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Abstract

This paper is devoted to the study of a reaction-diffusion-advection sys-

tem modeling the dynamics of a single nutrient, harmful algae and algal

toxin in a flowing water habitat with a hydraulic storage zone. We intro-

duce the basic reproduction ratio R0 for algae and show that R0 serves as a

threshold value for persistence and extinction of the algae. More precisely,

we prove that the washout steady state is globally attractive if R0 < 1, while

there exists a positive steady state and the algae is uniformly persistent if

R0 > 1. With an additional assumption, we obtain the uniqueness and

global attractivity of the positive steady state in the case where R0 > 1.
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1 Introduction

Blooms of the harmful algae have increased the intensity worldwide in coastal as

well as inland waters. The blooms have direct impacts for human health, and food

webs in aquatic ecosystems [3]. For example, Prymnesium parvum (golden algae)

is responsible for such harmful algal blooms worldwide that have caused large fish
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kills and millions of dollars in economic losses. There is a paradox in the persistence

of harmful algae [15]. Intuitively, strong flow washes out suspended algae, and con-

tinual strong flow can overcome the reproductive capacity of planktonic algae. On

the other hand, the characteristics of the shorelines and the bed of the channel can

reduce the speed of flow, producing slow-flowing regions constituting a hydraulic

storage zone that affects the persistence of harmful algae and their toxins [3, 4].

Thus, we may expect that the reproductive capacity of algae may suffice to permit

population growth, even to bloom proportions. This prediction was confirmed by

Grover et al. [4, Section 3.3]. Recently, a potential technique was suggested to

manage and mitigate harmful algal blooms through flow manipulations in some

riverine systems [8, 9, 17]. This possibility motivates the theoretical modeling of

harmful algal dynamics in flowing habitats [3]. In order to investigate the differ-

ences between a fringing cove and a main lake arising in a single cove, Grover et al.

[3] proposed two-compartment models in which one compartment is a small cove

connected to a larger lake. Hsu et al. [5] further analyzed such a two-compartment

model with seasonal temperature variations.

To understand longitudinal patterns arising along the axis of flow, the authors

in [3] proposed two reaction-diffusion-advection systems modeling the dynamics of

one nutrient, one single population of algae, and algal toxin with spatial variations

in an idealized riverine reservoir where a main channel was coupled to a hydraulic

storage zone. Next, we shall adopt notations and physical settings used in [3] to

describe the model systems. Suppose that L represents the length of the channel;

A and AS represent cross-section area of a flowing zone, and a static storage zone,

respectively. We assume that advective and diffusive transport occur only in the

main flowing zone, not the storage zone; α (time−1) represents the exchange rate

of nutrient, algae, and toxin between the flowing and storage zones. Flow enters at

the upstream end of the channel (x = 0), and an equal flow exits at the downstream

end (x = L). Flow is parameterized as a constant dilution rate D (time−1), and

assuming constant water volume in the channel implies that advection occurs at a

speed ν (ν = DL). The flow of water in the channel in the direction of increasing

x brings fresh nutrient for algal growth at a concentration R(0) into the reactor at

x = 0, and a balancing flow exits at the dam (x = L), removing algae, nutrients,

and algal toxin. Nutrient, algae, and algal toxin are assumed to diffuse throughout

the main channel with the same diffusivity δ. Both advective and diffusive transport

occur at the upstream boundary (x = 0). The downstream boundary is assumed

to be a dam, over which there is advective flow but through which no diffusion can

take place.

The nonlinear function f(R) describes the nutrient uptake and algal growth at

the limiting nutrient concentration (R). We assume that f(R) satisfies

f(0) = 0, f ′(R) > 0, f ∈ C2.
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A typical example is the Monod function

f(R) =
µmaxR

K +R
,

where µmax (day
−1) represents the maximal growth rate andK (µM) represents the

half saturation constant. Let R(x, t), N(x, t) and C(x, t) ( RS(x, t), NS(x, t) and

CS(x, t)) be the dissolved nutrient concentration, algal abundance and dissolved

toxin concentration at location x and time t in the flowing channel (the storage

zone), respectively. Assume that m (day−1) and k (day−1) represent the mortality

of algae and toxin degradation, respectively. It was known that many cyanotoxins

produced by cyanobacteria that contain nitrogen, a potential limiting nutrient for

algae [1]. Because of this fact, these toxins can get recycled back into the system as

a nutrient resource after they decompose. We assume ϵ is a dimensionless coefficient

that specifies the allocation of the limiting nutrient to toxin production [1]. For

such case, the authors in [3] proposed the following reaction-diffusion-advection

system modeling the dynamics of limiting nutrient, harmful algae and their toxins:

∂R
∂t

= δ ∂
2R
∂x2

− ν ∂R
∂x

− qN [f(R)−m]N + α(RS −R) + kqCC,
∂N
∂t

= δ ∂
2N
∂x2

− ν ∂N
∂x

+ α(NS −N) + [(1− ϵ)f(R)−m]N,
∂C
∂t

= δ ∂
2C
∂x2

− ν ∂C
∂x

+ α(CS − C) + ϵf(R) qN
qC
N − kC,

∂RS

∂t
= −α A

AS
(RS −R)− qN [f(RS)−m]NS + kqCCS,

∂NS

∂t
= −α A

AS
(NS −N) + [(1− ϵ)f(RS)−m]NS,

∂CS

∂t
= −α A

AS
(CS − C) + ϵf(RS)

qN
qC
NS − kCS,

(1.1)

for (x, t) ∈ (0, L)× (0,∞) with boundary conditions
νR(0, t)− δ ∂R

∂x
(0, t) = νR(0),

νN(0, t)− δ ∂N
∂x

(0, t) = νC(0, t)− δ ∂C
∂x
(0, t) = 0,

∂R
∂x
(L, t) = ∂N

∂x
(L, t) = ∂C

∂x
(L, t) = 0,

(1.2)

and initial conditions{
R(x, 0) = R0(x) ≥ 0, N(x, 0) = N0(x) ≥ 0, C(x, 0) = C0(x) ≥ 0,

RS(x, 0) = R0
S(x) ≥ 0, NS(x, 0) = N0

S(x) ≥ 0, CS(x, 0) = C0
S(x) ≥ 0,

(1.3)

for x ∈ (0, L), where qN (qC) represents the nutrient quota of algae (toxin).

We should point out that another reaction-diffusion-advection model in [3] (see

system (4) therein) was mathematically analyzed in [7]. For many flagellate toxins,

the toxin contains little of the limiting nutrient [11]. In such a case, the model

(4) in [3] is more appropriate. As a continuation of the work in [7], our current
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paper is devoted to the study of the global dynamics of model (1.1). Next, we

compare the main differences of mathematical approach between system (1.1)-

(1.3) in the current paper and system (3.1)-(3.3) in [7] (i.e., system (4) in [3]).

Since the equations C and CS of system (3.1)-(3.3) in [7] are decoupled from the

equations R, RS, N , and NS, it suffices to study the subsystem (3.25)-(3.27) in

[7], which can be further reduced into a cooperative and subhomogeneous system

(see system (3.21)-(3.23) in [7]). One can use the theory of monotone semiflows

to establish the uniqueness and global stability of positive steady state for system

(3.21)-(3.23) in [7]. Then the theory of chain transitive sets can be applied to prove

the uniqueness and global stability of positive steady state for system (3.1)-(3.3)

in [7]. However, we may not drop the C and CS equations from system (1.1)-(1.3)

in the current paper due to the recycling terms kqCC and kqCCS appearing in

the first and fourth equations of system (1.1), respectively. With the help of a

conservation (see Lemma 2.2), system (1.1)-(1.3) can be reduced into a subsystem

(see (3.1)-(3.3)). Notice that, without any additional assumptions, system (3.1)-

(3.3) is neither a cooperative system nor a subhomogeneous system, and hence,

the mathematical arguments used in [7, Section 3] no longer work for our case.

Thus, the uniqueness and global attractivity of the positive steady state becomes a

challenging problem. Our strategy here is to obtain a threshold result on the global

extinction and persistence of the algae for system (1.1)-(1.3) by appealing to the

theory of uniform persistence and chain transitive sets (see Theorem 3.3). Under

an additional assumption m = k, we find that system (3.1)-(3.3) can be reduced

into a cooperative and subhomogeneous system (see (4.4)-(4.6)), and hence, the

uniqueness and global stability of positive steady state of system (1.1)-(1.3) can be

obtained by using the similar arguments in [7, Section 3] (see Theorem 4.1).

The organization of this paper is as follows. In section 2, we study the well-

posedness and introduce the basic reproduction ratio R0 for system (1.1)-(1.3),

which can determine the local stability of the trivial steady state. In section 3, we

prove that the solution semiflow associated with system (1.1)-(1.3) is asymptotically

compact and admits a global attractor under appropriate conditions. Then we

establish a threshold result on the global extinction and persistence in terms of R0

by appealing to the theory of uniformly persistence and chain transitive sets. In

section 4, under the assumption that the mortality of algae coincides with toxin

degradation (m = k), we find another conservation law (4.2) and then reduce (1.1)-

(1.3) to a limiting system which generates a monotone semiflow. We further prove

the global attractivity of the positive steady state in the case where R0 > 1. A

brief discussion section completes the paper.
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2 The basic reproduction ratio

In this section, we first study the well-posedness of the initial-boundary-value prob-

lem (1.1)-(1.3), and then introduce the basic reproduction ratio for algae growth.

Let X = C([0, L],R6) and X+ = C([0, L],R6
+). Then (X,X+) is an ordered

Banach space equipped with the usual supremum norm. In order to simplify no-

tations, we set u0 = R, u1 = N , u2 = C, u3 = RS, u4 = NS, u5 = CS and

u = (u0, u1, u2, u3, u4, u5). We assume that the initial data in (1.3) satisfying

(u00, u
0
1, u

0
2, u

0
3, u

0
4, u

0
5) := (R0, N0, C0, R0

S, N
0
S, C

0
S) ∈ X+.

For the local existence and positivity of solutions, we appeal to the theory developed

in [10] where the existence and uniqueness and positivity are treated simultane-

ously (taking delay as zero). The idea is to view the system (1.1)-(1.3) as the

abstract ordinary differential equation in X+ and the so-called mild solutions can

be obtained for any given initial data. More precisely, we consider the following

integral form: 
u0(t) = V (t)u00 +

∫ t
0
T0(t− s)B0(u(s))ds,

ui(t) = Ti(t)u
0
i +

∫ t
0
Ti(t− s)Bi(u(s))ds, i = 1, 2,

ui(t) = u0i +
∫ t
0
Bi(u(s))ds, i = 3, 4, 5,

where Ti(t) is the positive, non-expansive, analytic semigroup on C([0, L],R) (see,
e.g., [18, Chapter 7]) such that u = Ti(t)u

0
i , i = 0, 1, 2, satisfies the linear initial

value problem 
∂u
∂t

= δ ∂
2u
∂x2

− ν ∂u
∂x
, t > 0, 0 < x < L,

νu(0, t)− δ ∂u
∂x
(0, t) = ∂u

∂x
(L, t) = 0, t > 0,

u(x, 0) = u0i (x), i = 0, 1, 2,

{V (t)}t≥0 is the family of affine operators on C([0, L],R) (see, e.g., [13, Chapter 5])
such that u = V (t)u00 satisfies the linear system with nonhomogeneous boundary

condition given by
∂u
∂t

= δ ∂
2u
∂x2

− ν ∂u
∂x
, t > 0, 0 < x < L,

νu(0, t)− δ ∂u
∂x
(0, t) = νR(0), ∂u

∂x
(L, t) = 0, t > 0,

u(x, 0) = u00(x),
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and the nonlinear operator Bi : C([0, L],R6
+) → C([0, L],R) is defined by

B0(u) = −qN [f(u0)−m]u1 + α(u3 − u0) + kqCu2,

B1(u) = α(u4 − u1) + [(1− ϵ)f(u0)−m]u1,

B2(u) = α(u5 − u2) + ϵf(u0)
qN
qC
u1 − ku2,

B3(u) = −α A
AS

(u3 − u0)− qN [f(u3)−m]u4 + kqCu5,

B4(u) = −α A
AS

(u4 − u1) + [(1− ϵ)f(u3)−m]u4,

B5(u) = −α A
AS

(u5 − u2) + ϵf(u3)
qN
qC
u4 − ku5.

By the standard maximum principle arguments (see, e.g., [18, Chapter 7]), it fol-

lows that V (t)C([0, L],R+) ⊂ C([0, L],R+) and Ti(t)C([0, L],R+) ⊂ C([0, L],R+)

for all t ≥ 0. The operator V and semi-group T0 are related to [10, Eq.(1.9)] by

setting β(x, t) ≡ νR(0). Since f(0) = 0, it follows that Bi(u) ≥ 0 whenever ui ≡ 0,

∀ 0 ≤ i ≤ 5, and hence, B̃ := (B0, B1, B2, B3, B4, B5) is quasipositive (see, e.g., [10,

Remark 1.1]). By [10, Theorem 1 and Remark 1.1], we have the following result.

Lemma 2.1. System (1.1)-(1.3) has a unique noncontinuable solution and the

solutions to (1.1)-(1.3) remain non-negative on their interval of existence if they

are non-negative initially.

In the following, we will demonstrate that mass conservation is satisfied in the

flow and storage zones for the equations given by (1.1)-(1.3). Let{
V (x, t) = R(x, t) + qNN(x, t) + qCC(x, t),

VS(x, t) = RS(x, t) + qNNS(x, t) + qCCS(x, t).
(2.1)

Then V (x, t) and VS(x, t) satisfy the following coupled differential equations
∂V
∂t

= δ ∂
2V
∂x2

− ν ∂V
∂x

+ αVS − αV, 0 < x < L, t > 0,
∂VS
∂t

= −α A
AS
VS + α A

AS
V, 0 < x < L, t > 0,

νV (0, t)− δ ∂V
∂x
(0, t) = νR(0), ∂V

∂x
(L, t) = 0, t > 0,

V (x, 0) = V 0(x) ≥ 0, VS(x, 0) = V 0
S (x) ≥ 0.

(2.2)

By similar arguments to those in [4] and [6, Lemma 2.3], we have the following

results on the global dynamics of system (2.2).

Lemma 2.2. System (2.2) admit a unique positive steady-state solution (R(0), R(0))

and for any (V 0(x), V 0
S (x)) ∈ C([0, L],R2), the unique mild solution (V (x, t), VS(x, t))

of (2.2) with (V (x, 0), VS(x, 0)) = (V 0(x), V 0
S (x)) satisfies

lim
t→∞

(V (x, t), VS(x, t)) = (R(0), R(0)) uniformly for x ∈ [0, L].
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It is easy to see that (R(0), 0, 0, R(0), 0, 0) is a steady state solution of system

(1.1)-(1.3). Linearizing system (1.1)-(1.3) at (R(0), 0, 0, R(0), 0, 0), we get the fol-

lowing cooperative system for (N,NS) compartments:{
∂N
∂t

= δ ∂
2N
∂x2

− ν ∂N
∂x

+ α(NS −N) + [(1− ϵ)f(R(0))−m]N,
∂NS

∂t
= −α A

AS
(NS −N) + [(1− ϵ)f(R(0))−m]NS,

(2.3)

in (x, t) ∈ (0, L)× (0,∞) with boundary conditions

νN(0, t)− δ
∂N

∂x
(0, t) =

∂N

∂x
(L, t) = 0, (2.4)

and initial conditions

N(x, 0) = N0(x) ≥ 0, NS(x, 0) = N0
S(x) ≥ 0. (2.5)

Substituting N(x, t) = eλtw(x) and NS(x, t) = eλtwS(x) into (2.3), we obtain the

associated eigenvalue problem
λw = δw′′ − νw′ + α(wS − w) + [(1− ϵ)f(R(0))−m]w,

λwS = −α A
AS

(wS − w) + [(1− ϵ)f(R(0))−m]wS,

νw(0)− δw′(0) = w′(L) = 0.

(2.6)

We impose the following condition

α
A

AS
> (1− ϵ)f(R(0))−m. (2.7)

By similar arguments to those in [7, Lemma 3.3], we have the following result.

Lemma 2.3. Assume that condition (2.7) holds. Then the eigenvalue problem

(2.6) has a principal eigenvalue, denoted by λ∗, with an associated eigenvector

(w∗(·), w∗
S(·)) ≫ 0.

In the following, we shall adopt the ideas in [21, 22] to define the basic reproduc-

tion ratio for algae. Let S(t) : C([0, L],R2) → C([0, L],R2) be the C0-semigroup

generated by the following system
∂N
∂t

= δ ∂
2N
∂x2

− ν ∂N
∂x

+ α(NS −N)−mN, 0 < x < L, t > 0,
∂NS

∂t
= −α A

AS
(NS −N)−mNS, 0 < x < L, t > 0,

νN(0, t)− δ ∂N
∂x

(0, t) = ∂N
∂x

(L, t) = 0, t > 0.

It is easy to see that S(t) is a positive C0-semigroup on C([0, L],R2).
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In order to define the basic reproduction ratio for algae, we assume that both al-

gae individuals in the flow and storage zones are near the state (0, 0), and introduce

fertile individuals at time t = 0, where the distribution of initial algae individuals

in the flow and storage zones is described by φ := (φ2, φ5) ∈ C(Ω̄,R2). Thus, it

is easy to see that S(t)φ represents the distribution of fertile algae individuals at

time t ≥ 0.

Let L : C([0, L],R2) → C([0, L],R2) be defined by

L(φ)(·) =
∫ ∞

0

(
(1− ϵ)f(R(0)) 0

0 (1− ϵ)f(R(0))

)
(S(t)φ)(·)dt.

It then follows that L(φ)(·) represents the distribution of the total new population

generated by initial fertile algae individuals φ := (φ2, φ5), and hence, L is the next

generation operator. We define the spectral radius of L as the basic reproduction

ratio for algae, that is,

R0 := r(L).

By [22, Theorem 3.1 (i) and Remark 3.1], we have the following observation.

Lemma 2.4. R0 − 1 and λ∗ have the same sign.

3 Threshold dynamics

In this section, we establish a threshold type result on the persistence and extinction

of algae population in terms of R0.

By Lemma 2.2, it follows that the limiting system of (1.1)-(1.3) takes the form

∂N

∂t
= δ

∂2N

∂x2
− ν

∂N

∂x
+ α(NS −N) + [(1− ϵ)f(R(0) − qNN − qCC)−m]N,

∂C

∂t
= δ

∂2C

∂x2
− ν

∂C

∂x
+ α(CS − C) + ϵ

qN
qC
f(R(0) − qNN − qCC)N − kC,

∂NS

∂t
= −α A

AS
(NS −N) + [(1− ϵ)f(R(0) − qNNS − qCCS)−m]NS, (3.1)

∂CS
∂t

= −α A

AS
(CS − C) + ϵ

qN
qC
f(R(0) − qNNS − qCCS)NS − kCS,

for (x, t) ∈ (0, L)× (0,∞) with boundary conditions{
νN(0, t)− δ ∂N

∂x
(0, t) = νC(0, t)− δ ∂C

∂x
(0, t) = 0,

∂N
∂x

(L, t) = ∂C
∂x
(L, t) = 0,

(3.2)

and initial conditions{
N(x, 0) = N0(x) ≥ 0, NS(x, 0) = N0

S(x) ≥ 0,

C(x, 0) = C0(x) ≥ 0, CS(x, 0) = C0
S(x) ≥ 0, 0 < x < L.

(3.3)
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We first study the dynamics of system (3.1)-(3.3). The biologically relevant

domain for system (3.1)-(3.3) is given by

Σ = {(N0, C0, N0
S, C

0
S) ∈ C([0, L],R4

+) : qNN
0(x) + qCC

0(x) ≤ R(0),

qNN
0
S(x) + qCC

0
S(x) ≤ R(0) on [0, L]}. (3.4)

The following result shows that the set Σ is positively invariant for the solution

semiflow associated with (3.1)-(3.3) .

Lemma 3.1. For any ϕ := (ϕ1, ϕ2, ϕ3, ϕ4) ∈ Σ, system (3.1)-(3.3) has a unique

mild solution (N(x, t), C(x, t), NS(x, t), CS(x, t)) on [0,∞) with initial data ϕ, and

(N(x, t), C(x, t), NS(x, t), CS(x, t)) ∈ Σ for all t ≥ 0.

Proof. Let T1(t) and T2(t) be the semigroups generated by{
∂u
∂t

= δ ∂
2u
∂x2

− ν ∂u
∂x

− (α +m)u, 0 < x < L, t > 0,

νu(0, t)− δ ∂u
∂x
(0, t) = 0, ∂u

∂x
(L, t) = 0,

and {
∂u
∂t

= δ ∂
2u
∂x2

− ν ∂u
∂x

− (α + k)u, 0 < x < L, t > 0,

νu(0, t)− δ ∂u
∂x
(0, t) = 0, ∂u

∂x
(L, t) = 0,

respectively, T3(t)ϕ3 = e
−( αA

AS
+m)t

ϕ3 and T4(t)ϕ4 = e
−( αA

AS
+k)t

ϕ4. Set

u(t) =


N(t)

C(t)

NS(t)

CS(t)

 , T(t) =


T1(t) 0 0 0

0 T2(t) 0 0

0 0 T3(t) 0

0 0 0 T4(t)

 .

Then (3.1)-(3.3) can be written as the following integral equation

u(t) = T(t)ϕ+

∫ t

0

T(t− s)F (u(s))ds,

where F = (F1, F2, F3, F4) : Σ → C([0, L],R4) by

F1(ϕ) = αϕ3 + (1− ϵ)f(R(0) − qNϕ1 − qCϕ2)ϕ1,

F2(ϕ) = αϕ4 + ϵ
qN
qC
f(R(0) − qNϕ1 − qCϕ2)ϕ1,

F3(ϕ) = α
A

AS
ϕ1 + (1− ϵ)f(R(0) − qNϕ3 − qCϕ4)ϕ3,

F4(ϕ) = α
A

AS
ϕ2 + ϵ

qN
qC
f(R(0) − qNϕ3 − qCϕ4)ϕ3.
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By [10, Corollary 4] or [18, Theorem 7.3.1], it suffices to show that

lim
h→0+

dist(ϕ+ hF (ϕ),Σ) = 0, ∀ ϕ ∈ Σ. (3.5)

For any ϕ ∈ Σ and h > 0, we have

ϕ+ hF (ϕ) =


ϕ1 + hF1(ϕ)

ϕ2 + hF2(ϕ)

ϕ3 + hF3(ϕ)

ϕ4 + hF4(ϕ)

 >


0

0

0

0

 . (3.6)

By our assumption on f , it is easy to see that

f(R) = H(R)R, where H(R) =

∫ 1

0

f ′(τR)dτ, ∀ R ≥ 0.

Then we have

R(0) − [qN(ϕ1 + hF1(ϕ)) + qC(ϕ2 + hF2(ϕ))]

= (R(0) − qNϕ1 − qCϕ2)[1− hqNϕ1H(R(0) − qNϕ1 − qCϕ2)]− hα(qNϕ3 + qCϕ4)

≥ (R(0) − qNϕ1 − qCϕ2)[1− hqNϕ1H(R(0) − qNϕ1 − qCϕ2)]− hαR(0), (3.7)

and

R(0) − [qN(ϕ3 + hF3(ϕ)) + qC(ϕ4 + hF4(ϕ))]

= (R(0) − qNϕ3 − qCϕ4)[1− hqNϕ3H(R(0) − qNϕ3 − qCϕ4)]− hα
A

AS
(qNϕ1 + qCϕ2)

≥ (R(0) − qNϕ3 − qCϕ4)[1− hqNϕ3H(R(0) − qNϕ3 − qCϕ4)]− hα
A

AS
R(0). (3.8)

By (3.6), (3.7) and (3.8), it follows that (3.5) is true.

In view of Lemma 3.1, we can define the solution semiflow Πt : Σ → Σ associated

with (3.1)-(3.3) by

Πt(P ) = (N(·, t, P ), C(·, t, P ), NS(·, t, P ), CS(·, t, P )), ∀ t ≥ 0, (3.9)

where P := (N0(·), C0(·), N0
S(·), C0

S(·)) ∈ Σ.

Since two equations in (3.1) have no diffusion terms, its solution semiflow Πt

is not compact. To obtain the existence of the global attractor of Πt, we further

assume that there is a constant r > 0 such that for any (N,C,NS, CS) ∈ Σ, we

have

xTM(N,C,NS, CS)x ≤ −rxTx, ∀ x ∈ R2, (3.10)
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where

M(N,C,NS, CS) =

(
m11 m12

m21 m22

)
,

and

m11 = −α A

AS
+ [(1− ϵ)f(R(0) − qNNS − qCCS)−m],

−qN(1− ϵ)f ′(R(0) − qNNS − qCCS)NS,

m21 = ϵ
qN
qC
f(R(0) − qNNS − qCCS)− ϵ

q2N
qC
f ′(R(0) − qNNS − qCCS)NS,

m12 = −qC(1− ϵ)f ′(R(0) − qNNS − qCCS)NS,

m22 = −α A

AS
− k − ϵqNf

′(R(0) − qNNS − qCCS)NS.

Remark 3.1. Assume that f(R) = µmaxR
Kµ+R

and

α
A

AS
> (1− ϵ)f(R(0))−min{m, k}+ 1

2

µmaxR
(0)

Kµ

[
2ϵ
qN
qC

+ (1− ϵ)
qC
qN

]
. (3.11)

Then (3.11) implies (2.7) and (3.10). Biologically, the condition (3.11) means that

the cross section of the main channel is large compared to that of the storage zone,

or the exchange rate is sufficiently large.

Next, we introduce the Kuratowski measure of noncompactness (see, e.g., [2])

κ(B) := inf{r : B has a finite cover of diameter < r}

for any bounded set B. We set κ(B) = ∞ whenever B is unbounded. It is easy to

see that B is precompact(i.e., B̄ is compact) if and only if κ(B) = 0. By similar

arguments to those in [6, Lemma 4.1], we have the following result.

Lemma 3.2. Assume that (3.10) holds. Then the solution semiflow Π(t) is κ-

contracting in the sense that limt→∞ κ(Π(t)(B)) = 0 for any bounded set B ⊂ Σ.

The following result shows that solutions of system (3.1)-(3.3) converge to a

compact attractor in Σ.

Theorem 3.1. Assume that (3.10) holds. Then Π(t) admits a global attractor on

Σ.

Proof. By Lemma 3.2, it follows that Π(t) is κ-contracting on Σ. By Lemma 3.1, it

follows that Π(t) is point dissipative on Σ, and forward orbits of bounded subsets

of Σ for Π(t) are bounded. By the continuous-time version of [12, Theorem 2.6],

Π(t) has a compact global attractor that attracts every point in Σ.
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By the strong maximum principle and the Hopf boundary lemma (see [14]), we

have the following result.

Lemma 3.3. Let

(u1(x, t, ϕ), u2(x, t, ϕ), u3(x, t, ϕ), u4(x, t, ϕ)) := (N(x, t), C(x, t), NS(x, t), CS(x, t))

be the solution of system (3.1)-(3.3) with initial data ϕ ∈ Σ. If there is a t0 ≥ 0 such

that ui(·, t0, ϕ) ≡/ 0, for some i ∈ {1, 2, 3, 4}, then ui(x, t, ϕ) > 0 for all x ∈ [0, L]

and t > t0.

The following result indicates that R0 is a threshold index for global extinction

and persistence of the algae.

Theorem 3.2. Assume that conditions (2.7) and (3.10) hold. Let

W0 = {ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) ∈ Σ : ϕ1(·) ≡/ 0 and ϕ3(·) ≡/ 0},

and

∂W0 = Σ\W0 = {ϕ ∈ Σ : ϕ1(·) ≡ 0 or ϕ3(·) ≡ 0}.

Let (N(x, t, ϕ), C(x, t, ϕ), NS(x, t, ϕ), CS(x, t, ϕ)) be the solution of system (3.1)-

(3.3) with initial data ϕ ∈ Σ. Then the following statements hold true:

(i) If R0 < 1, then the trivial solution 0̂ := (0, 0, 0, 0) is globally attractive in Σ.

(ii) If R0 > 1, then system (3.1)-(3.3) admits at least one positive steady state

(N̂(x), N̂S(x), Ĉ(x), ĈS(x)), and there exists an η > 0 such that for any ϕ ∈
W0, we have

lim inf
t→∞

N(x, t, ϕ) > η and lim inf
t→∞

NS(x, t, ϕ) > η,

uniformly for all x ∈ [0, L]. Furthermore, any compact internal chain tran-

sitive set I of Π(t) with I ̸= {0̂} satisfies minϕ∈I p(ϕ) > η, where p(ϕ) :=

min{minx∈[0,L] ϕ1(x),minx∈[0,L] ϕ3(x)}.

Proof. We first assume that R0 < 1. By Lemma 2.4, it follows that λ∗ < 0. From

the first and third equations of (3.1), it follows that
∂N
∂t

≤ δ ∂
2N
∂x2

− ν ∂N
∂x

+ α(NS −N) + [(1− ϵ)f(R(0))−m]N, t > 0,
∂NS

∂t
≤ −α A

AS
(NS −N) + [(1− ϵ)f(R(0))−m]NS, t > 0,

νN(0, t)− δ ∂N
∂x

(0, t) = ∂N
∂x

(L, t) = 0, t > 0.

(3.12)

By Lemma 2.3, there is a strongly positive eigenfunction ŵ := (w1, w1S) corre-

sponding to λ∗. Since for any given ϕ ∈ Σ, there exists some a > 0 such that
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(N(x, 0, ϕ), NS(x, 0, ϕ)) ≤ aŵ(x), ∀ x ∈ [0, L]. Note that aeλ
∗tŵ(x) is a solution

to (2.3)-(2.5) on [0,∞) with initial data aŵ(x). Then the comparison principle

implies that

(N(x, t, ϕ), NS(x, t, ϕ)) ≤ aeλ
∗tŵ(x), ∀ t ≥ 0,

and hence, limt→∞(N(x, t, ϕ), NS(x, t, ϕ)) = 0 uniformly for x ∈ [0, L]. Thus, the

equations for (C,CS) in (3.1) are asymptotic to the following linear system
∂C
∂t

= δ ∂
2C
∂x2

− ν ∂C
∂x

− (α + k)C + αCS, 0 < x < L, t > 0,
∂CS

∂t
= −(α A

AS
+ k)CS + α A

AS
C, 0 < x < L, t > 0,

νC(0, t)− δ ∂C
∂x
(0, t) = ∂C

∂x
(L, t) = 0, t > 0,

C(x, 0) = C0(x) ≥ 0, CS(x, 0) = C0
S(x) ≥ 0, 0 < x < L.

(3.13)

By [7, Lemma 3.3] and the theory of asymptotically autonomous semiflows (see,

e.g., [20, Corollary 4.3]), it follows that limt→∞(C(x, t, ϕ), CS(x, t, ϕ)) = (0, 0) uni-

formly for x ∈ [0, L]. This proves statement (i).

Next we assume that R0 > 1. Then Lemma 2.4 implies that λ∗ > 0. By (2.7)

and similar arguments to those in [7, Lemma 3.3] (see also Lemma 2.3), it follows

that there exists a sufficiently small positive number ξ0 such that

α
A

AS
> (1− ϵ)f(R(0))− ξ0 −m,

and λ∗ξ0 > 0 is the principal eigenvalue of the eigenvalue problem
λw = δw′′ − νw′ + α(wS − w) + [(1− ϵ)f(R(0))− ξ0 −m]w,

λwS = −α A
AS

(wS − w) + [(1− ϵ)f(R(0))− ξ0 −m]wS,

νw(0)− δw′(0) = w′(L) = 0.

(3.14)

Furthermore, w̃ := (w2, w2S) is the strongly positive eigenfunction corresponding

to λ∗ξ0 .

By Lemma 3.3, it follows that for any ϕ ∈ W0, we have

N(x, t, ϕ) > 0, NS(x, t, ϕ) > 0, ∀ x ∈ [0, L], t > 0.

This implies that Π(t)W0 ⊆ W0 for all t ≥ 0. Let

M∂ := {ϕ ∈ ∂W0 : Π(t)ϕ ∈ ∂W0, ∀ t ≥ 0},

and ω(ϕ) be the omega limit set of the orbit O+(ϕ) := {Π(t)ϕ : t ≥ 0}. We further

prove following two claims.

Claim 1. ω(ψ) = {0̂}, ∀ ψ ∈M∂.
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For any given ψ ∈ M∂, we have Π(t)ψ ∈ M∂, ∀ t ≥ 0. Thus, for any given

t ≥ 0, we have N(·, t, ψ) ≡ 0 or NS(·, t, ψ) ≡ 0. In the case where N(·, t, ψ) ≡ 0

for all t ≥ 0, substituting N(·, t, ψ) ≡ 0 into the first equation of (3.1), we obtain

NS(·, t, ψ) ≡ 0, ∀ t ≥ 0. Then the equations for (C,CS) satisfies the system (3.13),

and hence

lim
t→∞

(C(x, t, ψ), CS(x, t, ψ)) = (0, 0),

uniformly for x ∈ [0, L]. In the case where N(·, t̃0, ψ) ≡/ 0 for some t̃0 ≥ 0,

Lemma 3.3 implies that N(x, t, ψ) > 0, ∀ x ∈ Ω̄, ∀ t > t̃0. Thus, NS(·, t, ψ) ≡
0, ∀ t > t̃0. From the third equation of (3.1), it follows that N(·, t, ψ) ≡ 0, ∀ t > t̃0,

which is impossible. This shows that ω(ψ) = {0̂}.
Note that

lim
(N,C)→(0,0)

f(R(0)−qNN−qCC) = f(R(0)), lim
(NS ,CS)→(0,0)

f(R(0)−qNNS−qCCS) = f(R(0)).

It then follows that there is a σ0 > such tat

f(R(0) − qNN − qCC) > f(R(0))− ξ0
1− ϵ

, ∀ ∥(N,C)∥ < σ0.

and

f(R(0) − qNNS − qCCS) > f(R(0))− ξ0
1− ϵ

, ∀ ∥(NS, CS)∥ < σ0.

Claim 2. 0̂ is a uniform weak repeller forW0 in the sense that lim supt→∞ ∥Π(t)ϕ∥ ≥
σ0, ∀ ϕ ∈ W0.

Suppose, by contradiction, there exists ϕ0 ∈ W0 such that lim supt→∞ ∥Π(t)ϕ0−
0̂∥ < σ0. Then there exists t1 > 0 such that

∥(N(x, t, ϕ0, C(x, t, ϕ0)∥ < σ0 and ∥(NS(x, t, ϕ0, CS(x, t, ϕ0)∥ < σ0,∀ t ≥ t1, x ∈ [0, L].

It follows that the equation for N and NS in (3.1) satisfy
∂N
∂t

≥ δ ∂
2N
∂x2

− ν ∂N
∂x

+ α(NS −N) + [(1− ϵ)f(R(0))− ξ0 −m]N, t ≥ t1
∂NS

∂t
≥ −α A

AS
(NS −N) + [(1− ϵ)f(R(0))− ξ0 −m]NS, t ≥ t1

νN(0, t)− δ ∂N
∂x

(0, t) = ∂N
∂x

(L, t) = 0, t ≥ t1.

(3.15)

Recall that w̃ := (w2, w2S) is the strongly positive eigenfunction corresponding to

λ∗ξ0 . Since N(x, t, ϕ0) > 0, NS(x, t, ϕ0) > 0, ∀ x ∈ [0, L], t > 0, there exists a

sufficiently small number ρ0 > 0 such that (N(x, t1, ϕ0) > 0, NS(x, t1, ϕ0)) ≥ ρ0w̃.

Note that ρ0e
λ∗ξ0

(t−t1)w̃, t ≥ t1, is a solution of the following linear system:
∂N
∂t

= δ ∂
2N
∂x2

− ν ∂N
∂x

+ α(NS −N) + [(1− ϵ)f(R(0))− ξ0 −m]N, t ≥ t1
∂NS

∂t
= −α A

AS
(NS −N) + [(1− ϵ)f(R(0))− ξ0 −m]NS, t ≥ t1

νN(0, t)− δ ∂N
∂x

(0, t) = ∂N
∂x

(L, t) = 0, t ≥ t1,

(3.16)

14



with initial data ρ0w̃. Then the comparison principle implies that

(N(x, t, ϕ0), NS(x, t, ϕ0)) ≥ ρ0e
λ∗ξ0

(t−t1)w̃, ∀ t ≥ t1, x ∈ [0, L].

Since λ∗ξ0 > 0, we see that (N(x, t, ϕ0), NS(x, t, ϕ0)) is unbounded. This contradic-

tion proves the claim.

Define a continuous function p : Σ → [0,∞) by

p(ϕ) := min

{
min
x∈[0,L]

ϕ1(x), min
x∈[0,L]

ϕ3(x)

}
, ∀ ϕ ∈ Σ. (3.17)

By Lemma 3.3, it follows that p−1(0,∞) ⊆ W0 and p has the property that if

p(ϕ) > 0 or ϕ ∈ W0 with p(ϕ) = 0, then p(Π(t)ϕ) > 0, ∀ t > 0. Thus, p is a

generalized distance function for the semiflow Π(t) : Σ → Σ (see, e.g., [19]). By

Claims 1 and 2 above, it follows that any forward orbit of Π(t) in M∂ converges to

0̂, 0̂ is isolated invariant set in Σ, and W s(0̂) ∩W0 = ∅, where W s(0̂) is the stable

set of 0̂. It is obvious that there is no cycle from 0̂ to 0̂ in M∂. By [19, Theorem 3],

there exists an η > 0 such that any compact internal chain transitive set I of Π(t)

with I ̸= {0̂} satisfies minϕ∈I p(ϕ) > η. For any ϕ ∈ W0, we see from Claim 2 that

ω(ϕ) ̸= {0̂}. Letting I = ω(ϕ), we then obtain minψ∈ω(ϕ) p(ψ) > η for all ϕ ∈ W0.

This implies the uniform persistence stated in statement (ii). By [12, Theorem 3.7

and Remark 3.10], it follows that Π(t) : Σ → Σ has a global attractor A0. It then

follows from [12, Theorem 4.7] that Π(t) has an equilibrium (N̂ , Ĉ, N̂S, ĈS) ∈ W0,

which satisfies N̂(x) > 0, Ĉ(x) ≥ 0, N̂S(x) > 0, ĈS(x) ≥ 0, ∀ x ∈ [0, L].

From the second equation of (3.1), it is easy to see that Ĉ(x) satisfies
δĈ ′′(x)− νĈ ′(x)− (α + k)Ĉ(x)

= −αĈS(x)− ϵ qN
qC
f(R(0) − qNN̂ − qCĈ(x))N̂ ≤ 0, x ∈ (0, L),

νĈ(0)− δĈ ′(0) = Ĉ ′(L) = 0.

By the strong maximum principle and the Hopf boundary lemma (see [14]), we

obtain Ĉ(x) > 0, ∀ x ∈ [0, L]. From the fourth equation of (3.1), it is easy to see

that ĈS(x) satisfies

(α
A

AS
+ k)ĈS(x) = α

A

AS
Ĉ(x) + ϵ

qN
qC
f(R(0) − qNN̂S − qCĈS)N̂S(x) ≥ α

A

AS
Ĉ(x),

which implies that ĈS(x) > 0, ∀ 0 ≤ x ≤ L. Therefore, (N̂(x), Ĉ(x), N̂S(x), ĈS(x))

is a positive steady state solution of (3.1)-(3.3).

Recall that X+ = C([0, L],R6
+) is the biologically relevant domain for system

(1.1)-(1.3). For convenience, we set

X0 := {(R0(·), N0(·), C0(·), R0
S(·), N0

S(·), C0
S(·)) ∈ X+ : N0(·) ≡/ 0 and N0

S(·) ≡/ 0},

15



and ∂X0 := X+\X0.

By appealing to the theory of chain transitive sets, we are able to lift the

dynamics of (3.1)-(3.3) to the full system (1.1)-(1.3).

Theorem 3.3. Assume that conditions (2.7) and (3.10) hold. Let

(R(x, t), N(x, t), C(x, t), RS(x, t), NS(x, t), CS(x, t))

be the solution of (1.1)-(1.3) with initial data in X+. Then the following statements

are valid:

(i) If R0 < 1, then

lim
t→∞

(R(x, t), N(x, t), C(x, t), RS(x, t), NS(x, t), CS(x, t)) = (R(0), 0, 0, R(0), 0, 0),

uniformly for x ∈ [0, L].

(ii) If R0 > 1, then (1.1)-(1.3) admits at least one positive steady-state solution

(R̂(x), N̂(x), Ĉ(x), R̂S(x), N̂S(x), ĈS(x)), and there exists an η > 0 such that

for any

(R0(·), N0(·), C0(·), R0
S(·), N0

S(·), C0
S(·)) ∈ X0,

we have

lim inf
t→∞

N(x, t, ϕ) > η and lim inf
t→∞

NS(x, t, ϕ) > η,

uniformly for all x ∈ [0, L].

Proof. Note that system (1.1)-(1.3) is equivalent to the following one:

∂N
∂t

= δ ∂
2N
∂x2

− ν ∂N
∂x

+ α(NS −N) + [(1− ϵ)f(V − qNN − qCC)−m]N,
∂C
∂t

= δ ∂
2C
∂x2

− ν ∂C
∂x

+ α(CS − C) + ϵ qN
qC
f(V − qNN − qCC)N − kC,

∂NS

∂t
= −α A

AS
(NS −N) + [(1− ϵ)f(VS − qNNS − qCCS)−m]NS,

∂CS

∂t
= −α A

AS
(CS − C) + ϵ qN

qC
f(VS − qNNS − qCCS)NS − kCS,

∂V
∂t

= δ ∂
2V
∂x2

− ν ∂V
∂x

+ α(VS − V ),
∂VS
∂t

= −α A
AS

(VS − V ),

(3.18)

for (x, t) ∈ (0, L)× (0,∞) with boundary conditions
νN(0, t)− δ ∂N

∂x
(0, t) = νC(0, t)− δ ∂C

∂x
(0, t) = 0,

νV (0, t)− δ ∂V
∂x
(0, t) = νR(0),

∂N
∂x

(L, t) = ∂C
∂x
(L, t) = ∂V

∂x
(L, t) = 0,

(3.19)
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and initial conditions{
N(x, 0) = N0(x) ≥ 0, C(x, 0) = C0(x) ≥ 0, NS(x, 0) = N0

S(x) ≥ 0,

CS(x, 0) = C0
S(x) ≥ 0, V (x, 0) = V 0(x) ≥ 0, VS(x, 0) = V 0

S (x) ≥ 0,
(3.20)

for x ∈ (0, L), where V and VS are defined in (2.1).

The biologically relevant domain for system (3.18)-(3.20) is given by

Σ̃ = {(N0, C0, N0
S, C

0
S, V

0, V 0
S ) ∈ C([0, L],R6

+) : qNN
0(x) + qCC

0(x) ≤ V 0(x),

qNN
0
S(x) + qCC

0
S(x) ≤ V 0

S (x) on [0, L]}. (3.21)

For convenience, we define

Σ̃0 := {(N0, C0, N0
S, C

0
S, V

0, V 0
S ) ∈ Σ̃ : N0(·) ̸≡ 0 and N0

S(·) ̸≡ 0},

and ∂Σ̃0 := Σ̃\Σ̃0. We first show that Σ̃ is positively invariant for system (3.18)-

(3.20). Indeed, let Q := (N0(·), C0(·), N0
S(·), C0

S(·), V 0(·), V 0
S (·)) ∈ Σ̃ and let

(N(·, t, Q), C(·, t, Q), NS(·, t, Q), CS(·, t, Q), V (·, t, Q), VS(·, t, Q))

be the solution of system (3.18)-(3.20) with initial data Q. Recall that{
R(x, t) = V (x, t)− qNN(x, t)− qCC(x, t),

RS(x, t) = VS(x, t)− qNNS(x, t)− qCCS(x, t).
(3.22)

Then (R(·, t, Q), N(·, t, Q), C(·, t, Q), RS(·, t, Q), NS(·, t, Q), CS(·, t, Q)) satisfies (1.1)-
(1.3) andR(·, 0, Q) ≥ 0, N(·, 0, Q) ≥ 0, C(·, 0, Q) ≥ 0, RS(·, 0, Q) ≥ 0, NS(·, 0, Q) ≥
0, CS(·, 0, Q) ≥ 0. By Lemma 2.1, it follows that

(R(·, t, Q), N(·, t, Q), C(·, t, Q), RS(·, t, Q), NS(·, t, Q), CS(·, t, Q)) ≥ 0, ∀ t ≥ 0.

This implies that

(N(·, t, Q), C(·, t, Q), NS(·, t, Q), CS(·, t, Q), V (·, t, Q), VS(·, t, Q)) ∈ Σ̃, ∀ t ≥ 0.

Thus, we can define the solution semiflow Π̃t : Σ̃ → Σ̃ of (3.18)-(3.20) by

Π̃t(Q) = (N(·, t, Q), C(·, t, Q), NS(·, t, Q), CS(·, t, Q), V (·, t, Q), VS(·, t, Q)), ∀ t ≥ 0,

where Q := (N0(·), C0(·), N0
S(·), C0

S(·), V 0(·), V 0
S (·)) ∈ Σ̃. For any Q ∈ Σ̃, let ω̃ :=

ω̃(Q) be the omega limit set of Q for Π̃t. It is easy to see that

(R0(·), N0(·), C0(·), R0
S(·), N0

S(·), C0
S(·)) ∈ X0
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if and only if (N0, C0, N0
S, C

0
S, V

0, V 0
S ) ∈ Σ̃0.

By Lemma 2.2, we have

lim
t→∞

(V (x, t), VS(x, t)) = (R(0), R(0)) uniformly for x ∈ [0, L].

It then follows that for any (N(·), C(·), NS(·), CS(·)) ∈ C([0, L],R4
+) with

((N(·), C(·), NS(·), CS(·)), V (·), VS(·)) ∈ ω̃,

there holds (V (·), VS(·)) = (R(0), R(0)). Thus, there exists a set I ⊂ C([0, L],R4
+)

such that ω̃ = I × {(R(0), R(0))}. Since Σ̃ is closed, it follows that ω̃ ⊂ Σ̃. For any

given (N(·), C(·), NS(·), CS(·)) ∈ I, we have

(N(·), C(·), NS(·), CS(·), R(0), R(0)) ∈ ω̃ ⊂ Σ̃.

By the definition of Σ̃, we obtain (N(·), C(·), NS(·), CS(·)) ∈ Σ. This shows that

I ⊂ Σ.

In view of [23, Lemma 1.2.1′], we see that ω̃ is a compact, invariant and in-

ternal chain transitive set for Π̃t. Moreover, for any (N(·), C(·), NS(·), CS(·)) ∈
C([0, L],R4

+) with (N(·), C(·), NS(·), CS(·)), V (·), VS(·)) ∈ ω̃, there holds

Π̃t |ω̃ (N(·), C(·), NS(·), CS(·), V (·), VS(·)) = (Πt(N(·), C(·), NS(·), CS(·)), R(0), R(0)),

where Πt is the semiflows associated with (3.1)-(3.3) on Σ. It then easily follows

that I is a compact, invariant and internal chain transitive set for Πt : Σ → Σ.

In the case where R0 < 1, it follows from Theorem 3.2 (i) that 0̂ is a global

attractor for Πt : Σ → Σ. By the continuous-time version of [23, Theorem 1.2.1],

we obtain I = {0̂}, and hence, ω̃ = I × {(R(0), R(0))} = {(0, 0, 0, 0, R(0), R(0))}.
This implies that (0, 0, 0, 0, R(0), R(0)) is globally attractive for Π̃t in Σ̃, that is,

system (3.18)-(3.20) has a globally attractive steady state (0, 0, 0, 0, R(0), R(0)) in

Σ̃. In view of (2.1), we see that statement (i) holds true.

In the case where R0 > 1, it follows from Lemma 2.4 that λ∗ > 0. Thus, there

exists a ρ > 0 such that

α
A

AS
> (1− ϵ)f(R(0))−m− ρ,

and the eigenvalue problem
λw = δw′′ − νw′ + α(wS − w) + [(1− ϵ)f(R(0))−m− ρ]w,

λwS = −α A
AS

(wS − w) + [(1− ϵ)f(R(0))−m− ρ]wS,

νw(0)− δw′(0) = w′(L) = 0,

(3.23)
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has a principal eigenvalue, denoted by λ∗ρ > 0, with an associated eigenvector

(w∗
ρ(·), w∗

Sρ(·) ≫ 0. We further show that I ≠ {0̂}. Otherwise, we have ω̃ =

I × {(R(0), R(0))} = {(0, 0, 0, 0, R(0), R(0))}. This implies that

lim
t→∞

||(N(·, t), C(·, t), NS(·, t), CS(·, t), V (·, t), VS(·, t))− (0, 0, 0, 0, R(0), R(0))|| = 0.

It follows that

lim
t→∞

||(V (·, t)− qNN(·, t)− qCC(·, t))−R(0)|| = 0,

and

lim
t→∞

||(VS(·, t)− qNNS(·, t)− qCCS(·, t))−R(0)|| = 0.

Consequently, there exists a t1 > 0 such that

f(V (·, t)− qNN(·, t)− qCC(·, t)) > f(R(0))− ρ

1− ϵ
, ∀ t ≥ t1,

and

f(VS(·, t)− qNNS(·, t)− qCCS(·, t)) > f(R(0))− ρ

1− ϵ
, ∀ t ≥ t1.

From the first and third equations in (3.18), we have
∂N
∂t

≥ δ ∂
2N
∂x2

− ν ∂N
∂x

+ α(NS −N) + [(1− ϵ)f(R(0))−m− ρ]N, 0 < x < L, t ≥ t1,
∂NS

∂t
≥ −α A

AS
(NS −N) + [(1− ϵ)f(R(0))−m− ρ]NS, 0 < x < L, t ≥ t1,

νN(0, t)− δ ∂N
∂x

(0, t) = ∂N
∂x

(L, t) = 0, t ≥ 0.

Since N0(·) ̸≡ 0 and N0
S(·) ̸≡ 0, it follows from the strong maximum principle (see,

e. g., [14, p. 172, Theorem 4]) and the Hopf boundary lemma (see, e.g., [14, p.

170, Theorem 3]) that N(·, t) > 0, NS(·, t) > 0, ∀ t > 0. Hence, there exists a

sufficiently small number a > 0 such that (N(·, t1), NS(·, t1)) ≥ a(w∗
ρ(·), w∗

Sρ(·)).
By the comparison theorem, it follows that

(N(·, t), NS(·, t)) ≥ aeλ
∗
ρ(t−t1)(w∗

ρ(·), w∗
Sρ(·)) , ∀ t ≥ t1, x ∈ [0, L].

Since λ∗ρ > 0, (N(x, t), NS(x, t)) is unbounded, which is a contradiction. In view

of I ̸= {0̂}, we see from Theorem 3.2 (ii) that minϕ∈I p(ϕ) > η. Since ω̃ =

I × {(R(0), R(0))}, it then follows that statement (ii) is valid.

4 Global attractivity

In this section, we established the uniqueness and global stability of the positive

steady state for system (1.1)-(1.3) under the condition that m = k.
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Let {
W (x, t) = C(x, t)− ϵ

1−ϵ
qN
qC
N(x, t),

WS(x, t) = CS(x, t)− ϵ
1−ϵ

qN
qC
NS(x, t).

(4.1)

It then follows from system (3.1)-(3.3) that W (x, t) and WS(x, t) satisfy
∂W
∂t

= δ ∂
2W
∂x2

− ν ∂W
∂x

− (α +m)W + αWS, 0 < x < L, t > 0,
∂WS

∂t
= −(α A

AS
+m)WS + α A

AS
W, 0 < x < L, t > 0,

νW (0, t)− δ ∂W
∂x

(0, t) = ∂W
∂x

(L, t) = 0, t > 0,

W (x, 0) = W 0(x) ≥ 0, WS(x, 0) = W 0
S(x) ≥ 0, 0 < x < L.

(4.2)

By [7, Lemma 3.3] with k = m, it follows that

lim
t→∞

(W (x, t),WS(x, t)) = (0, 0), uniformly for x ∈ [0, L]. (4.3)

Then system (3.1)-(3.3) can be reduced to the following one:{
∂N
∂t

= δ ∂
2N
∂x2

− ν ∂N
∂x

+ α(NS −N) + [(1− ϵ)f(R(0) − qN
1−ϵN)−m]N,

∂NS

∂t
= −α A

AS
(NS −N) + [(1− ϵ)f(R(0) − qN

1−ϵNS)−m]NS,
(4.4)

for (x, t) ∈ (0, L)× (0,∞) with boundary conditions

νN(0, t)− δ
∂N

∂x
(0, t) =

∂N

∂x
(L, t) = 0, (4.5)

and initial conditions

N(x, 0) = N0(x) ≥ 0, NS(x, 0) = N0
S(x) ≥ 0, 0 < x < L. (4.6)

The biologically relevant domain for system (4.4)-(4.6) is given by

Ω =

{
(N0, N0

S) ∈ C([0, L],R2
+) :

qN
1− ϵ

N0(x) ≤ R(0),
qN
1− ϵ

N0
S(x) ≤ R(0) on [0, L]

}
.

We define the solution semiflow Φt : Ω → Ω of (4.4)-(4.6) by

Φt(N
0(·), N0

S(·)) = (N(·, t, (N0(·), N0
S(·))), NS(·, t, (N0(·), N0

S(·)))), ∀ t ≥ 0,

where (N0(·)N0
S(·)) ∈ Ω. It is easy to see that the solution semiflow Φt is strongly

monotone (see, e.g., [18, Chapter 7]) in the sense that

Φt(N
0(·), N0

S(·)) ≫ Φt(Ñ
0(·), Ñ0

S(·)), ∀t > 0,

whenever (N0(·), N0
S(·)) > (Ñ0(·), Ñ0

S(·)), and strictly subhomogeneous (see, e.g.,

[23, section 2.3]) in the sense that

Φt(θN
0(·), θN0

S(·)) ≫ θΦt(N
0(·), N0

S(·)), ∀ (N0(·), N0
S(·)) ≫ 0, θ ∈ (0, 1).

For convenience, we let Ω0 = Ω\{(0, 0)}, ∂Ω0 := Ω\Ω0 = {(0, 0)}.
By similar arguments to those in [6, Lemma 3.2, Theorems 3.1 and 3.2], we

have the following result.
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Lemma 4.1. Assume that m = k and (2.7) holds. For any (N0(·), N0
S(·)) ∈ Ω,

let (N(·, t), NS(·, t)) be the solution of (4.4)-(4.6). Then the following statements

are valid:

(i) If R0 < 1, then lim
t→∞

(N(x, t), NS(x, t)) = (0, 0) uniformly for x ∈ [0, L];

(ii) If R0 > 1, then (4.4)-(4.6) admits a unique positive steady-state solution

(N̂(x), N̂S(x)) and for any (N0(·), N0
S(·)) ∈ Ω0, we have

lim
t→∞

(N(x, t), NS(x, t)) = (N̂(x), N̂S(x)), uniformly for x ∈ [0, L].

Now we are in a position to prove the global attractivity of the positive steady

state for system (1.1)-(1.3) under the additional assumption that m = k.

Theorem 4.1. Assume that m = k and (2.7) holds. Let

(R(x, t), N(x, t), C(x, t), RS(x, t), NS(x, t), CS(x, t))

be the solution of (1.1)-(1.3) with initial data in X+. Then the following statements

are valid:

(i) If R0 < 1, then

lim
t→∞

(R(x, t), N(x, t), C(x, t), RS(x, t), NS(x, t), CS(x, t)) = (R(0), 0, 0, R(0), 0, 0),

uniformly for x ∈ [0, L].

(ii) If R0 > 1, then (1.1)-(1.3) admits a unique positive steady-state solution

(R̂(x), N̂(x), Ĉ(x), R̂S(x), N̂S(x), ĈS(x)), and for any

(R0(·), N0(·), C0(·), R0
S(·), N0

S(·), C0
S(·)) ∈ X0,

we have

lim
t→∞

(R(x, t), N(x, t), C(x, t), RS(x, t), NS(x, t), CS(x, t))

= (R̂(x), N̂(x), Ĉ(x), R̂S(x), N̂S(x), ĈS(x)), uniformly for x ∈ [0, L].

Proof. Statement (i) follows directly from Theorem 3.3(i). In order to prove state-

ment (ii), we rewrite the system (1.1)-(1.3) with m = k as an equivalent form:

∂N
∂t

= δ ∂
2N
∂x2

− ν ∂N
∂x

+ α(NS −N) + [(1− ϵ)f(V − qN
1−ϵN − qCW )−m]N,

∂NS

∂t
= −α A

AS
(NS −N) + [(1− ϵ)f(VS − qN

1−ϵNS − qCWS)−m]NS,
∂V
∂t

= δ ∂
2V
∂x2

− ν ∂V
∂x

+ α(VS − V ),
∂VS
∂t

= −α A
AS

(VS − V ),
∂W
∂t

= δ ∂
2W
∂x2

− ν ∂W
∂x

− (α +m)W + αWS,
∂WS

∂t
= −(α A

AS
+m)WS + α A

AS
W,

(4.7)
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for (x, t) ∈ (0, L)× (0,∞) with boundary conditions
νN(0, t)− δ ∂N

∂x
(0, t) = 0, νV (0, t)− δ ∂V

∂x
(0, t) = νR(0),

νW (0, t)− δ ∂W
∂x

(0, t) = 0,
∂N
∂x

(L, t) = ∂V
∂x
(L, t) = ∂W

∂x
(L, t) = 0,

(4.8)

and initial conditions{
N(x, 0) = N0(x) ≥ 0, NS(x, 0) = N0

S(x) ≥ 0, V (x, 0) = V 0(x) ≥ 0,

VS(x, 0) = V 0
S (x) ≥ 0, W (x, 0) = W 0(x) ≥ 0, WS(x, 0) = W 0

S(x) ≥ 0,
(4.9)

for x ∈ (0, L). Here (V, VS) and (W,WS) are defined in (2.1) and (4.1), respectively.

The biologically relevant domain for system (4.7)-(4.9) is given by

Ω̃ = {(N0, N0
S, V

0, V 0
S ,W

0,W 0
S) ∈ C([0, L],R4

+)× C([0, L],R2) :
qN
1− ϵ

N0(x) + qCW
0(x) ≤ V 0(x),

qN
1− ϵ

N0
S(x) + qCW

0
S(x) ≤ V 0

S (x),

W 0(x) +
ϵ

1− ϵ

qN
qC
N0(x) ≥ 0, W 0

S(x) +
ϵ

1− ϵ

qN
qC
N0
S(x) ≥ 0 on [0, L]}.

For convenience, we define

Ω̃0 := {(N0, N0
S, V

0, V 0
S ,W

0,W 0
S) ∈ Ω̃ : N0(·) ̸≡ 0 and N0

S(·) ̸≡ 0},

and ∂Ω̃0 := Ω̃\Ω̃0.We first show that Ω̃ is positively invariant for system (4.7)-(4.9).

Indeed, let Q := (N0(·), N0
S(·), V 0(·), V 0

S (·),W 0(·),W 0
S(·)) ∈ Ω̃ and let

(N(·, t, Q), NS(·, t, Q), V (·, t, Q), VS(·, t, Q),W (·, t, Q),WS(·, t, Q))

be the solution of (4.7)-(4.9) with initial data Q. Recall that
R(x, t) = V (x, t)− qN

1−ϵN(x, t)− qCW (x, t),

RS(x, t) = VS(x, t)− qN
1−ϵNS(x, t)− qCWS(x, t),

C(x, t) = W (x, t) + ϵ
1−ϵ

qN
qC
N(x, t),

CS(x, t) = WS(x, t) +
ϵ

1−ϵ
qN
qC
NS(x, t).

(4.10)

Then (R(·, t, Q), N(·, t, Q), C(·, t, Q), RS(·, t, Q), NS(·, t, Q), CS(·, t, Q)) satisfies (1.1)-
(1.3) and

R(·, 0, Q) ≥ 0, N(·, 0, Q) ≥ 0, C(·, 0, Q) ≥ 0,

RS(·, 0, Q) ≥ 0, NS(·, 0, Q) ≥ 0, CS(·, 0, Q) ≥ 0.

By Lemma 2.1, it follows that

(R(·, t, Q), N(·, t, Q), C(·, t, Q), RS(·, t, Q), NS(·, t, Q), CS(·, t, Q)) ≥ 0, ∀ t ≥ 0.
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Thus, we can define the solution semiflows Φ̃t : Ω̃ → Ω̃ associated with (4.7)-(4.9)

by

Φ̃t(Q) = (N(·, t, Q), NS(·, t, Q), V (·, t, Q), VS(·, t, Q),W (·, t, Q),WS(·, t, Q)), ∀ t ≥ 0,

where Q := (N0(·), N0
S(·), V 0(·), V 0

S (·),W 0(·),W 0
S(·)) ∈ Ω̃. For any Q ∈ Ω̃, let

ω̃1 := ω̃1(Q) be the omega limit set of Q for Φ̃t. Note that

(R0(·), N0(·), C0(·), R0
S(·), N0

S(·), C0
S(·)) ∈ X0

if and only if (N0(·), N0
S(·), V 0(·), V 0

S (·),W 0(·),W 0
S(·)) ∈ Ω̃0. By Lemma 2.2 and [7,

Lemma 3.3], we have

lim
t→∞

(V (x, t), VS(x, t)) = (R(0), R(0)), uniformly for x ∈ [0, L],

and

lim
t→∞

(W (x, t),WS(x, t)) = (0, 0), uniformly for x ∈ [0, L].

For any (N(·), NS(·)) ∈ C([0, L],R2
+) with

(N(·), NS(·), V (·), VS(·),W (·),WS(·)) ∈ ω̃1,

there holds (V (·), VS(·)) = (R(0), R(0)) and (W (·),WS(·)) = (0, 0). Thus, there

exists a set I1 ⊂ C([0, L],R2
+) such that ω̃1 = I1 × {(R(0), R(0), 0, 0)}. Since Ω̃

is closed, it follows that ω̃1 ⊂ Ω̃. For any given (N(·), NS(·)) ∈ I1, we have

(N(·), NS(·), R(0), R(0), 0, 0) ∈ ω̃1 ⊂ Ω̃. By the definition of Ω̃, it follows that

(N(·), NS(·)) ∈ Ω. This shows that I1 ⊂ Ω.

By [23, Lemma 1.2.1′], it follows that ω̃1 is a compact, invariant and internal

chain transitive set for Φ̃t. Moreover, for any (N(·), NS(·)) ∈ C([0, L],R2
+) with

(N(·), NS(·), V (·), VS(·),W (·),WS(·)) ∈ ω̃1, there holds

Φ̃t |ω̃1 (N(·), NS(·), V (·), VS(·),W (·),WS(·)) = (Φt(N(·), NS(·)), R(0), R(0), 0, 0),

where Φt(N(·), NS(·)) is the semiflows associated with (4.4)-(4.6) on Ω. It then

easily follows that I1 is a compact, invariant and internal chain transitive set for

Φt : Ω → Ω.

In the case where R0 > 1, it follows from Lemma 4.1 (ii) that (4.4)-(4.6) has a

globally attractive steady state (N̂(·), N̂S(·)) in Ω0. Clearly, (0, 0) is also a steady

state of system (4.4)-(4.6). Note that (0, 0) and (N̂(·), N̂S(·)) are isolated invariant

sets in Ω and no subset of {(0, 0)} ∪ {(N̂(·), N̂S(·))} forms a cycle in Ω. Since I1

is a compact, invariant and internal chain transitive set for Φt : Ω → Ω, it follows

from a continuous-time version of [23, Theorem 1.2.2]) that either I1 = {(0, 0)} or

I1 = {(N̂(·), N̂S(·))}. By similar arguments to those in the proof of Theorem 3.3

(ii), we can further show that I1 ̸= {(0, 0)}. Thus, we have I1 = {(N̂(·), N̂S(·))},
and hence, ω̃1 = {(N̂(·), N̂S(·), R(0), R(0), 0, 0)}. This, together with (4.10), implies

that statement (ii) holds true.
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We remark that the condition m = k makes sense biologically if we go one step

further to set m = k = 0. This is a special case where algal mortality (m) and

toxin decay (k) are negligible compared to flows, and hence, the loss processes are

governed entirely by flow.

5 Discussion

In this paper, we analyze a reaction-diffusion-advection system modeling the lon-

gitudinal distribution of harmful algae and algal toxin that contains substantial

amounts of nitrogen [1]. When the toxin contains little or none of the limiting

nutrient [11], another system was proposed in [3] (see system (4) therein), that is,

system (3.1)-(3.3) in [7]. Without recycling terms, the authors of [7] established a

threshold type result on the global attractivity of system (3.1)-(3.3) of [7] in terms

of the basic reproduction ratio for algae. For the general case of system (1.1)-(1.3)

in this paper, we can only establish the global extinction and persistence of the

algae (Theorems 3.2 and 3.3). Imposing an additional assumption that m = k,

we can further obtain the global attractivity of the positive steady state of system

(1.1)-(1.3) (Theorem 4.1).

It was recognized that inflows and salinity are also significant factors affecting

phytoplankton community dynamics and structure. Prymnesium parvum (golden

algae) can be tolerant of large variations in temperature and salinity, and is ca-

pable of forming large fish-killing blooms. Such kind of blooms have dramatically

increased in frequency in inland waters of the United States, especially in west-

ern Texas [16]. As mentioned in [16], factors that can reduce the population of

Prymnesium parvum might include grazing by toxin resistant zooplankton and

pathogenic effects of virus. It was also known that some cyanobacteria may inhibit

Prymnesium parvum blooms [16].

Mathematical modeling of algal dynamics is an important topic in theoretical

ecology, since it can help us to understand the complex factors influencing harmful

algal blooms and to gain insight that can guide mitigation and management. Based

on the discussions in the last paragraph, we can extend models (1.1)-(1.3) here and

(3.1)-(3.3) of [7] in several ways. For example, we may study the influence of

seasonal temperature and salinity variations on the evolution dynamics. In order

to understand the competition between P. parvum and cyanobacteria, the two-

species model should be taken into account. As mentioned in [7, Section 4], we

may also introduce the population of zooplankton into model (1.1)-(1.3) and study

the resulting algae-zooplankton system. We leave these interesting problems for

future investigation.
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