following types of steady-state solutions of (1.1)–(1.3) cannot occur:

(R,S, u1, u2, Z) = (Ř1(x), Š1(x), ǔ1(x)(x), 0, Ž1(x)) with ǔ1(·), Ž1(·) � 0, (4.1)

and

(R,S, u1, u2, Z) = (Ř2(x), Š2(x), 0, ǔ2(x)(x), Ž2(x)) with ǔ2(·), Ž2(·) � 0. (4.2)

Thus, system (1.1)–(1.3) has the following possible steady-state solutions:

(i) Trivial steady-state solution E0 = (R, S, u1, u2, Z) = (wR(x), wS(x), 0, 0, 0) always exists (see 
Lemma 3.2 (i));
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(ii) Semi-trivial steady-state solution E1 = (R, S, u1, u2, Z) = (R∗
1(x), S∗

1 (x), u∗
1(x), 0, 0) exists provided 

that λ0
1 > 0, where (R∗

1(x), S∗
1 (x), u∗

1(x)) is the unique steady-state solution of system (3.4)–(3.6) with 
i = 1 (see Lemma 3.2 (ii));

(iii) Semi-trivial steady-state solution E2 = (R, S, u1, u2, Z) = (R∗
2(x), S∗

2 (x), 0, u∗
2(x), 0) exists provided 

that λ0
2 > 0, where (R∗

2(x), S∗
2 (x), u∗

2(x)) is the unique steady-state solution of system (3.4)–(3.6) with 
i = 2 (see Lemma 3.2 (ii));

(iv) Zooplankton-extinct steady-state solution

E3 = (R,S, u1, u2, Z) = (R̃(x), S̃(x), ũ1(x), ũ2(x), 0)

exists provided that (3.15) holds. Here (R̃(x), S̃(x), ̃u1(x), ̃u2(x)) is a positive steady-state solution of 
(3.1)–(3.3), which is not necessarily unique (see Theorem 3.1 and Remark 3.1).

Biologically, the most interesting question is whether both harmful algae and zooplankton can coexist in the 
unstirred chemostat. Mathematically, we want to show the existence of positive (coexistence) steady-state 
solutions of system (1.1)–(1.3) under suitable conditions.

Recall that X = C([0, 1], R5
+) is a positive cone of the Banach space C([0, 1], R5) with the usual supremum 

norm. In view of Lemma 2.1 and Lemma 2.2, we can assume that Σ(t) : X → X is the semiflow generated 
by system (1.1)–(1.3). Let

X0 = {(R0(·), S0(·), u0
1(·), u0

2(·), Z0(·)) ∈ X : u0
1(·) 
≡ 0, u0

2(·) 
≡ 0, Z0(·) 
≡ 0},

and

∂X0 = X\X0.

Assume that M0 = {E0}, M1 = {E1}, M2 = {E2}, and M3 = A0 × {0}, where A0 ⊂ Int(C([0, 1], R4
+)) is a 

global attractor of the semiflows generated by system (3.1)–(3.3) (see Remark 3.1).
Define a projection P on C([0, 1], R4

+) by

P(R,S, u1, u2) = (u1, u2), ∀ (R,S, u1, u2) ∈ C([0, 1],R4
+).

Let

B0 = P(A0) and m(x) = inf
φ∈B0

G(φ(x)), ∀ x ∈ [0, 1]. (4.3)

Lemma 4.1. Let m(x) be defined in (4.3). Then m(x) is continuous on [0, 1].

Proof. Let H : [0, 1] ×B0 → R be defined by

H(x, φ) = G(φ(x)), ∀ (x, φ) ∈ [0, 1] ×B0.

Since H is continuous on the compact set [0, 1] ×B0, it follows that H is uniformly continuous on [0, 1] ×B0. 
Let ε > 0 to be given. Then there exists δ = δ(ε) such that

|G(φ(x)) −G(φ(y))| = |H(x, φ) −H(y, φ)| < ε

2 , (4.4)

whenever (x, φ), (y, φ) ∈ [0, 1] ×B0 with |x − y| < δ.
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Let x, y ∈ [0, 1] be given such that |x −y| < δ. Since m(y) + ε
2 is not a lower bound of {G(φ(y)) : φ ∈ B0}, 

we can find φ̃ ∈ B0 such that m(y) + ε
2 > G(φ̃(y)). Using (4.4), we further have

m(y) + ε

2 > G(φ̃(y)) > G(φ̃(x)) − ε

2 ≥ m(x) − ε

2 . (4.5)

Similarly, m(x) + ε
2 is not a lower bound of {G(φ(x)) : φ ∈ B0}, and we can find φ̂ ∈ B0 such that 

m(x) + ε
2 > G(φ̂(x)). Using (4.4) again, we obtain

m(x) + ε

2 > G(φ̂(x)) > G(φ̂(y)) − ε

2 ≥ m(y) − ε

2 . (4.6)

By (4.5) and (4.6), it follows that for any given ε > 0, if x, y ∈ [0, 1] with |x −y| < δ, then |m(x) −m(y)| < ε. 
This shows that m(·) is uniformly continuous on [0, 1], and hence, m(·) is continuous on [0, 1]. �

Next, we denote μ0 to be the principal eigenvalue of the eigenvalue problem
{
dψ′′(x) + m(x)ψ(x) = μψ(x), x ∈ (0, 1),
ψ′(0) = ψ′(1) + γψ(1) = 0

(4.7)

where m(x) is defined in (4.3).

Lemma 4.2. Let (3.15) hold and μ0 > 0. Then M3 is a uniform weak repeller in the sense that there exists 
δ3 > 0 such that

lim sup
t→∞

dist(Σ(t)(Q0, Z0),M3) ≥ δ3, for all (Q0, Z0) ∈ X0. (4.8)

Proof. Since μ0 > 0, we can choose a sufficiently small ε0 > 0 such that μ0
ε0 > 0, where μ0

ε0 is the principal 
eigenvalue of the eigenvalue problem

{
dψ′′(x) + [m(x) − ε0]ψ(x) = μψ(x), x ∈ (0, 1),
ψ′(0) = ψ′(1) + γψ(1) = 0.

(4.9)

Define G̃ : B0 → C([0, 1], R) by

G̃(φ)(x) = G(φ(x)), ∀ x ∈ [0, 1], φ ∈ B0.

Then there exists δ3 > 0 such that

dist(G̃(φ), G̃(B0)) < ε0,

whenever φ ∈ C([0, 1], R2) with dist(φ, B0) < δ3. Since B0 is compact, it follows that for any φ ∈ C([0, 1], R2)
with dist(φ, B0) < δ3, there exists φ∗ ∈ B0 with φ∗ depending on φ such that

dist(G̃(φ), G̃(φ∗)) = dist(G̃(φ), G̃(B0)) < ε0.

Thus, we have

|G(φ(x)) −G(φ∗(x))| = |G̃(φ)(x) − G̃(φ∗)(x)| < ε0, ∀ x ∈ [0, 1], (4.10)

whenever φ ∈ C([0, 1], R2) with dist(φ, B0) < δ3.
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Next, we prove (4.8) by contradiction. Suppose that (4.8) is not true. Then there exists (Q0, Z0) ∈ X0
such that

lim sup
t→∞

dist(Σ(t)(Q0, Z0),M3) < δ3,

and hence,

lim sup
t→∞

dist((u1(·, t), u2(·, t)), B0) < δ3, (4.11)

and

lim sup
t→∞

‖Z(·, t)‖ < δ3. (4.12)

From (4.11), we can choose t0 > 0 such that

dist((u1(·, t), u2(·, t)), B0) < δ3, t ≥ t0. (4.13)

By (4.10), it follows that there exists φt
∗ ∈ B0 such that

|G((u1(x, t), u2(x, t)) −G(φt
∗(x))| < ε0, ∀ x ∈ [0, 1], t ≥ t0, (4.14)

and hence,

G((u1(x, t), u2(x, t)) > G(φt
∗(x)) − ε0 ≥ m(x) − ε0, ∀ x ∈ [0, 1], t ≥ t0. (4.15)

It follows from the fifth equation of (1.1) that

{
∂Z
∂t ≥ d∂2Z

∂x2 + [m(x) − ε0]Z, x ∈ (0, 1), t ≥ t0,
∂Z
∂x (0, t) = ∂Z

∂x (1, t) + γZ(1, t) = 0, t ≥ t0.
(4.16)

Since Z(·, t) 
≡ 0, we can further show that Z(·, t0) � 0, and hence, there exists a sufficiently small number 
a > 0 such that Z(x, t0) ≥ aψε0(x), ∀ x ∈ [0, 1], where ψε0(x) is the eigenfunction corresponding to μ0

ε0 . 
Then the comparison principle ensures that

Z(x, t) ≥ aeμ
0
ε0 (t−t0)ψε0(x), ∀ x ∈ [0, 1], t ≥ t0.

Since μ0
ε0 > 0, we deduce that limt→∞ Z(·, t) = ∞, which contradicts (4.12). This proves (4.8). �

Now we are in a position to prove the main result of this section.

Theorem 4.1. Let (3.15) hold and μ0 > 0. Then system (1.1)–(1.3) is uniformly persistent with re-
spect to (X0, ∂X0) in the following sense that there is a constant η > 0 such that every solution 
(R(·, t), S(·, t), u1(·, t), u2(·, t), Z(·, t)) of (1.1)–(1.3) with (R(·, 0), S(·, 0), u1(·, 0), u2(·, 0), Z(·, 0)) ∈ X0 sat-
isfying

lim inf
t→∞

ui(·, t) ≥ η, and lim inf
t→∞

Z(·, t) ≥ η, i = 1, 2. (4.17)

Furthermore, system (1.1)–(1.3) admits at least one (componentwise) positive steady-state solution 
(R̂(·), Ŝ(·), ̂u1(·), ̂u2(·), Ẑ(·)).
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Proof. By Lemma 2.3, it follows that for any v0 ∈ X0, we have

u1(x, t,v0) > 0, u2(x, t,v0) > 0, Z(x, t,v0) > 0, ∀ x ∈ [0, 1], t > 0.

This implies that Σ(t)X0 ⊆ X0 for all t ≥ 0.
Let

M∂ := {v0 ∈ ∂X0 : Σ(t)v0 ∈ ∂X0, ∀ t ≥ 0},

and ω(v0) be the omega limit set of the orbit O+(v0) := {Σ(t)v0 : t ≥ 0}. We further prove the following 
claims.

Claim 1. ω(ψ) ⊂ M0 ∪M1 ∪M2 ∪M3, ∀ ψ ∈ M∂ .
For any given ψ := (R0, S0, u0

1, u
0
2, Z

0) ∈ M∂ , we have Σ(t)ψ ∈ M∂ , ∀ t ≥ 0. Thus, for any given t ≥ 0, 
we have u1(·, t, ψ) ≡ 0 or u2(·, t, ψ) ≡ 0 or Z(·, t, ψ) ≡ 0.

In the case where Z(·, t, ψ) ≡ 0 for all t ≥ 0, substituting Z(·, t, ψ) ≡ 0 into system (1.1)–(1.3). Then the 
equations for (R, S, u1, u2) satisfy system (3.1)–(3.3). We discuss the following four subcases:

(i) If u0
1 ≡ 0, u0

2 ≡ 0, then we have u1(·, t, ψ) ≡ 0 and u2(·, t, ψ) ≡ 0. Thus, limt→∞ Σ(t)ψ = E0.
(ii) If u0

1 
≡ 0, u0
2 ≡ 0, then we have u1(·, t, ψ) > 0 and u2(·, t, ψ) ≡ 0. Then the equations for 

(R, S, u1) satisfy system (3.4)–(3.6) with i = 1. Since λ0
1 > 0, it follows from Lemma 3.2 that 

limt→∞(R(·, t, ψ), S(·, t, ψ), u1(·, t, ψ)) = (R∗
1(x), S∗

1(x), u∗
1(x)), and hence, limt→∞ Σ(t)ψ = E1.

(iii) If u0
1 ≡ 0, u0

2 
≡ 0, then we can use the fact λ0
2 > 0 and the same arguments as in (ii) to show that 

limt→∞ Σ(t)ψ = E2.
(iv) If u0

1 
≡ 0, u0
2 
≡ 0, then we have u1(·, t, ψ) > 0 and u2(·, t, ψ) > 0. Since (3.15) holds, it follows from 

Theorem 3.1 and Remark 3.1 that

(R(·, t, ψ), S(·, t, ψ), u1(·, t, ψ), u2(·, t, ψ))

will eventually enter the global attractor A0 ⊂ Int(C([0, 1], R4
+)). Thus, Σ(t)ψ will eventually enter the 

global attractor M3.

In the case where Z(·, t1, ψ) 
≡ 0, for some t1 ≥ 0. Then Lemma 2.3 implies that Z(x, t, ψ) > 0, ∀ x ∈
[0, 1], ∀ t > t1. It then follows that for each t > t1, either u1(·, t, ψ) ≡ 0 or u2(·, t, ψ) ≡ 0. If u1(·, t, ψ) ≡ 0, 
for each t > t1. Then G(u1(·, t, ψ), u2(·, t, ψ)) = 0, and hence, Z(x, t, ψ) satisfies

⎧⎪⎪⎨
⎪⎪⎩

∂Z
∂t = d∂2Z

∂x2 , x ∈ (0, 1), t > 0,
∂Z
∂x (0, t) = ∂Z

∂x (1, t) + γZ(1, t) = 0, t > 0,
Z(x, 0) = Z0(x) ≥ 0, x ∈ (0, 1).

(4.18)

It is easy to see that limt→∞ Z(·, t, ψ) = 0. Thus, either limt→∞ Σ(t)ψ = E0 or limt→∞ Σ(t)ψ = E2. If 
u1(·, t2, ψ) 
≡ 0, for some t2 > t1. Then Lemma 2.3 implies that u1(x, t, ψ) > 0, ∀ x ∈ [0, 1], ∀ t > t2. It then 
follows that for each t > t2, u2(·, t, ψ) ≡ 0. Thus, G(u1(·, t, ψ), u2(·, t, ψ)) = 0, and hence, Z(x, t, ψ) satisfies 
(4.18). This implies that either limt→∞ Σ(t)ψ = E0 or limt→∞ Σ(t)ψ = E1. we have proved claim 1.

Claim 2. For i = 0, 1, 2, 3, Mi is a uniform weak repeller for X0 in the sense that there exists δi > 0 such 
that lim supt→∞ ‖Σ(t)v0 −Mi‖ ≥ δi, ∀ v0 ∈ X0.

By Lemma 4.2, it follows that claim 2 is true when i = 3. Next, we only give the detailed arguments 
for the case i = 2 since we can prove the cases where i = 0, 1 by using the similar arguments. From the 
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fact that Λ0
2 > 0, we may assume that there exists an ε2 > 0 such that Λ0

2ε > 0, where Λ0
2ε is the principal 

eigenvalue of the eigenvalue problem
{
dϕ′′(x) + [f1(R∗

2(x), S∗
2(x))e−αu∗

2(x) − 2ε2]ϕ(x) = Λ2ϕ(x), x ∈ (0, 1),
ϕ′(0) = ϕ′(1) + γϕ(1) = 0,

where R∗
2(x) := wR(x) − q2ru

∗
2(x) and S∗

2(x) := wS(x) − q2su
∗
2(x) (see (3.9)). The positive eigenfunction 

corresponding to Λ0
2ε can be uniquely determined by the normalization, and we denote it by ϕ0

2ε(x).
It is easy to see that there exists δ21 > 0 such that if ‖(R2, S2, u2) − (R∗

2(·), S∗
2 (·), u∗

2(·))‖ < δ21, then

f1(R2, S2)e−αu2 > f1(R∗
2(·), S∗

2 (·))e−αu∗
2(·) − ε2. (4.19)

Rewrite q1g1(u1)Z = I(u1, Z)u1, where I(u1, Z) = q1
g1(u1)

u1
Z and I(0, 0) = 0. Then there exists δ22 > 0

such that if ‖(u1, Z) − (0, 0)‖ < δ22, then

I(u1, Z) < I(0, 0) + ε2 = ε2. (4.20)

Setting δ2 := min{δ21, δ22}. Then we show that

lim sup
t→∞

‖Σ(t)v0 −M2‖ ≥ δ2, ∀ v0 ∈ X0. (4.21)

Suppose, by contradiction, there exists v0
0 ∈ X0 such that lim supt→∞ ‖Σ(t)v0

0 − M2‖ < δ2. Then there 
exists t̃ > 0 such that for t ≥ t̃ and x ∈ [0, 1], we have

‖(R(x, t,v0
0), S(x, t,v0

0), u2(x, t,v0
0)) − (R∗

2(x), S∗
2 (x), u∗

2(x))‖ < δ ≤ δ21,

and

‖(u1(x, t,v0
0), Z(x, t,v0

0)) − (0, 0)‖ < δ ≤ δ22.

It follows from (4.19) and (4.20) that for t ≥ t̃, we have

f1(R(·, t,v0
0), S(·, t,v0

0))e−αu2(·,t,v0
0) > f1(R∗

2(·), S∗
2 (·))e−αu∗

2(·) − ε2, (4.22)

and

I(u1(·, t,v0
0), Z(·, t,v0

0)) < ε2. (4.23)

With (4.22) and (4.23), it follows from the third equation of (1.1) that

{
∂u1
∂t ≥ d∂2u1

∂x2 + [f1(R∗
2(·), S∗

2 (·))e−αu∗
2(·) − 2ε2]u1, x ∈ (0, 1), t ≥ t̃,

∂u1
∂x (0, t) = ∂u1

∂x (1, t) + γu1(1, t) = 0, t ≥ t̃.
(4.24)

Since v0
0 ∈ X0, it follows from Lemma 2.3 that u1(x, t, v0

0) > 0, ∀ x ∈ [0, 1], t > 0. Thus, there exists 
a sufficiently small number ρ0 > 0 such that u1(x, ̃t, v0

0) ≥ ρ0ϕ
0
2ε(x), ∀ x ∈ [0, 1]. Note that ũ1(x, t) :=

ρ0e
Λ0

2ε(t−t̃)ϕ0
2ε(x), t ≥ t̃, is a solution of the following linear system:

{
∂u1
∂t = d∂2u1

∂x2 + [f1(R∗
2(·), S∗

2 (·))e−αu∗
2(·) − 2ε2]u1, x ∈ (0, 1), t ≥ t̃,

∂u1 (0, t) = ∂u1 (1, t) + γu (1, t) = 0, t ≥ t̃,
(4.25)
∂x ∂x 1
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with initial data ũ1(x, ̃t) := ρ0ϕ
0
2ε(x). Then the comparison principle implies that

u1(x, t,v0
0) ≥ ũ1(x, t) := ρ0e

Λ0
2ε(t−t̃)ϕ0

2ε(x), ∀ x ∈ [0, 1], t ≥ t̃.

Since Λ0
2ε > 0, it follows that u1(x, t, v0

0) is unbounded. This contradiction proves the result in (4.21). Thus, 
claim 2 holds.

Define a continuous function p : X → [0, ∞) by

p(v0) := min
3≤i≤5

{ min
x∈[0,1]

v0
i (x)}, ∀ v0 := (v0

1,v0
2,v0

3,v0
4,v0

5) ∈ X.

By Lemma 2.3, it follows that p−1(0, ∞) ⊆ X0 and p has the property that if p(v0) > 0 or v0 ∈ X0
with p(v0) = 0, then p(Σ(t)v0) > 0, ∀ t > 0. That is, p is a generalized distance function for the 
semiflow Σ(t) : X → X (see, e.g., [15]). By the above claims, it follows that any forward orbit of Σ(t) in 
M∂ converges to either M0 or M1 or M2 or M3. Further, M0, M1, M2, and M3 are isolated in X and 
W s(Mi) ∩ X0 = ∅, ∀ i = 0, 1, 2, 3, where W s(Mi) is the stable set of Mi, i = 0, 1, 2, 3 (see [15]). It is easy 
that no subsets of M0, M1, M2, M3 forms a cycle in M∂ .

By Lemma 2.2, it is easy to see that Σ(t) : X → X has a global compact attractor in X, ∀ t ≥ 0. It follows 
from [15, Theorem 3] that there exists an η > 0 such that

min
ψ∈ω(v0)

p(ψ) > η, ∀ v0 ∈ X0.

This implies that (4.17) holds. Hence, the uniform persistence stated in our theorem is valid. By [9, Theo-
rem 3.7 and Remark 3.10], it then follows that Σ(t) : X0 → X0 has a global attractor. It then follows from 
[9, Theorem 4.7] that Σ(t) has an steady-state solution (R̂(·), Ŝ(·), ̂u1(·), ̂u2(·), Ẑ(·)) ∈ X0. �
5. Discussion

In this paper, we propose and analyze an unstirred chemostat model of the dynamics of P. parvum, 
cyanobacteria, and a zooplankton population. In our system (1.1)–(1.3), P. parvum competes for nutri-
ents with cyanobacteria, which inhibits the growth of P. parvum. The zooplankton population grazes on 
P. parvum and cyanobacteria for growth, but P. parvum also inhibits the growth of zooplankton. This 
project is highly motivated by paper [6], in which the authors investigated a well-mixed chemostat system 
modeling the inhibitory/allelopathic effects of the algal toxins produced by P. parvum and cyanobacteria. 
Our system (1.1)–(1.3) further includes spatial variations, but neglects the compartments of algal toxins 
produced by P. parvum and cyanobacteria. The strength of inhibition/allelopathy is directly determined by 
the densities of P. parvum and cyanobacteria, respectively, not their toxins, which reduces the numbers of 
the modeling equations.

In order to study the coexistence of system (1.1)–(1.3), we need first to find the following possible steady-
state solutions: the trivial steady-state solution of (1.1)–(1.3), corresponds to the absence of both harmful 
algae and zooplankton, is unique (Lemma 3.2 (i)); two semi-trivial steady-state solutions, corresponds to 
the presence of one of the algae and the absence of the other algae and zooplankton, are both unique if 
they exist (Lemma 3.2 (ii)); zooplankton-extinct steady-state solution, corresponds to the presence of both 
harmful algae and the absence of zooplankton, is not necessarily unique (see Theorem 3.1 and Remark 3.1). 
After defining a suitable continuous function m(x) (see Lemma 4.1), we are able to show that the compact 
attractor M3 on the boundary Z = 0 is a uniform weak repeller for system (1.1)–(1.3) (see Lemma 4.2) 
under appropriate conditions. Then, we are able to show that system (1.1)–(1.3) is uniformly persistent, 
and system (1.1)–(1.3) admits at least one (componentwise) positive steady-state solution when the trivial 
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steady-state solution, two semi-trivial steady-state solutions, and the compact set M3 are all invasible (see 
Theorem 4.1).

An important problem is about the realization of the condition (3.15) and μ0 > 0. In view of (3.8), (3.11)
and (3.13), it follows that λ0

i , Λ0
1, and Λ0

2 can be characterized as (see, e.g., [1])

λ0
i = sup

ϕ�=0,ϕ∈H

∫ 1
0 fi(wR(x), wS(x))ϕ2dx− d[γ(ϕ(1))2 +

∫ 1
0 ϕ2

xdx]∫ 1
0 ϕ2dx

, i = 1, 2, (5.1)

Λ0
1 = sup

ϕ�=0,ϕ∈H

∫ 1
0 f2(R∗

1(x), S∗
1 (x))ϕ2dx− d[γ(ϕ(1))2 +

∫ 1
0 ϕ2

xdx]∫ 1
0 ϕ2dx

, (5.2)

and

Λ0
2 = sup

ϕ�=0,ϕ∈H

∫ 1
0 f1(R∗

2(x), S∗
2(x))e−αu∗

2(x)ϕ2dx− d[γ(ϕ(1))2 +
∫ 1
0 ϕ2

xdx]∫ 1
0 ϕ2dx

, (5.3)

where H represents the closure of C1([0, 1]) with respect to the topology induced by the norm

‖θ‖ =

⎛
⎝ 1∫

0

θ2dx +
1∫

0

θ2
xdx

⎞
⎠

1/2

.

With (5.1), (5.2) and (5.3), we may expect that (3.15) holds if the diffusion rate d > 0 is small. Similarly, 
it follows from (1.4), (1.5), (4.3) and (4.7) that we can also expect that μ0 > 0 if both m1z and m2z are 
sufficiently large. However, it remains a challenging task to find an exact parameter region in which (3.15)
and μ0 > 0 are valid.

Our work extended the well-mixed model in [6] to a partially-mixed system, but we also did two significant 
simplifications in modeling. For example, the growth rate of zooplankton G(u1, u2) only takes the form (1.4)
or (1.5), which eliminates the possibility of two types of steady-state solutions for system (1.1)–(1.3) (see 
(4.1) and (4.2)). If G(u1, u2) takes the substitutable type, that is, G(0, u2) and G(u1, 0) can be both positive, 
then it is likely that another two types of steady-state solutions, (4.1) and (4.2), can happen. This will make 
the analysis much more complicated than those in the current paper. On the other hand, in order to reduce 
the numbers of model equations in our system, we have removed the compartments of algal toxins produced 
by both harmful algae, and the associated inhibition/allelopathy is directly affected by the densities of 
algae respectively. We will relax the aforementioned simplifications and investigate a more realistic and 
challenging case in the future.
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