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The phase diagram for the interacting fermions in weak coupling is described by the perturbative renormal-
ization group equations. Due to the lack of analytic solutions for these coupled nonlinear differential equations,
it is rather subtle to tell which couplings are relevant or irrelevant. We propose a powerful classification scheme
to build up the hierarchy of the relevant couplings by a scaling Ansatz found numerically. To demonstrate its
superiority over the conventional classification for the relevant couplings, we apply this scheme to a contro-
versial phase transition in the two-leg ladder and show that it should be a nontrivial crossover instead. The
scaling Ansatz we propose here can classify the relevant couplings in hierarchical order without any ambiguity
and can improve significantly how we interpret the numerical outcomes in general renormalization group
methods.
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Renormalization group �RG� �Refs. 1–4� is a powerful
method to determine the effective interactions for the com-
plex system in low-energy limit. By integrating out the de-
grees of freedom at the longer length scale, the couplings
describing the effective interactions flow according to a set
of RG equations. This approach has been successfully ap-
plied to a wide variety of physical phenomena, including the
transport theory in the presence of impurity scattering,5,6

ground-state properties for cold atoms,7,8 phase diagrams for
iron pnictides,9 Kondo lattice,10 and other correlated systems.
RG is particularly helpful when the quantum fluctuations in
the system are strong11–18 so that the mean-field description
is invalid or hard to justify. For instance, it has been demon-
strated that, despite of the repulsive interactions at the short
length scale, electrons form pairs with unconventional
d-wave symmetry in the low-energy limit in the two-leg
ladder.12,16 In addition, the RG analysis also predicts that the
carbon nanotubes are Mott insulating spin liquid,19–23 which
is beautifully realized in recent experiments.24

In weak coupling, the phase diagram for the ground states
of the interacting fermions is described by the coupled non-
linear RG equations,

dgi

dl
= �ijgj + Ai

jkgjgk + Bi
jklgjgkgl + ¯ , �1�

where gi are the couplings for the effective interactions and l
is the logarithmic length scale. �ij denotes the scaling dimen-
sions at the tree level and Ajk

i and Bjkl
i are the one-loop and

the two-loop renormalization. While the derivation of the RG
equations are rather standard and can be found in the
literature,2,25,26 interpreting the RG flows obtained in numer-
ics can be subtle and tricky. When the tree-level contribu-
tions are not zero, reading off the relevant couplings are
rather straightforward.27,28 The challenge arises when all
couplings become marginal, i.e., �ij =0. The standard recipe
is to integrate the RG equations up to the cutoff length scale
lc where the maximal coupling is of order 1. At l= lc, we
identify the couplings gi�lc��O�1� to be relevant while

those couplings gi�lc��1 as irrelevant. But, this face-value
classification scheme at the cutoff length scale does not al-
ways work and some couplings are ambiguous to be identi-
fied as either relevant or irrelevant.

To amend this ambiguity, Ledermann, Le Hur, and Rice29

come up with a clever method to patch the RG flows at
different length scales and obtain a hierarchy of gap opening
due to different Fermi velocities. Inspired by their success in
building up the hierarchy of relevance in the RG flows, we
analyze the RG equations for correlated electron systems in
weak coupling numerically. After extensive numerical stud-
ies, we find that the relevant couplings can be well captured
by the scaling Ansatz,14

gi�l� �
Gi

�ld − l��i
, �2�

where Gi are some nonuniversal constants and ld is the di-
vergent length scale from the one-loop RG equations. The
relevant couplings are thus captured by the exponents
0��i�1 appearing in the scaling Ansatz as shown in Fig. 1.
It may sound odd at first glance why the divergent length
scale ld appears in the scaling Ansatz for RG flows in the
perturbative regime. This is due to an approximate scaling
relation in weak coupling which we will come back later.

To demonstrate the validity of the scaling Ansatz, we re-
visit the phase diagram of the doped two-leg ladder. In pre-
vious study,12 it was shown that the different Fermi velocities
can lead to a quantum phase transition from the spin liquid to
another gapless phase. However, in later numerical
studies,30,31 there is no hint for the phase transition. There-
fore, it remains controversial whether the difference in Fermi
velocities can drive a quantum phase transition. It was shown
before that there are eight independent couplings,
g= �c11

� ,c11
� ,c22

� ,c22
� ,c12

� ,c12
� , f12

� , f12
� �, describing the forward

and Cooper scattering in the system. Readers who are inter-
ested in details are encouraged to read the previous
publications.12,26
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After coarse graining the fluctuations at shorter length
scale, the one-loop RG equations for the couplings are

dcij
�

dl
= − �

k

�ijk

4
�cik

� ckj
� + 3cik

�ckj
� � +

1

4
�cij

� hij
� + 3cij

�hij
�� , �3�

dcij
�

dl
= − �

k

�ijk

4
�cik

� ckj
� + cik

�ckj
� + 2cik

�ckj
� �

+
1

4
�cij

� hij
� + cij

�hij
� − 2cij

�hij
�� , �4�

dfij
�

dl
=

1

4
��cij

� �2 + 3�cij
��2	 , �5�

dfij
�

dl
= − �f ij

��2 +
1

2
�cij

� cij
� − �cij

��2	 , �6�

where vi are the Fermi velocities and the short-hand
notations are defined, hij 
2f ij +	ijcii and �ijk
= �vi+vk��vk+v j� /2vk�vi+v j�.

A typical example for the RG flows with the on-site in-
teraction U / t=10−5 and the velocity ratio v2 /v1=7.8 is
shown in Fig. 1. First of all, we can extract the divergent
length scale ld�107 numerically. At the beginning, the RG
flows are rather messy and it is hard to tell which are the
relevant couplings. However, as the short-range fluctuations
are integrated out gradually, the couplings enter the scaling
regime described by Eq. �2� with different exponents �i. The
straight lines in Fig. 1 indicate that the scaling Ansatz works
extremely well. It is worth emphasizing that all renormalized
couplings remain in the perturbative regime even though the
Ansatz mysteriously contains the divergent length scale ld.

The exponents provide an alternative way to classify the
relevant couplings. The eight couplings fall into four
categories: �1� the predominant group �c22

� =1, �2� the first
subdominant group �c12

� =�c12
� =3 /4, �3� the second subdomi-

nant group �c11
� =�c11

� =�c22
� =� f12

� =1 /2, and �4� the subsidiary
group � f12

� =0. By extracting the exponents from the trends of
the RG flows, we can build up the hierarchy of relevance
without any ambiguity.

The classification scheme can be applied to different ve-
locity ratios with exponents summarized in Fig. 2. Upon
doping away from the half filling, the velocity ratio v2 /v1
starts from unity and gradually increases. When the velocity
ratio is close to 1, all exponents �i=1 except that for f12

� . It is
not surprising that the conventional face-value classification
scheme works rather well in this regime since all couplings
are equally relevant. Applying the bosonization technique,
the interactions related to gap opening are

HI � c11
� cos��2
1�� + c22

� cos��2
2��

+ 4c12
� cos��1� − �2�

�2
cos�
1�

�2
cos�
2�

�2
 . �7�

Here we express the Dirac fermion fields in terms of chiral
boson fields, �Pi�=i�ei�Pi� with the Klein factors i�.16

Meanwhile, by introducing the conjugate boson fields for
each flavor, �i�=�Ri�+�Li� and 
i�=�Ri�−�Li�, we
separate the boson field into charge and spin modes,

i�= �
i↑+
i↓� /�2 and 
i�= �
i↑−
i↓� /�2 �similar for the con-
jugate field ��. Since the couplings c11

� ,c22
� ,c12

� are relevant,
spin gaps �1 and �2 for the antibonding and bonding bands
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FIG. 1. �Color online� RG flows of the eight couplings in the
doped two-leg ladder. The initial couplings are generated from the
on-site interaction U / t=10−5 and the velocity ratio v2 /v1=7.8. We
only plot the flows within the perturbative regime where all cou-
plings gi�1.
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FIG. 2. �Color online� Exponents extracted from the numerical solutions for the RG equations at different velocity ratios v2 /v1 in the
scaling regime. For small velocity ratios, all couplings except f12

� are equally dominant with exponents �i=1. As the velocity ratio increases,
the relevance of the couplings can be classified by the exponents accordingly.
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develop under RG transformation. The magnitudes of the
spin gaps can be estimated by the semiclassical approxima-
tion, �1 /�2���c11

� �+c12
� � / ��c22

� �+c12
� �, where the values of the

couplings are taken at the cutoff length scale. The detail
bosonization analysis shows that the ground state is a spin
liquid with unconventional d-wave pairing between
electrons.12,15,16

As the velocity ratio increases v2 /v1�5, �c22
� remains 1

but the other exponents start to fall, as shown in Fig. 2. The
four-level hierarchy of relevance described before starts to
emerge. When the velocity ratio further increases v2 /v1�8,
the second subdominant exponents also falls to zero,
�c11

� =�c11
� =�c22

� =� f12
� =0 but the predominant and the first

subdominant exponents remain intact. The exponents of the
scaling Ansatz provide a simple and elegant way to classify
the relevant couplings. It is also interesting that the evolution
of the exponents mainly stays on plateaus of simple ratio
numbers. These ratio numbers can be obtained by perform-
ing linear stability analysis26 near the fixed rays of the RG
flows. However, since the initial couplings are nowhere close
to the fixed rays, it is not clear why the RG flows inherit the
simple rational exponents. The plateau structure of the expo-
nents seen in numerics remains open for further investiga-
tions.

Within our classification scheme, we find the pattern for
the excitation gaps is the same except the magnitude of the
spin gap in the bonding band �2 is much larger than �1 in
the antibonding band. Therefore, as the velocity ratio v2 /v1
increases, the gap ratio �2 /�1 also increases significantly but
there is no phase transition for 1�v2 /v1�8.6. However, the
conventional readoff scheme at the cutoff length scale misses
all the subdominant couplings and misidentify the crossover
as a quantum phase transition.12,15 In addition, the scheme
proposed here naturally leads to a hierarchy of excitation
gaps predicted by the patched RG method.29

We also try out the scaling Ansatz beyond the one-loop
order and found it remains valid. For instance, the RG equa-
tions for the one-dimensional Hubbard model32 are

dG�

dl
= 2Gc

2 − 2G�Gc
2,

dGc

dl
= 2G�Gc − 2G�

2Gc − Gc
3. �8�

Here we only put down the charge sector since the RG equa-
tions for the spin sector are decoupled with similar structure.
As is evident from Fig. 3, the two-loop corrections are neg-
ligible and both G� and Gc follow the scaling Ansatz rather
well. Therefore, the scaling Ansatz and the corresponding
exponents remain valid beyond the one-loop order as long as
the flows stay in the perturbative regime.

Now we come back to the puzzle about the divergent
length scale ld in the scaling Ansatz. This arises from a non-
trivial relation for the one-loop RG flows, gi�l�=UGi�Ul�,
where Gi�l� is the solution with order-one initial values while
gi�l� is the solution in weak coupling �with initial values of
order U�1�. Thus, there is a nontrivial connection between
the RG flows in perturbative regime and those in the singular

regime. This relation may seem an artifact for the one-loop
RG equations. But, it is rather remarkable that the relation
remain approximately correct even when higher-loop correc-
tions are included. This is also consistent with the numerical
findings that the RG flows are dominated by the one-loop
terms with negligible corrections from the higher loops.

Now we try to see how the scaling Ansatz emerges in the
nonlinear RG equations. It is insightful to rewrite the equa-
tions in matrix form dgi /dl=gTAig, where the real symmetric
matrices are �Ai� jk=Ai

jk. Assume that the matrices Ai,
i=1,2 , . . ,n, are positive definite. One can use the standard
decomposition to rewrite the matrix An=LnDnLn

T, where Ln
is a unit n�n lower-triangular matrix and Dn is a diagonal
Gaussian pivot. Simple algebra leads to the important in-
equality,

dgn

dl
� �ngn

2, �9�

where �n�0 is the nth pivot in the diagonal matrix Dn.
Integrating the inequality in Eq. �9�, one can show that the
RG flows become singular at some finite length scale l= ld.
Following similar algebra, one can also show that all cou-
plings become singular at exactly the same length scale.

The above proof establishes the existence of the singular
length scale ld in mathematical rigor, making the scaling An-
satz with power-law singularity plausible but not yet proven.
However, if one plugs in the scaling Ansatz into the inequal-
ity, it leads to the constraint �i�1 as found in the numerics.
The situation is further complicated by the fact that the ma-
trices Ai in the RG equations are not always positive definite.
This is reasonable because, for some initial coupling profile,
the RG flows may not become singular at all. However, as
long as the initial couplings sit inside the unstable manifold
in the multidimensional coupling space, the above statements
are expected to be correct.

Since the classification scheme we proposed here is rather
general, the numerical solutions from the functional RG
approach25 can be classified by the scaling exponents as well.
In fact, we apply the scaling Ansatz to a recent RG analysis33

for iron pnictides. There are four couplings �u1 ,u2 ,u3 ,u4�
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FIG. 3. �Color online� RG flows up to two-loop order for the
charge sector in the one-dimensional Hubbard model.
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describing the interactions between the electron and hole
pockets. We numerically integrate these RG equations and
find the scaling Ansatz works again with exponents
�i=1, 1

3 ,1 ,1.
In conclusion, we propose a powerful scheme to classify

all relevant couplings in the one-loop RG equations. As long
as the initial couplings are weak, the renormalized couplings
enter the scaling regime characterized by a unique set of
exponents �i. We can build up a hierarchy of relevance by

these exponents without ambiguity and greatly improve the
interpretations of the results obtained by various RG
methods.
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