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SHORT HISTORY OF THE CLASSICAL THEORY OF ECOLOGICAL COMPETITION

o

The classical theory of ecological competition between two or more species,

attributed to Lotka and Volterra [60], is an extension of the basic logistic

model of single-species growth that dates from Verhulst [59].

The dynamical

equations for this theory for two competitors, 1 and 2, are often written as:

Ny

—— = 1,N

dt
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108 WALTMAN ET AL.

where Ni is the number of the ith competing species, T, and Ki are the
intrinsic rate of increase and the carrying capacity of the ith competitor,
respectively, and o« and 8 are the interaction or "competition' coefficients,
expressing the per capita competitive effects of species 2 on 1, and 1 on 2,
on the -growth rate and realized carrying capacity of the rival species. In
the absence of competition {(a = 8 = 0), each population grows to its Tespec-
tive carrying capacity. In the presence of competition, one or the other
rival may survive while its competitor dies out, or else the rivals may
coexist. In the two-species case, there are four possible outcoﬁes provided
that the initial populations are both positive; which outcome occurs depends
on the carrying capacities and competition coefficients. Competitive sta-
bility (coexistence) occurs when a < KI/K2 and B < KZ/KI’ competitive insta-
bility (initial number of each rival determines winner) occurs when these
inequalities are both reversed, and competitive dominance (one or the other
species wins regardless of initial numbers) occurs when one but not both

of these inequalities are reversed. .

This classical theory of competition and its extension to n competing
species has been fhe:subject of a great amount of theoretical (cf. review,
[61, 17]) and experimental [23, 37, 40, 44, 57, 63] work in the last 40
years. However, in recent years there has arisen a widespread feeling that
the subject of competition is ready for a new theoretical framework. A
pervasive problem with classical theory is that it is "phenomenclogical,!
seeking to describe how the numbers of competitors change without ever being
specific about which resources are the focus of competition, nor about how
efficiently the rivals exploit or control these limited resources. While
the lasting appeal of Lotka-Volterra theory has come from its generality
and simplicity, this same generality has also made it very.difficult for
the experimentalist to measure the theory's critical parameters. It has
proved especially difficult to estimate the competition coefficients inde-
pendently of actually growing the competing species together. Usually théy
have been estimated by fitting the equations to the growth curves of the
species in competition {e.g., [57]). Whenever these coefficients can only
be estimated from the dynamics of populations already in competition, the
value of the theory for prediction is much diminished. It then becomes at
best an ex post facto description of the outcome of competition [47, 61],
and at worst an unsuccessful exercise in curve fitting.

There are a number of other problems with the classical theory which
concern its biological assumptions. These include the assumptions of a

constant carrying capacity, ecological equivalence of all individuals within
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MICROBIAL COMPETITION 109

each population (no age-dependent differences in birth or death rates or in
resource use, for example), no time lags, and constant, linear per-capita
effects on population growth rates within and between species. The organisms
which best meet these assumptions in general are microorganisms, which as
single-celled organisms usually reproduce by simple binary fission, producing
clones of geneiically identical daughter cells. It is not surprising, there-
fore, that the experimental work best supporting the theory has been done on
microorganisms, beginning with the picneering work of Gause [7] and continuing
until quite recently [8, 40, 56]. In the work with metazoans, however, the
theory has with a few possible exceptions (e.g., [23]) not proved adequate
[37, 44, 48, 49, 62].

During the last 20 years increasing attention has been given to the
details of the processes underlying consumer-resource interactions, with
the goal of constructing more mechanistic theories of interspecific compe-
tition. Research has been focused on three principal questibns. First of
all, do the rival species compete only indirectly by lowering the.shared

.7podl of limited resources (exploitative competition), or do they also compete
more directly by harming their rivals or by sequestering some of the el
sources for their exclusive use (interference competition) [33]? Secondly,
how efficiently do the rivals exploit these limiting resources? In particu-
lar, how do the per capita consumption rates of each species respond to a
change in resource concentration (nutrients, prey, etc.) in the environment
("functional™ response)? Finally, how do these resources, once consumed,
translate into a particular rate of population growth ("numerical™ response)?
There are other questions as well, such as competit;on within and between
age-structured populations {e.g., [39]), and genetic consideratiens (e.g.,
[41]), that as yet have not received much attention.

In this chapter we focus exclusively on exploitative competition.
Interference competition, while common in nature, is mediated through a
diversity of wechanisms. As yet there is little consensus about the way
that interference should be modeled mathematically given that the effects
of toxins or injdry are sorvaried, and are different from the effects of
resource sequestering. In any event, it is not a trivial exercise to con-
sider the consequences of exploitative competition, which occurs more uni-
versally than interference. Unless one species can totally exclude its
rivals from access to the limiting resources, consumption of these resources
by both species occurs, and exploitative competition is a reality.

Moreover, there is greater agreement on the biology and mathematiecs of

exploitative competition. Extensive studies hdve been made on the functional
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110 WALTMAN ET AL,

response of a great variety of organisms to resource density, including
microorganisms (e.g., [9]), protozoa [46], insect predators [10, 15] and
parasitoids [10, 11], fish [24, 36], birds {45, 56], and mammals- [13], and
others. Functional responses of all organisms are saturating functions of
increasing resource density, such that the consumption rate reaches some
maximum at high rescurce density. At low resource density, consumption
rate may increase in a nearly linear fashion with resource density (typical
of filter-feeding organisms consuming prey much smaller than themselves; e.g.,
clams, baleen whales); consumption rate may increase nonlinearly, decelerat-
ing smoothly to a maximum feeding rate asymptote (most invertebrate predators
and many vertebrate predators feeding on one prey type at a time); or con-
sumption rate may increase slowly at low Tesource density and faster at
higher resource density in an S- shaped curve (typical predators that develop
learned "search images" as a function of prey encounter rate, and which
actively switch between alternate prey, or between non-feeding and feeding
behavior, as some- threshold prey demsity). These classes of functional
Tesponses have been.classified by Holling [14] as Types I, I1I, and I1I,
respectively. Type II is the most common type of functional response among
microorganisms and small invertebrates. In microorganisms, resource uptake
occurs at the level of enzyme-mediated transport of specific nutrients across
the cell wall, and uptake rates are generally characterized by the Michaelis-
Menten equations for enzyme-catalyzed reactions [6, 42]. Types II and III
functional responses in higher organisms follow identical mathematics, as
has been explored in some detail by Real [43].

Once the limiting resources have been consumed, they may interact in
a variety of ways to promote population growth. Leon and Tumpsen [30] have
distinguished two important classes or resourceé: complementary and sub-
stitutable. Complementary resources are substances which are metabolically
independent requirements for growth, such as a carbon and a nitrogen source
for a bacterium, or silica and phosphorus for a diatom. Substitutable re-
sources are substances which are metabolically interchangeable in the
organism, such as two carbon sources, or two sources of phosphorus. 1In
the case of growth limited by complementary resource, only one such resource
can be limiting growth at any given time, and which complementary rescurce
is limiting is determined by the relative rate of supply of the resources
in relatien to the required proportional demand of the erganism. On the
other hand, in the case of substitutable resources, growth on any one of

the resources is possible because each substitutable resource is actually
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MICROBIAL COMPETITION 111

an alternative form of supply of the same basic nutrient for which there is
a requirement. Thus, a given complementary resource can be supplied in a
variety of substitutable '"packages.' For example, planktonic algae obtain
their phosphorus from both inorganic sources such as orthophosphate as well
as from dissolved organic molecules containing phosphorus. Resources may
also be "imperfectly substitutable" if they can be interconverted by the
organism to meet various metabolic demands but only by augmenting energy
expenditure and generally at the expensé of a reduced growth rate.

The developing theories of resource-based ecological competition will,
almost certainly, first be tested in the laboratory with systems of competing
microorganisms and protozoa. The advantages of the laboratory enmvironment
for controlling extraneous variables are clear. Furthermore, microorganisms
offer the advantages of (a) rapid generation time, so that experiments can
be carried to completion in a short time; (b) small size, so that competitive
communities can be economically housed and replicated; (c) clonal homogeneity W?WW

! '-Jlm.m

of individuals, so that genetic differences among individuals within species, .
- Mg,
barring mutation, are absent; (d) reproduction by binary fission, so that e

ecological differences due to size and age are minimal; and {(e) simple func- imdﬁ“
tional responses to resource density, so that the complex behavioralpa b

of higher predators (such as searching images, learning, switching&behéﬁior, MN#&
etc.) can be initially ignored. Nﬂ“"ﬁ\

Consequently, in this chapter we develop the theory of exploitative
competition for microbial organisms competing in mixed-growth laboratory
cultures. The theory is developed for a culturing technique known as
fcontinuous culture," the most widely used laboratory idealization of a
constant carrying capacity environment. The remaining sections pf the

chapter are organized as follows: First, the technique of continuously

culturing microorganisms is briefly described, followed by a section detail-

ing the mathematical model of single-species and multiple-species growth in J‘Erﬁq
LT

continuous culture on a single limiting resource. The next section presents “mqﬁpﬁ
i}

the mathematical analysis of the n-species, l-resource model. This is
followed by two sections which give some experimental results of tests of
the model, and then generalize by analogy to competition among unicellular
planktonic algae in lakes and oceans. Next we consider what happens when "
two competitors are predators feeding on the same population of prey, a
different situation insofar as the "resource" is now cepable of self-renewal.

We conclude with a brief look at some of our theoretical work in progress.
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ORIGINS OF THE CONTINUOUS CULTURE TECHNIQUE

Most natural emvironments are inhabited by a great diversity of interacting
microorganisms, but the ecology of these organisms and their competitive,
mutualistic, or predator-prey relationships are almost always very difficult
to study in nature because of the highly complex structure of natural envi-
ronments and because of the limitations in ability to make accurate estimates
of natural population densities. In order to study these organisms and their
interactions in any detail, it was necessary to develop various isolation
procedures so that individual species or strains of microorganisms could be
cultured separately in the laboratory. At present laboratory cultures exist
for literally thousands of bacteria, fungi, protozoa, and unicellular plank-
tonic and benthic algae, from environments as diverse as lakes, streams,
oceans, hot springs, soil, root nodules of plants, and the intestinal tracts
of man and a host of other animals. ‘

Many of the pure cultures of these organisms were isolated from sd-called
batch enrichment! cultures, in which a small sample of the environmental
medium or substrafg is incubated with an enriched mixture of nutrients in a
closed culture vessel. One or more of the microorganisms present in the
sample grow to very large numbers under such conditiens, making it easier
to isolate individual cells of the organisms into pure culture. These batch
cultures are also widely used in studies on the energy métabolism and nutrient
requirements of different species of microorganisms.

From an ecclogical perspective, however, the batch culture environment
has some serious drawbacks as a model of natural microbial environments
[25, 51, 58]. For one thing, in nature microorganisms almost never encounter
the very high nutrient levels that characterize batch cultures. Generally
the concentrations of limiting nutrients in soils and natural waters are
several orders of magnitude lower than in batch culture {although this is
less the case for intestinal enviromments). Thus, the question arises as
to whether the species isolated from batch culture are likely to be repre-
sentative of the microorganisms that are of a major functional importance
in the natural ecosystem. Indeed, one of the significant points of this
chapter is that there are both theoretical and experimental grounds for
expecting profound differences between the organisms which become abundant
under nutrient-rich, batch-culture conditions, and those which are abundant

under the much lower nutrient conditions in nature. In batch culture there

is also the problem that nutrient conditions are in continual flux with the
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possibility that growth is not always limited by the same nutrient. This

can make the study of the dependence of growth rate on nutrient concentration
very difficult, and can obscure the competitive relationships among organisms
growing in mixed culture,

The concept of a "continuous' culture was introduced in the late 1940s,
and came into widespread application in the 1950s. Continuocus cultures were
mainly developed so that microbial growth could be studied under nutrient
limitation in a controlled nutrient environment. The elementary design and
theory of continuous culture was first described by Moned [35] and indepen-
dently by Novick and Szilard [38], who. called their culture device a '"chemo-
stat."

. The basic concept of a chemostat is teo supply the culture continuously
with a constant input of sterile medium, and to remove medium plus cells
and byproducts from the culture at the same rate, maintaining culture volume
constant. Initially the culture is inoculated with a small number of cells;
and these multiply until a steady-state cell density is achieved. The

influent medium provides all nutrients essential for growth in excess of

lies the principal advantage of continuous culture over batch culture: the
rate of dilution controls the rate of microbial growth via the concentration
of the growth-limiting nutrient in the medium. As long as the dilution rate
is lower than the maximum growth rate attainable by the microorganisms, the
cell density will grow to a point at which the cell division rate (“birth"
rate) exactly balances the cell washout rate (''death" rate)., This steady-
state cell density is characterized by a constancy of all metabolic and
growth parameters. On the other hand, if the dilution rate exceeds the
maximum cell division rate, then total washout of the entire cell population
ocecurs.

The dependence of microbial growth rate on the concentration of limit-
ing nutrient was originally described by Monod [34] as simply a data-fitting
curve. Later the relationship was frequently interpreted in terms of
Michaelis-Menton kinetics. This explanation is undoubtedly too simplistic
for most growth-limiting substances in that the model of a single enzyme-
mediated reaction as the one rate-limiting step may not be completely accu-
rate. It now appears that some deviations from the Monod relationship in
microorganisms may depend on whether the limiting substrate is an energy

source or is an essential nutrient such as a vitamin or mineral [25].
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The most common deviation from the classical Monod formulation is that
the yield coefficient is not independent of growth rate. This is usually
due to the fact that cell volume in many microbial species is a function of
steady-state growth (division} rate, and therefore depends on the particular
dilution rate that is used in the continuous culture experiment [25, 58].
Other deviations may occur if growth rate falls to zero at 50me Nonzeroc
concentration of the limiting substrate, producing a threshold phenomenon
in growth, or it may be found that growth on one substrate is inhibited by
the presence of a second substrate. Bacteria, for example, commonly exhibit
"diauxic™ growth in the presence of two sugars as energy and carBon sources,
The presence of glucose in the medium completely inhibits the uptake and
metabolism of lactose in Escherichia coli via the lac operon [1], until the
supply of glucose in the medium is exhausted.

Finally, the cells may he capable of "luxury" consumption of certain
nutrients, such that there is uptake and storage of the nutrient in excess
of the amounts. that are currently needed for growth. This can lead at least
to transient départures from the Monod growth rate predictions because growth
rate is no longer a strict function of external concentration. Until steady
state is reached, growth rates may remain higher than predicted from the
Monod relationship or from the concentration of the external nutrient pool.
For example, many planktonic algae are capable of considerable luxury con-
sumption of orthophosphate, stored as polyphosphate in the cells; and ele-
vated growth rates can be maintained on these internal stores for some time
after external phosphate concentrations have fallen virtually to zero [5].

In spite of departures in detail from the original microbial growth
model proposed by Monod, this model remains the simplest and the most widely
applicable theory for nutrient-limited growth in microorganisms; Moreover,
the theory, as extended to cover n-species microbial competition, now
appears sufficient to make qualitatively accurate predictions of the out-
comes of microbial competition in continucus culture. For example, Tilman
[521, in studying the ability of the Monod model to predict the winning
species among diatoms competing for silica anddbhosphorus, found that the
Monod medel did as well or better than a more complex '"internal stores'
model developed by Droop [5], which allows for luxury consumption and un-
couples growth rate from external phosphorus concentrations. We also report
in the present article and elsewhere [9] that the Monod formulation success-
fully predicts the outcome of competition between auxotrophic strains of

bacteria grown in continuous culture.
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Consequently, we feel that competition theory developed from the micro-
bial growth equations of Monod remains the most general theory available,
and will serve as the most practical tool for probing the mechanics of micro-
bial competition for some time to come. We also feel that this theory will
serve as the foundation for the development of much more mechanistic theories
of competition among higher organisms as well, theories which make explicit
the interaction of the competitors with each other and with their shared,

limited resources.

DERIVATION OF THE MOBEL EQUATIONS

The equations for the chemostat for one population were originally derived

by Monod [35]. Here we give a simpler derivation following Herbert,

Elsworth, and Telling [12], but based on Monod's observations. Let x(t} ‘*TW
denote the concentration of the organism and 5(t) the concentration of the
substrate at time t. I

If the organism were grown in a batch culture then the rate of consump-

tion of the substrate and rate of growth of the organism are directly pro

portional (Momod, [34]): wﬁﬁﬁﬂ
. "‘-._“.

-

rate of growth! _ [rate of consumption (1) ?ﬁ(,{

of organism - of resource ' “ffﬁn

y is called the yield constant and is determinable over a finite period of

-

time by

_ weight of the organism formed
~ weight of the substrated used

The rate of growth of the organism may be simply expressed as
inerease = growth - output

or

%%—= ux - Dx : (2) ¥

e o

e
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where 1 is a functien (defined below) and D is a constant, The change in the
substrate is slightly more complicated in that

increase = input - output - consumption

or

45 | ps(0 _ g mx
&= DS ps - ¥ | (3)

where Eq. (1) has been used to model the consumption (keeping in mind that
the rate of growth in the concentration of the organism is ux). Finally,

u is assumed {or known experimentally, Monod [34]) to have the form

where m is the maximum growth rate and a is the half-saturation, or Michaelis-
Menton, constant,‘mimerically equal to the substrate concentration at which

B = m/2, Combinifig the above yields the equations of the chemostat:

« (s _gp . L _mxS
St = (s D - & B

S
amf 5~ X )

x' =

x(0) > 0, 5(0) >0

Taylor and Williams [50] extended the derivation o cover n populations

existing on one resource, obtaining

n m.x.S
st =@ _gp. 5 L 2
i=1 ¥ #
mixiS
l——._-.
% T g Dby (%)

x(0) = x>0, §(0)=8,>0, i-=1,..,n

0
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ANALYSIS OF THE CHEMOSTAT

The system (SJn was investigated numeriéally by Taylor and Williams [50] who
found that only one population survived. To describe which one, let bi =
mi/D and if bi > 1, let Ai = ai/(bi -1). 1If bi >1,1i=1,..., n, Taylor
and Williams found that one the population with the smallest value of Ai
survived. A mathematical proof of this result was given by Hsu, Hubbell,

and Waltman [18], and a much shorter proof given by Hsu [16]. Before de-
scribing these results precisely we note first that the model is biologically

reasonable.

THEOREM 1 The solutions S(t), xi(t), i=1,..., n are positive and
bounded.

Proof The positivity of the xi's follows from the uniqueness of solu-
tions of initial value problems and the fact that each X; = 0 face is invari-

ant under the flow given by (5)n. The positivity of S(t} follows from the

t n m, X (&)
S(t) > S(0)exp [ ( %- D- X _E..ﬁ,_idg]
0 i i

and the boundedness of solutions from the relation

n x.(t) _
S(t) = A bt 5(0) (6)
is1 Vi
where
A =5+ 2 30 g(0)
S

Eq. (6) is obtained by forming a linear differential equation for the
quantity

n xi(t)

S{t) + X v

i=1 i
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Next it is convenient to eliminate "inadequate" competitors.

THEOREM 2 If
(i) bi <1,
or
.. ) .
{ii) Ai > 8 if bi > 1,
then 11mt+w xi{t) = Q.

This theorem states that if the maximum growth rate m, of the ith
organism is less than or equal to the dilution rate D or if the parameter
ai/(bi - 1) > S(O), the organism will become extinct in the culture. Note
that the resulting behavior is competition-independent and refiects excessive
dilution or, given the dilution rate, the inability to uptake sufficient
nutrient. Since {5)n is a dynamical system, analyzing (5)n with the ith

equation eliminated (analyzing an appropriate (5)n_1) is equivalent to

studying thehomgga limit set of the original (5}n with limtqm xi(t) = Q. o
Proof First observe that from (6) if € > 0 there exists a tO such that
if > g, 5() <5 4 el x (1) may be written
t (mi - D)Ss(g) - aiD
x; () = x, jexp | 5, + 50D dg (7]

If b, < 1, then

t -aiD
Xi(tj i xioexp _g ai+—S{£) dt‘-,' -

-a.D
1

a. + S(OJ + 1
i

| A

Cx.

i0%*P

(t - to}

where t0 is chosen so that for t 3_t0, S(t) 5_80 + 1 and

t0 -aiD

C=expf de

0

Since the exponent is negative and xi(t} > 0, 1imt+m xi(t) = 0.
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Rearranging (7) ylields

t m; - D a;
x; (1) = X5 08%P g E;_i—ETET' S(E) - 5;-:-%] dg (8)

If bi > 1, then the first factor of the integrand is positive. Let
0<E < (ai/(bi - 1)) - S(D), and choose tO > 0 such that S(t)} 5_8(0) + E

for t > t,. Then for an appropriate constant C, it follows that

0

(0) i a; m:.L - D i
xi(t] < Cxygexp [:S + E 5, - 1:} [;i ) 5(0) 1 (t tOJ

The first factor in the exponent is negative, and the other two positive so

lim xi[t) = 0.

1t

For bi > 1, as noted above, we define li = ai/(bi - 1). The basic

hypothesis is

(0)
Ay < S

(H)

<AL < ... <A

3

The equations may be relabeled without loss of generality, so that the

parameters Ai = ai/(bi - 1} are nondecreasing in 1. (H)n excludes equality

-

of this parameter for the first and any other population.

THEQOREM 3 Let (H)n hold. The solutions of (5)n satisfy

lim S(t) = Al,

toe
. (0

= * = - .
lim xl(t) =xy-= yl(S . ll]
130
lim x.(t) = 0, 2<i<n

1 —_— —_—

toe

This theorem states that under the hypothesis [H)n only one type of
organism survives, the one with the lowest value of A, and gives the limiting

s e-.;‘:-zév'g;:_ il

et S et a
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':‘
?’ concentrations. For a given system, the parameter A depends on two charac-
It is bio-

teristics, the growth rate and the Michaelis-Menten constant.

s

ing parameter will be different. Hence (H)f1 (with all strict inequalities)

is a biologically reasonable assumption.

ST
SR

7

proof of Theorem 3 (Hsu, [16]) Let F denote the positive cone in R

i Y

b T
e

and define there a Liapunov function

V(s, Xpseres xn)
< 3 n
= - - —_ - * * —_—
S ll Al zn[A ] + ¢y (xl x] xl)in <= + ;? c;X;
1 1 i=2
where c; = mi/[yi(mi - D)}. Along solutions of the equation

Vo

cf—t V(S(t), xl'('t-),---, x (€))

T
= grad V « (5', xi,..., xﬁ)

— N - = T
1 n m x.5
1 - —= (0) _ _ I T
S (s §)D ? y. a + §
i=1 71 "1
e {1 - — {(m, - D)
1 X 1
1 N TS (8 - Aljxl
c
2 m, - D
= T+ 5 (8 - Az)x2
) c
- n —
mn - D
a + 5 (8 - Apx,

(0) k,x* n m; X, -
- (S - 8) 171 i _ i
= (S—AI)I: S D—al+s + 4 v, (g - 2y) o+ S

where k; = ml/yl.

logically reasonable to assume that for two distinct species, the correspond-

1
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Since.
- (0 _
x{ = yl(S Al)
0
(S( ) Al)(al + ll}Dyl
mAy
then
(0}
klxi i klhle ) (8 - AI](al + Al)D
a) + S Alfal + 5) Al(a1 + 5)
Thus
0 K ol
s - gn 1M b
S a; + S

) ps{@ia, + s s - s - aay + 28 - 2 57) - Ayaps
= 5z, + 5%,

-D(S - A)(A,S + als(OJ)

S(a1 * S)A1

Using this in the computation of dv/dt yields

-n(s - ap°(S + 2,5
= k. {x, - A:) <
(al + S)SA1 g 1 ) i’ e, + S

™Mo
P
A
(o]

ﬂ-ln-
of| =<

1

since 0 < A; < A;, 122, and S > 0. The set E = {(5, x|,..-, xn)|ﬁ = 0}

is given by

E = {Al, X5 0, 0,..., 0)} i !

Since 11 < S(O), the only invariant set in E is
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X, = X¥ = yl(S(OJ - X

An application of LaSalle [29, p. 30] completes the proof. The proof in [16]

is more general in that it allows unequal death rates,

Only one coexistence résult was obtained.

THEOREM 4 Let by > 1 and 0 < Ap = Ay = ... = A_ < s(9 Then
lim S(t) = A,
Tt

and

lim x,(t) = x¥> 0
tow T i

where

w*
Ay o+ 5 x—l S(O)
Lo i

EXPERIMENTAL RESULTS

Theorem 3 makes an explicit prediction when severzl populations are grown in
a chemostat--it predicts a unique surviving population and the steady state
concentration levels for the nutrient and for the survivor. The experiments
corresponding to this prediction have been made by Hansen and Hubbell [9]
and will be summarized here. Before giving the details, however, we pause
to observe several features of the model. First of all, two of the parame-
ters, S(O), the input concentration, and D, the dilution parameter, are con-
trolled by the experimenter. The yield constants, Y, are measured by grow-

ing the organisms one at a time in batch culture, or (preferably) in
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continuous culture, and estimating cell concentrations at steady state for
2 given input of limiting nutrient. Since each equation for a population
X5 contains only the variables X5 and S, the nutrient concentratiocn, the
remalnlng parameters, m, and a, can also be obtained by growing each popu-
lation, in the szbsence of the other organisms, on the limiting nutrient.
The most widely used method of computing m and a; is a graphical technique
known as a "Lineweaver-Burk Plot™ [31]. While the biological details of
such parameter estimation are not of interest to mathematicians, the impor-
tant point is that the determination of ms and a; is independent of the
other populations. For this reason it is possible to make the measurements
of each organism and predict the outcome when the two are mixed together
and growr in a chemostat. i

The A criterion for competitive ability is nonobvious and requires
experimental verification. It could not have been predicted from classical
theories of ecological competition. 2 priori it might have been expected
that the winner would always be the organism with the highest affinity and
lowest a,, for the limiting nutrlent or perhaps the organism with the
highest 1ntr1n51c rate of 1ncrease In the Monod model of competition,
the intrinsic rate of increase of organism x5 is givem by the difference
between the maximal birth rate, m, and the death rate, D, and is denoted
by T;- The_ theory, however, asserts that the critical parameter to competi-

tive success is actually a weighted a; - This weighted ay is the parameter

A which can be rewritten frem the fourth section as A = ai(D/fi}. Thus the

blologlcally interesting prediction can be made that a species may actually
jose in competition even with a lower half-saturation constant a,; and thus
a higher affinity for the resource, if it also has a lower intrimsic rate
of increase T; than its rivals. The theory also asserts that winning will
not depend in any way on the growth efficiency or yield of the competing
organisms from the limiting resource.

To make a rigorous test of the A criterion in continuous culture re-
quires proof that (i) if two organisms have equal r; 's and D's, the organism
with the lower a; wins; that (ii} if two organisms haye identical ay 's and
D's, the organism with the higher T, wins; and that (iii} if two organlsms
have different ai's and ri's but in spite of this still have identical A's,
then the organisms should coexist. Hansen and Hubbell [9] have conducted
all three of these tests in competition experiments with mutant strains of
bacteria which must be supplied with an external source of the amino acid,

tryptophan, in order to grow and divide. In the first set of tests, the

"i"ﬁh
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competing strains were of different species and differed primarily in their

a, values for tryptophan uptake. In the second and third tests, the competing
organisms were strains of the same species, and of the same mating type so
that conjugation between strains and gene exchange were prevented. 1In the
second set of tests, the strains had identical a; values but differed con-
siderably in maximal specific growth rates and in r;'s. In the third set,

the strains had identical A's although they differed in both their ai's and
ri's.

Each set of experiments was conducted in two sequential parts. The
first part consisted of measuring the ai's and mi's for each bacterial strain
grown alone in batch culture on a limiting amount of tryptophan. The values
of X were calculated to predict the outcomes of the subsequent competition
experiments. The yield constants were measured in pure-strain continuous
cultures at steady state.

The measured parameters for each bacterial strain are shoqn in Table

4.1, in addition to other run parameters for each experiment.

'[fééure 4.1
shows the result of the first experiment. In this case, Eschegzéhia coli
C-8 was opposed by Pseudomonas aerogenosa PA0-283. The a; values for trypto-
phan for these two bacterial species differ by nearly two orders of magnitude,
and as a result the A value for E. coli is much smaller than for 2. aero-
genosa. The predicted winner, E. coli, actually did win, effectively elim-
inating P. aerogencsa in the space of 60 hr. Note that p. aercgenosa lost
to E. coli in spite of having a higher intrinsic raté of increase, and in
spite of having a starting 200:1 numerical advantage. That initial densities
as different as these do not influence the outcome can be taken as evidence
supporting the view that competition for tryptophan between these two bac-
teria is purely exploitative.

The first experiment confirms the importance of having high affinity
{low ai) for the limiting resource, but the second and third experiments
confirmed that it is a weighted a; (i.e., A) which is critical to the out-
come. In both of these sets of experiments, competition occurred between
two clones of E. coli. The strains were artificially selected for a cross
pattern of drug resistance (strain 1 resistant to drug a, sensitive to drug

b; strain 2 with the reverse pattern). These drugs cause a lowering of cell

growth rate--a linear depression of growth rate at low drug concentrations

(see Figure 4.2). By adding small amounts of a drug to the culture medium

flowing into the chemostat, it was possible to alter the intrinsic rate of

increase, Tis of the sensitive strain while leaving the r, of the resistant
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their . TABLE 4.1 i
competing Uptake and Growth Parameters for Competing Bacterial Strains®
e s0
1 the . . . a. m T I

Experiment Bacterial Yield 1 -1 1 A

con- Number Strain Cells/g g/1 hr hr~ g/l
st 1 c-8P 25 x 101% 3.0x 100 0.81 0.75 2.40 x 1077

s and pAD283° 5.8 x 1010 3.1 x 107 0.91 0.85 2.19 x 107°
. 2 c-8 naispec® 6.3 x 1010 1.6x 107° 0.68 0.61 1.98 1077

e 8 nalSspec® 6.2 x 1010 1.6 x 107° 0.96 0.89 1.35 x 1077

strain o g nafspec® 6.3 x 1010 1.6 x 107° 0.68 0.61 1.98 x 1077
values c-8 nalSspec” 6.2 x 1010 0.9 x 107° 0.41 0.3¢ 1.99 x 1077
tion
ous Other Run Parameters
ble Experiment 5o ?1 Volume
4.1 Number g/l hr mi
5L - 1 7z o1x107t 601072 200
trypto- | ., " 5x10% 7.5x107% 200
enitude, 3 5x 100 7.5 x 1072 200
ro-

The 1limiting nutrient is the amino acid, tryptophan, needed by both strains.

2lim- - . P
The superscripts 'r" and "s" refer to drug resistance Or sensitivity,
lost respectively.
in Descherichia coli
15ities Crsendomonas aerogenosa
lence d0.5 pg/ml nalidixic acid added
lac- Metabolic inhibitors (drugs): nal = nalidixic acid
spec = spectinomycin
ty
5

strain unaffected. This technique was used in the second set of experiments.

ut-

en In these tests, although both strains had identical half-saturation constants,

0S5 the strain with the lower intrinsic rate of increase lost {see Figure 5.3). -
drug In the final set of experiments, the two E. coli strains chosen also differed ?é
cell in their half-saturation constants. By lowering the intrinsic rate of in- :‘
ons crease of the strain with the lower half-saturation constant with a drug, %f
fum it was possible to make the A's of the two strains equal. The result of the 5‘
of thrice-replicated experiment (see Figure 4.4) was coexistence of the compet- 1

i

tant ing bacteria, as predicted by the theory [18].
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Fig. 4.1. Observed and predicted time course of cell density for the strains
PAO283 and C-8 competing in mixed culture for limiting tryptophan in continu-
ous culture. Parameters for the run are listed in Table 4.1. The predicted

curves were obtained by numerical solution of equations (5)2. In this experi-

ment, the strains differ principally in their half-saturation constants for
tryptophan.

C-8 naISSpecr—-”'

Intrinsic Rate of Increase (hr )

ok
k-
ol
ok

1 H 3 ] [
R I B R
[Nal] pg/mt

Fig. 4.2. Effect of nalidixic acid concentration on the intrinsic rate of
increase of two strains of E. coli growing alone. Growth rate of the nal-
sensitive strain in linearly depressed with increasing concentration between
0.2 and 0.8 g/ml nalidixic acid. Growth rate of the nal-resistant strain is
virtually unaffected. In the figure, read "+" 2s 'resistant" and "-' as
'sensitive."
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100
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——— Predicted

10
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Time {hrs)

Fig. 4.3. Observed and predicted time course of cell density for two strains
of E. coli competing for limiting tryptophan. Strains differ in their in-
trinsic rates of increase, but not in their half-saturation constants (Table
4.1). Dots represent mean cell densities for 3 replicate runs; bars are the
ranges of cell densities.

It should be noted that although the qualitative outcomes of the theory
are correctly matched by experiment, there are some quantitative deviations
of the experimental results from the theoretical trajectories forecast by
the system of equations in (5). For example, sometimes oscillations (Figure
4.1) in the approach to steady-state cell density occur in the culture.
These could be caused by time delays present in the system that are not
reflected in the model. How to formulate the delays so as to give a better
fit appears to be an interesting open question. It seems likely that chang-
ing cell volume during the growth and plateau phases of population increase
could contribute some of the delay. Cell death over and above losses in the

effluent could also account for the faster-than-expected decline in the

losing strains,
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Cells/ ml

i1t —— Observed
---— Predicted

O 1 1 1 1 L i f 1 1 ' 2 1
o 10 20 30 40 50 60 70 80 90 100 1O 120
Time (hrs)

Fig, 4.4. Time course of cell density for two strains of E. coli competing
for limiting tryptophan in continuocus culture. Strains differ in their half-
saturation constants and in their intrinsic rates of increase, but are iden-
tical in their T values. The strains coexisted for the length of the run.

RELEVANCE TO THE ECOLOGY OF LAKES AND OCEANS

Naturally occurring bodies of water such as lakes and oceans are inhabited
by a diverse array of microscopic organisms such as bacteria and unicellular
algae that form complex planktonic communities. Because these organisms
share many of the same nutrient reguirements, the question naturally arises
as to the extent to which such ecosystems are analogs of continuous cultures
in the laboratory. The surface waters of almost all lakes and oceans, where
these planktonic organisms occur, receive nutrient inputs from eroding water-
sheds or upwelling water rich in nutrients from bottom sediments. Indeed,
the planktonic community is wholly dependent on sustained nutrient imputs
for continued persistence in the sunlit surface waters [22].

In the temperature zone at least, the biggest departure from the chemo-
stat results from the periodic forcing of natural ecosystems by seasonal
weather changes. Lakes and oceans, although in part thermally buffered by
the high heat capacity of water, nevertheless do not escape the influence

of the seasons. Nutrient levels experienced by phytoplankton change
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profoundly from one season to the next. For example, in deeper lakes and
oceans, gradients of water density established in summer prevent complete
mixing of the water column, thereby cutting off the supply of nuirients to
surface waters from bottom sediments or nutrient-rich older and denser
waters below., In the spring and fall, however, heating and cooling of the
surface waters, respectively, equalize the water densities throughout the
water column, and more nearly complete mixing occurs. Therefore, these
times of the year in temperate bodies of water are characterized by nutrient
enrichment of the surface waters. These spring and fall "turnovers' are
accompanied by phytoplankton "blooms™ for a few weeks during and after turn-
over. As summer and winter progress, respectively, the nutrient levels
decline as a direct result of their censumption and removal by the plankton.
The nutrients are slowly lost from the upper waters because the plankton
gradually sinks to the bottom, decomposes, and liberates the nutrients once
again, to be refluxed to the surface during the next lake overturn. These
seasonal changes in nutrient and phytoplankton levels in the surface waters

of lakes and oceans are well documented in the limnological literature [22,

26].

In addition to these almost periodic seasonal drivers, natural Ycultures"

of microorganisms, especially smaller bodies of water, receive stochastic
nutrient pulses of varying amplitude and duration. These pulses are caused
by nutrient input during precipitation and the resulting, fairly abrupt, in-
creased inflow from the surrounding watershed. Pulses of this type have been
measured for a number of important limiting nutrients on several occasions
[26].

In spite of the fact that natural planktonic ecosystems often depart
from the ideal laboratory chemostat, both in the inconstancy of nutrient
input and in the lack of achievement of a steady state, nevertheless a num-
ber of predictions about the composition of these communities based on
chemostat studies have been very successful. This has been particularly
true among planktonic algal communities. THe success of these predictions
appears due to the fact that, in spite of natural fluctuations in nutrients,
the same nutrients remain limiting to the plankton throughout, or else
quickly become limiting once again after the pulse is over.

These successes can be illustrated by recent work on freshwater diatoms.
These uniceilular algae are encased in a siliceous shell, which imposes on
211 diatoms a requirement for silica. Silicate has a fairly low solubility

in water, and as a result diatoms are frequently limited by the availability
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of this mineral. Kilham [27] was able to relate the dominance of particular
diatom species in a series of African lzakes to the concentration of silicate
in the streamwater flowing into the lake, and to the amount of silica in the
bedrock of the watershed. Diatom species with lower half-saturation con-
stants for uptake of silicate were dominant in lakes with lower input con-
centrations of silicate. Kilham also found, however, that lakes with a
higher silicate input were dominated with diatom species having higher half-
saturation constants for silicate. This result would not be expected from
chemostat theory if all diatoms in these lakes were limited by silicate.

Later work by Tilman and Kilham [53] and Tilman [S52, 53] suggests a
very simple explanation: limitation by different complementary nutrients
in the different lakes. They studied two species of diatom, Asterionella
and Cyclotella, growing first under silicate lim%;ation and then under phos-
phate limitation. cyclotella mnot only has the i&wer half-saturation con-
stant, but also the higher intrinsic rate of increase, under silicate limi-
tation, and the converse is true under phosphate limitation. Therefore,
when these diatoms are placed in competition in mixed-growth continuous
culture, Cyclotella wins when both species are silicate-limited, whereas
Asterionella wins when both species are phosphate-limited. Tilman also
found a region of coexistence, corresponding to nutrient ratios of phosphate
to silicate in the influent medium for which Asterionella was silicate-
limited but cyclotella was phosphate-limited. These results were fully
predicted by chemostat theory extended to two complementary resources.

These two diatom species are abundant in the Great Lakes, and Tilman
[52] went on to show that chemostat theory could predict the relative abun-
dance of these species with reasonable accuracy. To make these predictions
he assumed that the sampled lake waters were at or near steady state. Then
the observed phosphate/silicate ratios in the water samples were used to
predict the relative proportion of Cyclotella cells in the water sample.
When this ratio is high, generally in inshore waters where phosphate levels
are at their highest, the predicted percentage of Cyclotella was zero, due
to exclusion by Asterionella. In midlake water samples, where phosphate
levels are at their lowest, the expected percentage of Cyclotella was 100%,
resulting from the competitive elimination of Asterionella. In the region
of intermediate phosphate/silicate ratios, the theory predicted intermediate
percentages of Cyclotella. The fit of the expected percentages to the
observed percentages of Cyclotella was remarkably good: wmore tham 70% of

the variance was explained. This is a very high percentage of variance
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explained, given that many other variables also affect diatom abundance in
nature, and the further fact that steady-state conditions were assumed in
order to make the predictions.

As mentioned in the second section, Tilman alsc discovered that a model
of luxury consumptibn of phosphate by the diatoms, which takes into account
internal stores of phosphate in the cells, generally fit the data no better
than the simpler Monod model. In any event, at steady state the predictions
were virtually identical for the Monod formulaticon and the "internal stores
model" proposed by Droop [5] for unicellular algae. Recently, it has been
shown that there is a good theoretical basis for steady-state equivalence
between these two models [3].

These studies have been presented for illustrative purposes to show how
well the theory is being adapted to natural ecosystems. Because the theory
and its biological testing are still in their infancy, we can expect many
more théoretical and biological contributions to resource-based competition

theory in the near future,

TWO COMPETITORS AND A SELF REVIEWING RESOURCE

The Equations

The chemostat has forced resource input, but in many ecclogical systems the
resource is not a chemical but a reproducing organism. Thus it is desirable
to change the system {5) to reflect this phenomenon. However, doing so
introduces serious mathematical complications. The simplest model of
limited population growth of a simple organism is the logistic equation.
Replacing the chemostat input with logistic terms, keeping the Michaelis-
Menten dynamics (here, more appropriately, called Holling dynamics [13]),

and limiting n to be 2, yields a system of the form

2 m. %.5
s'=ys{1-§K]-E—l———ais
i=1 Y1 ¥
mini
X =g 75 kN &

‘pfi!;
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Y is the intrinsic growth rate for the Tesource, now appropriately viewed
as the prey population, and K is the carrying capacity--the natural limit
of the population size without predators--and all of the other constants
3 are as before except that now there is an individual death rate rather than
; ' a simple washout rate. The use of Di reflects the fact that this parameter
its may be different for each population. We seek to analyze the system (9).

Where a rigorous analysis has not been achieved, computer simulation has

been utilized to indicate the behavior of the system. The mathematical
proofs and a more complete bioldgical discussion can be found in Hsu,

Hubbell, and Waltman [19] and [20]. In this section we summarize the
basic results of these papers.

Statement of the Mathematical Results

As with (5)n it follows easily that all solutions with initial conditions
in the positive octant are bounded and remain in the positive octant. In

the analysis of (9) the carrying capacity K plays the role of the input
nutrient S(Ol in (SJn in the sense that if the maximum attainable amount
of resource, K, is inadequate, survival is not possible. Also one expects
that if the death rate is larger than the maximum possible birth rate,

survival is not possible. This is the content of the following:

THEOREM 5 If b, < 1 or if K < Aps lim x, (t) = 0.

o0 -

If one of the above conditions is satisfied, then the behavior of the
solutions of (9) is determined from the analysis of the remaining two equa-
tions whose solutions form the omega limit set of the entire dynamical Sys-
tem. (Of course if for each i = I and 2, one of the above conditions is
satisfied, the omega limit set of every trajectory is the critical point

(K, 0, 0).) The interesting behavior of the two dimensional system

- S m x5
5"YS{1"KJ‘ya—+§

_ _mxS
x' = oy (10)
x(0) = Xy > 0, S(0) = 50 >0

is contained in the following statement.
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LEMMA 6 TIf in (10) K < a + 2x, where % = ab/(m - D), then (10) has no

1imit cycles in the first quadrant. If K> a + 2), there exists a limit

eycle in the first quadrant.

The proof of the first stztement follows from the Dulac Criterion; the

second, from boundedness of solutions, the Poincaré-Bendixon Theorem, and

the instability of the interior critical point. When one competitor is

"inadequate" (bi <1lior Ai > X), then with relatively little additional

effort one obtains:
THEOREM 7 Let (a) 0 <, <K, and
(b) 12 > K or b2 <1
If
K< a, + 2X
then

1lim S(t) = 8* = 11

e
1{1 - %(i] (a, + §%)
iim x, () = x} =

1im xz(t) =0
1o

If X > ay * 2X {5 then the omega limit set of the trajectory of

(s(t), xl(t]; xz(t)) lies in the 5 - X plane (i.e., limt+cu xz(t) = 0) and
contains a periodic trajectory except for one distinguished orbit which

approaches the critical point (S*, x{,.O).

The interesting case, of course is when both competitors can survive

To have competitive exclusion hold,
One such criterion

alone on the resource. one seeks comn-

ditions which make the omega iimit set two dimensiocnal.

is the following:

R R T




134 WALTMAN ET AL.

LEMMA 8 If 0 < Ay < A, and if b, < bl, then limt+m xz(t) = 0.

This lemma provides the technical bases for our principal result on

competitive exclusion for the system (9}.

THEOREM 9 Suppose that 0 < Al < Az

conclusions of Theorem 7 hold as K < a + ZAI or K > a, 2A

< Kand by > b, > 1. Then the

IE

Thus coexistence is possible only if Al < 12, ap < ay, and b1 < b2.
(Note that these conditions are not independent.) We also have the follow-
ing result on the persistence of Xq.

THEQREM 10 Suppose that 0 < X, < A

1 2 < K, a; < a, and K < a, + 2A2.

Then lim SUP, xl(t) > 0.

In the numerical simulation, the following result was useful, particu-
larly when b2 - b1 was small.
, and

THEOREM 11 Suppose that 0 < Al < 12 < K, 31 < bl’ b1 < b2

K < (bla2 - bzal)/(b2 - bl). Then limt+w xz(t) = 0.

Numerical Studies

The preceding theorems yield sufficient conditions for one predator popula-
tion to survive and the ordering Al <X, fgvors the first predator. In
view of the results presented in the third section one might expect that
this is the only outcome possible. Extensive computer simulation shows
this not to be the case; in fact, not only may coexistence occur but if K
is sufficiently large (relative to other parameters) predator two can win
the competition. A coexistence model of two predators which can survive
on a single resource have been constructed by McGehee and Armstrong [32]
and numerical studies by Koch [28] proceed ours. We summarize our computer
results with three graphs from [20].

The data in Figure 4.5 was obtained by fixing all of the parameters
except a; and X and letting these vary subject to¢ Al < AZ' The designations
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(b; = 2), m, = 6:1n2 (b, = 6); C: a, = 500, M, = 0.8-In2 (b, = 1.6),
m, = 2.8+1In2 (b2 =2.8); D: ay = 500, m = In2 (bl =2), m, = 2.8-1n2

(b2 = 2.8}; E: a, = 500, my = 1.2-1n2 (bl = 2.4); m, = 2.8-1n2 (b2 = 2.8);
F: a, = 500, m o= 1.35-1In2 (b2 = 2.7), m, = 2.8+1n2 (b2 =2.8); G: a, =
720, m = 1n2 (bl = 2), m, = 2.8-1n2 (b2 = 2.8); H: a, = 720, m = In2

(bl = 23, m, = 4-1n2 (b2 = 4). Numbered lines are as follows: (1): A1= K;
(5): Lower k - a boundary for coexistence region (known from numerical
analysis); (6): Upper K - 2, boundary for coexistence region (known from

nunerical analysis); (7): Al = Az.

A - H indicate different parameters (see the figure caption}. The numbered
lines 1-4 correspond to analytically known results whereas curves 5 and 6
are numerically determined, and line 7 corresponds to Al = 12. The hori-
zontally shaded area to the left of curve 5 and below line 7 corresponds to
the (numerically determined) region in a - K space where predator 1 wins
the competition. The vertically shaded area to the right of curve 6 and
below line 7 corresponds to the region where predator 2 wins the competition.
In the unshaded area between curves 5 and 6, coexistence was found to occur
as a globally asymptotically stable limit cycle. That the coexistence rTegion
is nonempty is a consequence of the work of G. Butler [2]. That the solu-
tions corresponding to parameters in the coexistence region tend to a peri-
odic solution is an open mathematical question. Figure 4.6 shows such a
periodic solution and its projection onto Xy - X, space.

In Figure 4.7 shows a cut through Figure 4.5H, ay = 100. We interpret
this figure in the language of bifurcation theory. For values of K < Al,
the eritical point (K, 0, 0) is globally asymptotically stable (no predator
survives). As K passes through Al, a second critical point enters the posi-
tive octant, (K, 0, 0) loses its stability (it has a one dimensional stable
manifold) and the new critical peint (Al, x*, 0) is globally asymptotically
stable. At K = a; + Zhl, this critical point bifurcates (a Hopf bifurcation)
into a globally asymptotically stable limit cycle, lying in the S - X plane
and (Al, xI, 0) becomes unstable (has a two dimensional unstable manifold).
The upper and lower curves in Figure 4.7 show the maximum and minimum of
the periodic solution. At a higher value of K--determined only numerically--
this limit cycle bifurcates fnot a Hopf bifurcation) into two periodic solu-
tions, one remaining in the S - X, plane and one in the open, positive

octant. This is the region of coexistence. For even higher values of K,
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Predator 1

Case in which there is oscillatory coesistence of 2 predator spe-

cies (1 and 2) on a single prey species, §. Parameters are the same in
Figure 1D with a; = 200 and K = 1100. A: Oscillations as in a function of

time. B: Limit cycle of numbers of predator 1 plotted against numbers of

predator 2.

Initial values: x; = 307.13, x, = 2684.95, S = 8.60.
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Fig. 4.7, Limiting behavior of 2 competing predators, one of which is a
"K-strategist" (predator 1) and the other of which is an "r-strategist,"
preying upon a single prey population. Outcome as a function in Figure 4.5H
with a; = 100. Shaded and hatched areas and numbered lines are codes as

indicated in the legend and caption for Figure 4.5,
and 2 indicate the periodic ma
limiting oscillations.

Lines for predators 1
ximal and minimal population sizes in the

the limit cycle in the open positive octant--which appears to be globally

asymptotically stable--collapses inte a limit cycle in the § - x
. retaining its global stability properties.
wins the competition.

5 Plane,
This is the region where X,
Proof that the two dimensional limit cycle bifurcates

into a globally asymptotically stable limit cycle in the open octant is an
open mathematical question and would appear to require information about the

Poincaré map before existent bifurcation theorems could be applied. Th
collapse into the S - x

e

o Plane is the seme problem viewed as K being suffi-
ciently large but decreasing.
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EXTENSION TO TWO RESOURCES

When the theory is extended to cover ‘exploitative competition for two or
more resources, it becomes necessary to consider how the resources, once
consumed, interact to promote growth. Leon and Tumpson [30] and Hubbell
and Hsu [21] have considered the cases of competition for two perfectly
complementary or substitutable resources. The criteria for the outcomes
for each case are given in [21]. We summarize these results in this section.
Before presenting the competition models for two species on two re-
sources, it is necessary to discuss how the functional responses of the
consumer species have been generalized from one to two resources. In the
one-resource case, the per capita consumption rate, according to the Type II
functional response, is given by (mri/yri)(R/ari + R)) if the resource is R,
or is given by {msi/ysi)(S/as. + 8)) if the resource is S. These one-re-

i
source per capita consumption rates can be rewritten as;:

m_./a m_./a_. S

i’ “ri R and si’ “si
Y L+ R/ari Y 1+ S/asi

ri si

respectively. The generalization of two perfectly substitutable resources

is well known, and corresponds in Michaelis-Menten theory to reaction rates
with competitive inhibition--consumption of resource R acts as a competitive
inhibitor in the consumption of resource S. In Holling's terminology, hand-
ling time devoted to processing a unit of resource R is time not available
for the processing of resource S, and this competitive effect is linear.
Therefore, the per capita consumption rates of resource R in the presence

of substitutable resource S, and of 8 in the presence R, are given by:

|1 thue : |
14 urili

m ./ a R m./a . S

ri’ "ri and si’ "s1
Y 1+ R/ari + S/a.si y 1+ R/ari + S/aSi

ri si
respectively. - Note that the above expressions simplify to the previocus
case if one of the resources is absent.

The generalization of the functional response teo two complementary
resources is different. In this case, the per capita consumption rate of
whichever resource is currently limiting growth is identical to the one-

resource per capita consumption rate for the appropriate resource. The
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question then arises: At what rate is the nonlimiting resource consumed?
.This question can be answered by considering the yield of consumer produced
per unit of resource consumed. When the yield factors, Yri and Y are con-
stants, then it follows that there must be a fixed ratio of the growth-
essential substances provided by resources R and S in a unit of consumer.
Moreover, this also implies that the per capita consumption rate of the non-
limiting resource must be proportional to the per capita consumption rate

of the'limiting resource. If it were not, then the ratio of essential growth
substances in the consumer would be changing, and the yield factors would no
longer be constant. The proportionality constant is the ratic of the yield
constants for the two resources, For example, suppeose species 1 is S-limited.

Then the per capita consumption rate of S, call it fl(S), is:

El

si 5
£.(8) = ———— (11)
1 Ysi %y * S

vhereas the concurrent per capita consumption rate of the nonlimiting re-

source R is given by:
_J . fl(s) a2 (12)

Note that this expression does not contain the concentration of the
nonlimiting resource R. Thus, it should be noted that: For complementary
resources R and §, when a species is S-Iimited, its per capita consumption
rate of R is independent of the concentration of R; whereas, when the spe-
cies is R-limited, its per capita consumption rate of § is independent of
the concentration of S.

For complementary resources, R and 5, the species I and 2, competing

exploitatively for them, the system of equations then is:

ds

a0 = (S - $)D, - £(S, Ryx, - £2(8, R)x,

dR
at

(Ry = RID_ - £,(S, R)x; - £,(5, R)x,
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med?
oduced
Te con-
h-

mer .

he non-
rate

I growth
»uld no
yield

-limited,

(11)

{ m_5 m_ R 7]
dx [ T
1_ . 1 1 o |y
dt - [™Ma. +8 2 +R 1151
5 T
L 1 1 ) B
— \ -
dx [ m, S m R
2 _ |, 2 2 -
TR L PYR R 2 [*2
i S, T, i
where S, R, Nl, and N, are 21l positive at time O, and where
m m_ S
1 s if o<
Yo dg * 5 a, * S —
1 1 1
£1(S, R) =
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m m 35 m R
%2 s is 2 2
e 2t S a. * 5 - a, + R
2 2 2 2
f4(S, R) =
m m_S m_ R
) R > 2 2
y a +R " a +Sia_ +R
Ty T3 S2 T2

For substitutable resources, R and S, and species 1 and 2 competing

exploitatively for them, the system of equations is:

dt (SO - S)Ds __gl(s’ R)Xl - gS(S’ R}xz

dt (RO - R)Dr - gz{s; R)X]_ - g4(S, R}xz

((m_ /a_ )8 + (m_ /fa_ )R
dxl ) s; 5y T 0 .
dt ~ 1+ S/a_ + R/a 1 1
5 T
[(m_ /a_ )8 + (m_ /a_ )R
dx2 ) S50 Sy Ty T, b -
dt 1+ 8/a_ + R/a 2 2
52 T2

where S, R, N, and N2 are all positive at time 0, and where:

lJ
m /a
s.' s
! s
g8, Ry = Yo 1+ 5/a, + R/a
1 1 B!
m_ /a
s, R - 1.0 R
g0 - Yy 1+ S/a, + Ria,
1 51 1
m_ /a
s, s
2 2 S
gS(S’ R) =

¥ 1+ 8/a_ + R/a
S, S, r,
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mrzjarz R
g4(S, R) = Y 1+ S/a + Rfa
2 2 T2 :
where,
SO’ R0 = input concentrations of resource S and R, respectively,
Ds’ Dr = input-output flow rate of medium containing S or R, .
Di = per capita death rate for the ith species,
meis Mg = Per capita birth rate of species i on resource S or R, :
Ygi» Ypi = Yield of species i per unit of resource S on R consumed, L
and
Adss 2. T half-saturation constant for species i on resource S or R.
In the one-resource case, A, the subsistence resource concentration for
each competing species, was sufficient to predict the outcome of competition.
The } criterion is also important in the two-resource case, but in general
it no longer provides sufficient information by itself to predict competitive
" putcomes, except in the case where one species has the lower A's for both
resources (this species wins regardless of initial abundance). In particu-

lar, additional competition criteria are required when species 1 has the
lower subsistence concentration on one resource, but species 2 has the lower
subsistence concentration on the second resource, because in this situation
there are a number of possible outcomes. To discriminate between these
additional outcomes, it becomes necessary to introduce two new parameters,

T* and Ci, which differ depending on whether or not the resources are comple-

mentary or substitutable. The parameter Ci is species specific. These

parameters for complementary resources are: -hﬁ i\
Fayidihe
. e
GRS s, ) -
™ = =1y G217
(S, - yp_ Y Y i
0 s 51 52

where lr and AS are the A parameters of species i on resources r and s,
i i
respectively.
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For substitutable resources, the corresponding values of T*, C

mr /YI' mr /yr
S c .2 "2
1 m /[y 4 2 m_ /[y
St 7%y 53 7%,
(Rg - Rip)
*
. R12 r
(5 - S12)
S* Ds
i2
where
A AL (A - )
1 %2 %2 51
R* =
A A, - A A
Ty S Ty %
and
Ao AL (Al - Al )
1% 1 B
S¥. =
1253 r, - A X

WALTMAN ET AL.

1* and C2 are:

(13

The parameter T* represents the ratio of the steady-state resource

regeneration rates, R over §, when both species 1 and 2 are present at

equilibrium. The C1 and C, parameters represent the ratios of demand for

resources R and S by species 1 and 2, respectively.

In the case when one

species has a lower A for one of the resources, and the second species has

the lower A for the other resources, the outcome of competition depends on

the relative rates of resource supply compargd with the rates of resource

demand by the two species. The 3-way inequalities invelving T*, Cl’ and C2

constitute criteria to resolve all remaining cases of exploitative competi-

tion for two resources. The T* and Ci parameters differ in the cases of

complementary and substitutable resources.

In the complementary-resource

case, the Ci's are ratios of the yield constants because the uptake rate

of the nonlimiting resource is proportiomal to, and determined by, the

uptake rate of the limiting resource. However, in the substitutable-resource
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case, the Ci's are ratios of per capita consumption rates instead. Since
each substitutable resource is actually just an alternate source for the
same essential nutrient, what becomes important to competitive outcomes in
this case are the per capita rates of resource .consumption by each species, . Al
in relation to the specific rates of resource regeneration. Relative rates .

of consumption are now important because neither species can be limited

solely by one of the resources; thus, there is no simple refuge from compe-
tition by separate resource limitation in the two species.

When the présent theory is extended from one resource to two, additional
outcomes of competition not found in one-resource situations, are predicted,
Two-resource theory predicts that there will be a broad region of parameter

space for which the competing species can coexist, unlike the "knife-edge"

condition of precisely equals A's in one-resource theory. Moreover, two-
resource theory predicts that, under certain conditions, the initial abun-
dance of the competing species will determine which species is the eventual
winner. Finally, the two-resource theory generates each of the classical
outcomes of two-species competition in more than one way. These outcomes
are compared in Table 4.2.

To our knowledge no one has yet reported a case of competition for two
known complementary or substitutable resources in which the outcome depended
on the initial abundances of the competitors. Tilman and Kilham [53] and
Tilman [$2] have performed interesting competition studies in semicontinuous
cultures between two freshwater diatoms, Asterionella formosa Hass., and
Cyclotella meneghiniana Kutz. for the complementary resources, phosphate
and silicate. They did not report any cases in which the outcomes were
dependent on initial numbers. However, they did find a broad region of

coexistence over a range of ratios of silicate/phosphate in the influent

supply to semicontinuous cultures of the two diatom species.
The data provided by Tilman [52] has been analyzed to see if there is Y

any possibility of a case in which the initial number of Asterionella or @Mmi;

L)

Cyclotella could determine the outcome of competition. Let A,, and A, be |
the A criteria for Asterionella on phosphate and silicate, respectively;

and let ACP and ACS be the A criteria for Cyclotella, correspondingly.
Assuming that all cell death was due to washout from the culture in the
effluent, then the maximum death rate they studied experimentally was 0.5/
day. If we use this rate, then the values of the X criteria are: AAP =
0.25uM (micromole), AAS = 3.28uM, ACP = 0,417uM, and ACS = 0.90uM, Thus,

, 50 that Asterionella has a lower subsistence concentration on

AAP < ACP
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phosphate than cyclotella by more than an order of magnitude, but XA

s0 that Cyclotella has a lower subsistence concentration on the silicate

than Asterionella.

TABLE 4.2
Bfological Classification of the Outcomes of Two-Rescurce

Exploitative Competition Between Two Species

WALTMAN ET AL.

cs < Pag

Lotka-Volterra

Two-Resource Exploitative

eventual winner.

Competition

Biological Case Criterion Competition Criteria

1. Species 1 always K K (a) A_ < a_ , X. <A
wins, regardless o < §l3 B > fg 51 S NS | Ty
of initial density; p 1 (b) As > AS , lr < Ar s
species 2 dies out. 1 2 1 2

*
T* < Cl’ C2
{e) A_ <A ALov oL,
1 S2 T T
%
T* > €, C,

2. SPec1e5 2 always Kl K, - (&) AS > As , Ar > Ar - N
wins, regardless a > o B < e 1 2 1 2
of initial density; 2 1 (b) As > AS R Ar < Ar s
species 1 dies out. 1 2 1 2

*
T* » Cl‘ C2 ‘
(e) A_ < Xx_, A& >2A_,
51 S2 Ty T
T* < Cl' C2

3. Spec;es ; and 2 Kl Kz (a) As > 15 s lr < lr s
persist in a o < T B < ra 1 2 1 2
stable coexistence, 2 1 C1 < T* < C2

(b A, <A_, > A,
Sy s,7 1y r,
C1>T*>C2

4. Species 1 wins, or K1 K2 (a) 15 > AS R Ar < Ar ,
species 2 wins, while a > s g > o 1 2 1 2
rival species dies 2 1 € >T > G
out; initizl densi-
ties determine (b) A <A, > A,
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Next, it is necessary to compute T*, CA’ and CC’ where CA and CC are

the criteria for Asterionella and cyclotella, respectively, and

o - (Py = 2¢p)Dp
(Sp - *as)0g

where PO and S0

tively DP and DS are the input flow rates of phosphate and silicate, which
in this case are equal (taken as 0.5/day), and the point“(lAS, ACP) is the

are the input phosphate and silicate concentrations, respec-

intersection of the Asterionella and Cyclotella isoclines on the silicate-
phosphate resource plane, Of the range of values of P0 and SO tested by
Tilman, we chose PO = 10uM and S0 = 100uM. This gives a value for T* =
0.100.

Finally, it is necessary to compute the C criteria for the two diatoms.
The yield constants for Asteriorella are reported by Tilman (1977} to be:
Yp = 2.18 x 108 cells/uM on phosphate, and Y, = 2.51 x 106 cells/uM on
silicate. Therefore, C, = (1/YAP)/(1/YAS) = 1.15 x 10“2. Thg yield con-
stants for Cyclotella are: YCP = 2.59 x 107 cells/uM on phosphate, and
Ycé = 4.2?1x 106 cells/uM on siiicate. Thus CC = (1/YCP)/(1/YCS] =
1.62 x 10 ~.

With this information, the question of whether there can exist a case
in which the winning diatom species (Asterionella or Cyclotella) is deter-
mined by the initial cell density of each diatom can be answered. Note that
AAP < KCP and AAS > ACS' Also note that CA < T* < CC' This corresponds to
a case of coexistence, a fact that Tilman [52] confirmed experimentally.

In order for there to be a case in which the initial diatom density deter-
mines the outcome in this competitive system for these i's, it would be
necessary that the inequalities among CA’ T*, and CC be totally reversed:

CA > T* > CC' This, in turn, would require substantial changes in the yield
constants for phosphate and silicate in these two diatom species. Since
only the criterion variable T* involves parameters under experimental con-
trol, there is no possibility of a case in which initial cell densities

affect the competitive outcome between asterionella 'and Cyclotella.

|

e
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OTHER THEORETICAL WORK IN PROGRESS

‘A Four Population, Three Level Food Chain

The system (9) presumes a carrying capacity K but does not indicate the
mechanism by which it occurs. One way in the laboratory to create the
effect of a carrying capacity for the population $ would be to grow it in
a chemostat on a single resource, call it R. The equations for S and R
without a predator for S would be given by (5]1. Combining this with the
ideas in the seventh section produces a three level, four population food

chain whose equations are

m
Rt = RO _gyp - 3SR
y3 a3 + R
mSSR 2 m, xiS
' = —— - DS -~ }; — _—=
az + R i=1 Yy 3t S
(14)
M. X. 5
1 - 11 =
x! = en i Dxi, i=1,2

(0) _ - - -
RY. =Ry >0, 8(0) =8, >0, x,(0) =x,,>0, i=1,?2

i0
Since death is through washout all of the death rates are the same, although

one might want to allew individual death rates for mathematical completeness.

The system (14) is currently being studied by the authors,

Delays

All of the above models assume instantaneous reaction, that is, there are

no delays. The oscillations found in the experimental data in the sixth
section suggest that delays may be present. In an experiment with the
chemostat Caperon [4] was forced to consider delays in the chemostat equa-
tions in order to fit his experimental data. In fact, simple constant de-
lays were not adequate and Caperon was forced to consider distributed delays.

Currently the use of delays in (5)2 is being investigated.

2]
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1

11
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