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Abstract.  This paper concerns the growth of 2 predator species competing exploitatively for the
same prey population. The prey population grows logistically in the absence of predation, and the
predators feed on the prey with a saturating functional response to prey density. Specificalty, we
assume that Michaelis-Menten kinetics or the Holling “‘disc™ model describe how feeding rates and
birth rates change with increasing prey density. We focus on the question of which predator species
will survive and which will not, given the growth parameters of the prey and the functional response
parameters of the 2 predators. Which predator wins or loses depends critically on the relative mag-
nitude of the prey carrying capacity, K, and the A parameters of the 2 predators. A; represents the
prey density at which the ith predator **breaks even’ (equal birth and death rates). This prey density
is defined by the product of the predator’s half-saturation (Michaelis-Menten) constant times the ratio
of the predator’s death rate to its intrinsic rate of increase. Coexistence is also possible for a wide
range of parameters, but only as a periodic solution. A primary conclusion is that coexistence is
possible only if the predator with the smaller half-saturation constant also has the smaller birth-rate-
to-death-rate ratio. This necessary constraint is the mechanistic equivalent to requiring that I predator
be an “'r-strategist’” and the other be a *'K-strategist.”” This condition is insufficient to guarantee
coexistence, however, If the prey carrying capacity, X, is **too small’* the K-strategist wins, and
if K is “*too large,” the r-strategist wins. The bounded region of intermediate K values permitting
coexistence is defined by the functional response parameters of the 2 predator species. The greater
the disparity between the half-saturation constants of the 2 predators, the larger the region of X
permitting coexistence,
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INTRODUCTION consumer species. For | resource and 2 consumers,

Although competition between species exploiting a (€S equations are:

common prey population is probably of frequent oc- 1 dR
currence in nature, little theoretical work has been R dr
done on such systems. Models have usually consid-
ered the competitors without explicit concern for the 1 d_){L
. dynamics of the prey population. or else the question X1 d!
of competition is dropped entirely to consider only the 1 dx,
dynamics of a 1 predator-1 prey system. This paper X. 4 Colaw,R — Tol,
. . 2

and a companion paper {(Hsu et al. 1978) discusses a
model of 2 predators competing exploitatively for a where R is the quantity of resource or prey. and X,
common prey species, in which the dynamics of all 3 and X, are the quantities of the 2 predator species.
> species are specifically included. The parameters of this system are:
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. . . and X, respectively,
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C,. C» = conversion factor for weight to new preda-
tor individuals, and
T,,T, = weight of food needed to just maintain pred-

ator populations without growth.

While these equations allow for logistic growth in
the prey population, they also make the assumption
that the functional response of individual predators to
prey density is linear. The linear assumption is useful
because it simplifies analysis when >1 resource is
present. However, there are now extensive laboratory
and field studies of the feeding behavior of individual
predators (Tinbergen 1960; Iviev 1961; Holling 1965,
1966; Royama 1971; Hassell 1978, and others) which
demonstrate that feeding rate does not increase line-
arly with prey abundance. Rather, feeding rates sat-
urate at limits set by the time required for **handling”’
prey items and for digestion.

May (1972), Gilpin (1972), and Shimazu et al. (1972)
incorporated a saturating functional response into an
equation system for a single prey and single predator,
and independentty discovered that limit cycles oc-
curred in the asymptotic behavior under certain con-
ditions. This contrasts with the behavior of the clas-
sical Nicholson-Bailey model, which has unrestrained
exponential growth of the prey in the absence of the
predator and a linear predator functional response.
The Nicholson-Bailey model exhibits cycles of neutral
stability around a critical point which is a “‘center.”
These cycles have amplitudes which are determined
entirely by initial conditions, a very unrealistic fea-
ture. Gilpin (1972) found limit cycles by numerical ex-
periments on a computer, and Shimazu et al. (1972)
also found limit cycles by simulation after showing by
local linearized analysis that the nonzero critical point
was unstable for some parameter values.

May (1972) treated a large class of predator-prey
models with a variety of functions for saturating feed-
ing rates and self-limited prey populations in relation to
Kolmogorov's (1936) theorem. He showed that when
predator and prey persist, either a stable equilibrium
occurs between predator and prey, or else the critical
point is unstable and is surrounded by a limit cycle.
Recently, however, Albrecht et al. (1973) and Albrecht
et al. (1974) have demonstrated that May's (1972) con-
clusion was not precisely correct. It is only possible
to assert that either (1) a stable limit cycle exists, or
(2) a pair of semi-stable orbits exist, | tnside the other.
In this case, the innermost orbit is approached asymp-
totically from any point inside it (except the critical
point), and the outer orbit is approached from any
point in the first quadrant outside the outer orbit.
Points in between the semi-stable orbits may be in
neutrally stable orbits whose paths are determined by
initial conditions.

Recently. Koch (1974) studied the numerical behav-
ior of a system of equaiions identical to the system
discussed in this paper, and discovered the remarkable
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fact that coexistence was possible between 2 predators
competing for the same regenerating resource. Co-
existence was possible for a broad region of parame-
ters, and was achieved as a periodic solution. not a
constant equilibrium. McGehee and Armstrong (1977)
show that, in general, it is possible to get more than
fi species coexisting on n resources if the assumption
of linearity of predator functional response to prey
density is relaxed. We add a further requirement: co-
existence is generally not possible if the resource is
regenerated at a constant rate and the competing pred-
ators are continually consuming the resource (Hsu et
al. 1977), whether or not the predators have a nonlin-
ear functional response. The | exception is the special
case of coexistence which arises if and only if the A
parameters (see below) are identical for both species.

The existence in nature of stable limit cycles in sim-
ple predator—prey systems seems a real possibility,
We demonstrate below that permanent oscillations
arise for a wide range of biological parameter values
that almost certainly occur in nature. It seems unlikely
that the well-known cases of natural cycling are due
to neutrally stable oscillations, as would be required
by the Nicholson-Bailey model. If neutral stability
were the case, we might expect much more variance
from habitat to habitat in cycle amplitude for a given
predator—prey system than is actually observed, be-
cause the amplitude would be determined by the sizes
of the original founding populations and by subsequent
buffeting by stochastic forces. On a cautionary note,
however, it may be difficult in practice to distinguish
a limit cycle from the behavior of a damped oscillatory
system which is continually perturbed away from
equilibrium.

To our knowledge, there have been no specific at-
tempts to prove whether oscillations of predator and
prey in the field are limit cycles. Lidicker (1973) stud-
ied the population dynamics of Microtus californicus
for 13 yr after its introduction onto tiny Brooks Island

-in San Francisco Bay. On the mainland where there

are many predators, the vole cycled with dramatic reg-
ularity every 3 or 4 yr, and the peaks and lows were
reasonably reproducible numerically. On the istand,
where there was no predation (except for occasional
acts of cannibalism}, the population had a less-pro-
nounced cycle with annual peaks. and peaks every 2nd
yr that were a little higher. Whether the cycles on the
mainland are caused by predators is in some dispute,
but Pearson (1966) demonstrated that vole-killing by
feral cats in the East Bay area did accentuate the cycle
by deepening the lows. The major crash in numbers
may be due to an interaction of the voles with their
grassland food supplies (Batzli and Pitelka 1971, 1975).
Whether the cycling occurs because of predators kill-
ing voles, or voles eating their plant food supplies. or
some combination of the 2. the fact remains that both
predators on the voles and the voles themselves ex-
hibit saturating functional responses to the density of
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their food resources. Moreover, the food resources

. themselves have powers of regeneration, and these
powers are limited by density-dependent factors.
These facts create the conditions necessary for the
expression of fimit cycles.

The saturating predator functional response used in
the present analysis is that proposed by Holling (1965)
for **nonlearning™" predators. The label nonlearning is
a bit misleading because even predators capable of
learning should exhibit this type of response when giv-
en only 1 type of prey for which to search. The deri-
vation of this response is as follows: Holling (1965)
observed that there were 2 basic time-consuming ele-
ments of the ““attack cycle'” for a predator: (1} search
time and (2) -handling time (including digestion). If we

“tet T equal the total attack cycle time, 7, equal the
search time. # equal the handling time per prey item
and N, equal the number of prey items caught during
the attack cycle, then

T=T,+h N, (1.1)

Holling (1965) then showed that the number of prey
items caught is proportional to the density of prey (S)
and to the search time, T

N,=c"5T; (1.2)

where ¢ is the encounter rate per unit prey density.

In the Nicholson-Bailey model, the slope of the feed-

ing rate curve with prey density is constant with slope

c. However, this is not the case here: as prey density

increases, the slope of the functional response (feeding
. rate) decreases. Eliminating T, between Eqgs. 1.1 and
1.2 and rearranging gives an expression for the number
attacked.

¢-85,-T
1 4+c¢ch-S
: Then the number caught per unit time, F, is the feed-
~ ing rate, and is given by:
N,  ¢§

F=—Lf=___°- .
T 1 +c-h-§

a =

(1.3)

" This is the feeding rate per individual predator. The
‘;‘_;’; total consumption by the predator population as a
.. whole is given by F-X, where X is the number of
',_ predators in the population. The maximum feeding
f rate is given by the inverse of handling time, 1/h; this
E- rate is achieved as S, the density of prey. becomes
} large.

:  Saturating functional responses of this kind are
E nearly universal in biological rate processes. At the
f ‘level of enzyme-mediated reactions. Eq. 1.3 is the
-well known Michaelis-Menten equation, which is usu-
ally written:

vm ‘S

= ) 1.4
Kn+ S8 (14

" where v is the specific rate of product formation or
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nutrient uptake. V,, is the maximum specific rate of
product formation or nutrient uptake. § is resource
density or substrate concentration, and K, (the half-
saturation constant) is the substrate concentration at
which the rate of product formation or nutrient uptake
is half maximal. Equation 1.4 has 2 constants which
are easily converted from the constants in Holling’s
(1965) functional response. Eq. 1.3: K, = l/ch and
V. = I The relationship between the Holling (1965)
functional response and Michaelis-Menten kinetics
has been explored in more detail by Real (1977).

In summary, the most important biological features
of Egs. 1.3 and 1.4 are: (a) at low resource density,
the rate of uptake is limited by. and proportional to,
resource concentration, whereas (b) at high resource
density. the rate is limited by processing time (en-
zyme-substrate complex turnover time in enzyme-me-
diated reactions; handling time in predator—prey in-
teractions). and is independent of resource
concentration. In this paper. we have chosen to use
the Michaelis-Menten formulation because the repre-
sentation of the function is a little simpler in Eq. 1.4
than in 1.3.

STATEMENT OF THE MODEL

This paper concerns the behavior of a predator—prey
system consisting of 2 predator species. x and x,, and
a single prey species, 5. We specifically assume that
the predator species compete purely exploitatively.
with no interference between rivals. Both species have
access to prey and compete only by lowering the pop-
ulation of shared prey. Death rates are assumed to be
such that the number dying is proportional to the num-
ber currently alive. We also assume that there are no
significant time lags in the system. that growth rates
are logistic in the prey species in the absence of pre-
dation, and the functional responses of the predators
obey the Holling (1963) *‘disc™ (nonlearning) curve.
With these assumptions, the model is given by:

ds@ N _ () x08()
S0 — s - o - (2)(255E)
NZAYEXONG)
(yz)(az + S(:))’
dx (t) _mx ()S({)
= — d (1), 1
a " arso 0 v
dx,(f) =m.,x2(t)S(!) — dxo0),

dt a, + 8@

where S, x,. and x, are all positive at ¢ = 0. The sym-
bols are as follows: x{t) is the number of the ith pred-
ator at time 7, $(¢) is the number of the prey at time
t. m; is the maximum growth (birth} rate of the ith
predator. d; is the death rate for the ith predator. v;
is the yield conversion factor for the ith predator feed-
ing on the prey. a; is the half-saturation constant for
the ith predator, which is the prey density at which
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the functional response of the predator is half maxi-
mal. The parameters ¥ and K are the intrinsic rate of
increase and the carrying capacity for the prey popu-
lation, respectively.

We analyze the behavior of solutions of this system
of ordinary differential equations in order to answer
the biological questions: Under what conditions will
neither. 1. or both species of predator survive or die
out? Secondly. if I or both predators survive. what is
their steady-state or limiting behavior in terms of pop-
ulation numbers?

SUMMARY OF ANALYTICAL RESULTS

In the companion paper (Hsu et al. 1978). we give
formal proofs for the following results. which are sum-
marized here for later reference.

We noted first that the system is “well-behaved™”
mathematically in the sense that the model will never
produce negative values of §. x,. or x.. provided that
the initial values of S, x,, and x, are nonnegative. This
is an essential first requirement of any realistic eco-
logical model.

Secondly. we established that there is a minimum
prey population size that can support a given predator,
even in the absence of competition. For the ith pred-
ator, let &y = ad/ry). where r; = m; — d;. the preda-
tor's intrinsic rate of increase. The predator cannot
survive on the prey if A; = K, the prey carrying ca-
pacity. This result is independent of any competition
from rival predators. We also noted that the predator
will die out if m; = d;. Obviously, if the predator’s
maximal birth rate is less than or equal to its death
rate. no amount of prey will sustain the predator.
Hence. as one would expect, if A = K and/or if m =
d for both predators. x, and x, dic out and § ap-
proaches K.

The parameter A; is important for the rest of the
analysis as well because its relative value for the 2
competing predators plays a role in determining which
species will survive and which will not. Note that A,
has units of prey density (the units of the half-satu-
ration constant, «;) because the units of d; and r; can-
cel. Another parameter. b; = ni;/d;. the ratio of the ith
predator’s maximal birth and death rates, will also be
important.

Next, we showed that if predator species 2 cannot
be supported by the prey population even in the ab-
sence of competition, but predator | can. and if X is
small enough, then the predator—prey system will ap-
proach the asymptotically stable equilibrium point
(S*x*,..0). This happens when (K — a2 < A\, < K
for predator 1. and either r; < 0 or K < X, for pred-
ator 2. At equilibrium, §* = A, and

w1 - ST;)((:1 + 5*)

X* =

(/v )

If K islarger, such that A, < (K —~ a,)/2 (but such that
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K is still less than A.. or else ry, = (). then predator 2
dies out and the prey and predator | enter permanent
oscillations. Although these 2 results were known pre-
viously for the l-predator case by numencal analysis
and local stability analysis of the critical points. our
extension to 2 predators is new: and our analysis is
“*global.™

Of more interest biologically is what happens when
the carrying capacity of the prey is adequate to sup-
port either predator in the absence of competition.i.e.,
when 0 < A, < k; < K. This case was partially re-
solved by analytical means. and we have completed
the study of this case numerically in this paper. When
M<h<K, (Difa,za.0r(Difa, <a,but b, =
b,. then predator | will win and predator 2 will die
out. The surviving predator and the prey approach an
equilibrium point or a periodic solution. depending on
whether A, > or < (K — a,)/2. respectively. Note that
in case (1) the surviving predator wins in spite of the
disadvantage of having a larger half-saturation con-
stant than its rival. The surviving predator wins be-
cause of its smaller A. even though it needs a higher
prey density to reach its half-maximal birth rate than
does its losing rival.

It should be noted that predator 2 wins and predator
1 dies out when the subscripts are reversed in the
above cases.

The only case left is when a, < asand b, < b, This
corresponds to the biological situation in which the
predator with the smaller half-saturation constant also
has the smaller birth rate/death rate ratio. In this re-
gion of parameter space. we have | useful analytical
result for small K. When a, < a.and b, < b,. and

a, — ab,
b, — b,
then predator | wins and predator 2 dies out. Note
that these conditions imply that A, < Ay < (asb, —
a bbb, — b)). For K above this value, we must turn

to numerical analysis.

K <

NUMERICAL RESULTS

From the numerical studies reported below, we
know that the predators can coexist in a portion of the
parameter space defined by A < e, o, < dg. b, <
b.. and K > (adb, — a bbb, — b)). Therefore. nec-
essary conditions which must be satisfied for coexis-
tence of the predators on the shared prey species are
that

ry < dil < ayr
Fy d2 aFs
and _
K> b, — aby
bg - hl

Note that these criteria do not necessarily require
that the predator having the lower half-saturation con-
stant also has a lower intrinsic rate of increase: but il
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Legend:
Both
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die out.
Predator 1
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2 dies out.
Predators
Tand 2
coexist.
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survives,
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Fig. I. Coexistence region illustrated for 2 predator species competing for a single prey species. Parameter space is a
plot of prey carrying capacity, K, on the x-axis against the half-saturation constant for predator I.a,, on the y-axis. Parameters
fixed for all graphs: prey intrinsic rate of increase, ¥ = 20- [n2; death rate of predator 1, d, = 1n2/2; death rate of predator

2, d; = In2; yield constant for predator 1. y, = 0.1; yield constant for predator 2, y, = 1.4. Parameters varied: the half-

* saturation constant for predator 2, a, and the maximum birth rates of predators I and 2, m, and m,, respectively. The
" parameter, by, is the ratio of m; to d, for the ith predator. The parameter values for each case: (A) a, = 500, m, = In2(b, =
2}, mg = 11-1n2 (by = 11); (B} @z = 500, m, = a2 (b, = 2), my = '6-1n2 (b = 6); (C) @z = 500, m, = 0.8-1n2 (b, = 1.6),
G My = 2.8 1n2(b, =28 (D)a,=500,m,= 2, =2), ma=281n2(by=2.8);(E)a,= 500, m, = 1.2-1n2 (b, = 2.4);
M, = 2.8-1n2 (bz = 2-8); (F) dqe = 500, ny = 1.35-In2 (bz = 2.7), My = 2.8 1n2 (bz = 2.8)‘. (G) da = 720. m, = w2 (b] =

). nmy= 2.8 tn2(by= 2.8 (Hya: =720, m, = (n2(b, = 2), my = 4-ln2 (b, = 4). Numbered lines arc as follows: {}): A, =

% K:(D: X =K; (3 K =(adh, ~abb: — b); (4): A, = (K — a,)}/2; (5): Lower X — a, boundary for coexistence region
¢ (known from numerical analysis); (6): Upper K — a, boundary for coexistence region {known from numerical analysis); (7):

. Ay = A, See text for explanation of variables.
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Fig. 2. Width of coexistence region, measured in terms

of range of prey carrying capacities, K, as a function of the
magnitude of the difference between the half-saturation con-
stants of the 2 predators. Aa, and of the difference between
the birth rate/death rate ratios of the 2 predators, Ab. Other
parameters as in Fig. 1.

does require this predator to have a lower ratio of birth
rate to death rate (lower b;). which is equivalent to
ridy < rofds.

Whether | predator wins or loses in this region, or
whether the predators coexist, depends critically upon
the magmtude of the prey carrying capacity, K. When
K is small, the predator with the smaller half-satura-
tion constant and birth rate/death rate ratio wins; and
when K is large, the predator with the larger half-sat-
uration constant and birth rate/death rate ratio wins.
In between. there is always a nonzero interval of in-
termediate K values for which both predators coexist.
The coexistence region can be made indefinitely large
by appropriate choice of parameters. The region is
independent of . the intrinsic rate of increase of the
prey population.

The region of coexistence is clearly revealed if we
make a plot of predator I's half-saturation constant,
a,. on the y-axis against the prey camrying capacity.
K, on the x-axis (Figs. |A—IH). The portion of the
K — a, plane of interest is the region 0 < a, < g, and
0 < K < =. Also, a second inequality must be satis-
fied for there to be any possibility of coexistence: b, <
k.. All other parameters except K and a, are held
constant in each figure. The series of numbered lines
indicate all boundaries between competitive out-
comes. The straight lines are boundaries known from
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Fig. 3. Case in which there is oscillatory coexistence of
2 predator species (1 and 2) on a single prey species, §.
Parameters are the same as in Fig. {D with the half-saturation
constant of predator 1. a, = 200 and the prey carrying ca-
pacity, K = 1100. (A) Oscillations as a function of time.
(B) Limit cycle of numbers of predator | plotted against num-
bers of predator 2. Initial values: Number of predator 1. x, =
307.13, number of predator 2. x, = 2684.95, number of prey.
S5 = 8.60.

"analysis, whereas the 2 curves are boundaries deter-

mined by simulation. The boundaries are numbered in
an equivalent way in each figure, .
Lines I and 2 mark the lower limits on prey K for
respective predators { and 2 to survive even in the
absence of competition; K values to the left of both
lines will result in both predators dying out, Line 3 is
the criterion K = (ab, — a b )b, — b)). Values of K
smaller than this result in predator 2 losing to predator
I. provided A, < A; (line 7) and A, < K (line 1). Line
4 is the boundary given by K = g, + 2\,: values of K
smaller than this again result in predator 1 winning.
also provided. however, that A, < A,and A, < K. For
K < line 4. predator | approaches a constant number.
and for K > line 4. predator 1. if it survives, is per-
manently oscillatory in numbers. Curves 5 and 6 mark
the boundaries of the parameter region in which pred-
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Fic. 4. Case in which predator 2 (**r-strategist™’) dies out,
and predator | (*'K-strategist™’) and the prey approach a con-
stant equilibrium. Parameters are the same as in Fig. 1D with
half-saturation constant for predator 1, @, = 200 and the prey
carrying capacity, K = 500. Initial values: number of pred-
ator 1, x, = 10, x; = 10, number of prey, § = 480.

ators | and 2 are able to coexist. For K values to the
left of curve 5, predator 1 wins; whereas for K values
to the right of curve 6, predator 2 wins; and K values
in between permit coexistence. Line 7 marks the larg-
est possible value of a, consistent with the restriction
that A, < Ay for @, greater then this value, predator
2 wins because predator 2 now has the smaller A.

Figures 1A through 1F show the effect of decreasing
the difference between b, and b, of the respective
predators. When b, — b, is large, A, i1s small; and
predator 2 wins over most of the parameter space (Fig.
1A). In this case, coexistence is possible only if pred-
ator 1 has a very small half-saturation constant. As
b, —b, decreases, A, increases, and the coexistence
region expands. Note, however, that as b, —b, ap-
proaches 0, line 3 approaches the horizontal, and the
coexistence region is flattened to 0 against line 7.
When b, = b,, predator I wins forall K > A,and A, <
As. The boundary curves for the coexistence region
(curves 5 and 6) appear to be asymptotic to the x-axis
{a, = 0} with increasing K.

The width of the band of K values permitting co-
existence increases sharply with an increasing differ-
ence in the half-saturation constants for the 2 preda-
tors (Fig. 2). Thus, the greater the disparity in predator
affinity for prey, the greater is the latitude for variation
in prey carrying capacity that will permit coexistence.
For fixed differences in half-saturation constants, the
width of the coexistence region is also greater for small
differences in intrinsic rates of the 2 predators. Note,
however, that when b; — b, is small, a small change
in a, or a, makes a big difference in the width of the
coexistence region. '

In the coexistence region, the predators persist only
in permanent periodic oscillations, They can coexist
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FiG. 5. Case in which predator 1 (K = strategist™) dies
out, and predator 2 (*“r-strategist’’) and the prey approach a
{limiting periodic solution. (A) Oscillations of predator | as it
dies out; {(B) Approach of predator 2 and prey (here labelied
“resource”’) to a limiting periodic solution. Parameters are
the same as in Fig. 4 except prey intrinsic rate of increase,
vy = 1n2/2; prey carrying capacity. K = 800; maximum birth
rates of predators | and 2, m, = 1.3-1n2; m, = 0.48- 1n2;
myly, = 10- In2; death rates of predators | and 2, d, = In2/
2: dy = 1n2/10, Initial values: number of predator 1. x, =
21.45, number of predator 2, x» = 21.24; number of prey. § =
42.82.

at a stationary equilibrium only if both \'s are precisely
equal. Figures 3A and 3B illustrate the limiting peri-
odic behavior of the predators coexisting at K = 1100
for the case shown in Fig. 1D, with a, = 200. If the
carrying capacity is reduced, and all other parameters
are left unchanged. a point is reached where predator
2 loses to predator 1. In Fig. 4, K has been reduced
to 500, and predator | wins. The outcome is not pe-
riodic behavior, however, because X is to the left of
line 4, which marks the boundary between oscillatory
and nonoscillatory solutions. Similarly, if K is in-
creased to a value exceeding =1470, predator 2 wins
(Fig. 1D). Figures 5A and SB iflustrate a case in which
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Fig. 6. Limiting behavior of 2 competing predators, 1 of
which is a “*K-strategist’’ (predator 1) and the other of which
is an *‘r-strategist,”’ preying upon a single prey population.
Outcome as a function of prey carrying capacity, K, for the
case illustrated in Fig. 1H with the half-saturation constant
for predator 1, a, = 100. Shaded and hatched areas and num-
bered lines are coded as indicated in the legend and caption
for Fig. 1. Lines for predators 1 and 2 indicate the periodic
maximal and minimal population sizes in the limiting oscil-
lations.

predator 2 wins, although for a different set of param-
eters than illustrated in Fig. 1D.

To illustrate more clearly how the solution changes
with increasing prey carrying capacity, we have plot-
ted the periodic maximal and minimal numbers of
predators I and 2 as K increases through the coexis-
tence region. Figure 6 represents a cross section of
Fig. 1H for a, = 100. For increasing K, the behavior
of the solution can be described as follows: For K <
100 (line 1), neither predator survives (insufficient
prey). For 100 < K < 300 (between lines 1 and 4},
predator 1 wins, and its numbers approach a constant
equilibrium. For 300 < K < =675 (between line 4 and
curve 5), predator 1 again wins, but its numbers be-
come permanently oscillatory. For =675 < K < =~1780
(between curves 5 and 6}, predators 1 and 2 coexist in
permanent oscillations. Finally, for K > =780 (curve
6), predator 2 wins, and its numbers are permanently
oscillatory. Note that predator 2, the species with the
higher intrinsic rate of increase and half-saturation
constant, exhibits oscillations of much larger ampli-
tude than those of predator 1, except when K is near
curve 5. Not graphed is the behavior of the prey pop-
ulation, which approaches constant numbers for K to
the left of line 4, and is permanently oscillatory for K
to the right of line 4. Although it remains unproven
analytically, it is clear from the numerical analysis that
these periodic oscillations are limit cycles.

DiscussionN

This paper is a mathematical analysis of the behav-
ior of a model of 2 predators competing exploitatively
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for a shared prey species. The prey grow logistically
in the absence of predation, and the predators con-
sume prey according to a saturating functional re-
sponse. The analysis has dealt principally with 4 pa-
rameters: K, the carrying capacity of the prey, and
the parameters of the ith predator; a;, the half-satu-
ration constant; b;, the ratio of maximal birth rate to
death rate; and A,. (The “*A”" parameter has been sym-
bolized by Rosenzweig [1973] with the letter **J.”
Also the Greek letter x has appeared in the literature
to symbolize the half-saturation constant.) A; is a par-
ticularly important parameter. Recall that X; is the
product of the ith predator’s half-saturation constant
times the ratio of the predator’s death rate to its in-
trinsic rate of increase: A; = af{dyJr). This number is
the break-even concentration of prey for the ith pred-
ator’s dx;/dt = 0 isocline in the § — x; plane. A pred-
ator with a small half-saturation constant, low death
rate, and high intrinsic rate of increase (small A) should
be a tough competitor to beat.

In fact, if n species are competing for a single, lim-
iting resource that is supplied at a constant rate, the
species with the smallest A wins the competition and
all other species become extinct (Hsu et al. 1977). The
surviving species and its resource approach constant
values; there is no limiting periodic behavior.

When the resource is allowed to regenerate logisti-
cally and the consumers also have saturating function-
al responses, the possible outcomes are increased to
include periodic solutions and dynamic coexistence
between predators. As in the constantly supplied re-
source case, the predators’ A parameters are impor-
tant; but, in addition, K, a;, and b; must be considered
to determine the outcomes of interspecific competition
between the predators.

We have been concerned with answering the ques-
tion: Under what conditions will neither, 1, or both
species of predator survive or die out? We divide our
results into 3 general cases: case I, neither predator
can survive {even without competition) on this re-
source; case [l, the first predator can survive on this
resource but the second cannot; case III, each pred-
ator can, in the absence of competition, survive on
this resource,

Table 1 summarizes the 3 principal cases. Note that
we have omitted reference in the table to all cases
which can be obtained by symmetry—cases obtainable
by simply interchanging all predator subscripts. In
general, we have presented the cases in which pred-
ator | wins,

Case I: This represents the case in which neither
predator can survive on the prey, regardless of the
presence or absence of its rival. This situation can
arise for 1 of 2 reasons: either the predator's intrinsic
rate of increase is negative or 0 (b; < 1), or else the
prey carrying capacity is below the break-even density
for the predator. In either event, both predators be-
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TasLE |. Classification of outcomes for 2 competing predators. See text for explanation of symbols

Case Prey Predator 1 Predator 2
Lxy>Korbh=1,i= 1,2, Approaches K Dies out Dies out
M<K by>1L=Korb,s 1.
A. K < a, + 24 Approaches Approaches Dies out
A, x*>0
B.K>a, + 2\ Periodic Periedic Dies out
M:o< A, <A <K.by>1i=12
A K <a,+2)\
l. b, = b, Approaches Approaches Dies out
1 x*>0
2.a,< @y, by < b,
a) K < a,b, — a,b, Approaches Approaches Dies out
b, — b, A x*>0
ab, — ab
b) K > lb; — bi 2
(a,, K} E O, Approaches Approaches Dies out™
L x>0
B. K> a,+ 2x;
1.b,= b, Periodic Periodic Dies out
2.a, < ax, b <b,
a) K < agl;; : z:b"‘ Periodic Periodic Dies out
ab, — ab,
b) K > *b; — b: 2
i) {a,, K) E Q, Periodic™ Periodic* Dies out™
i) (a,, K) € Q. Periodic™ Periodic* Periodic*
iii) (a,, K) € @, Periodic™* Dies out™ Periodic*

& * These outcomes are known from numerical results only.

+ ‘come extinct, and the prey population equilibrates at
o K.

-~ Case II: This situation is readily understood from
-" the outcome in Case I. One of the predators (species
- 2 in the case tabled) cannot survive on the prey no
- matter what its rival does, but the rival (species 1) can
" survive when grown alone on the prey. In the limit,
=+ this case becomes a | predator—! prey system. In or-
* der to understand the full behavior of the 2-predator
system, it was therefore necessary to analyze the I-
predator case. Our analysis of the | predator—1 prey
case is global, and is a more general treatment than
w-any of which we are aware in the literature. We there-
T;-:ffore digress briefly from the 2-predator system to dis-

The solution curves representing the outcomes for
‘Case I can be plotted in the S-x plane (Rosenzweig
2 -and MacArthur 1963), where § is prey density (x-axis)
-and x is the density of the winning predator (y-axis).
= The isocline for the prey § = 0is an inverted parabola
. intersecting the S-axis at K, and reaching a maximum
fat (K — a)/2, where « is the predator’s half-saturation
7. constant. The isocline for the predator x = 0 is a ver-

tical line intersecting the S-axis at A. There are 2 out-
comes for Case II, depending upon the location of A
in relation to the maximum on the prey isocline.

If A > (K — a)/2, the predator-prey trajectory is a
damped oscillation to an equilibrium point (Case I1A).
If A < (K ~ a)/2, the trajectory is permanently cyclic.
We conjecture that for these equations there is a
unique, asymptotically stable limit cycle, but proof of
this conjecture is presently unavailable (the counter-
example to the result of May [1972] found by Albrecht
et al. [1974] illustrates that this can be a delicate ques-
tion). Biologically. however, it is an irrelevant tech-
nicality whether the solution is really a stable limit
cycle or is a split, semistable limit cycle: the limiting
behavior in either event is permanently periodic.

Any of the l-predator systems can be made to ex-
hibit permanent, periodic solutions merely by increas-
ing the carrying capacity of the prey population suf-
ficiently. May (1973) has remarked that increasing K
is like gradually relaxing the density-dependent re-
straint on growth of the prey population at low den-
sities, thereby permitting faster recovery of the prey
population after the predator crashes.

Rosenzweig (1971) labelled the tendency of preda-
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Fig. 7. llustration on the s-x plane of the results of Luck-

inbill’s (1973) experiment on Didinium—Paramecium preda-
tor—prey systems. (a) No methyl cellulose added, high prey
carrying capacity (K). so A < (K — a)/2, where A is the
break-even prey density for the predator and & is the preda-
tor's half-saturation constant. Result: limiting periodic solu-
tion is unrealizable—the predator dies out and the prey grow
to K; (b} Methyl cellulose added (decreasing predator-prey
encounter rate), high prey XK, so A increases to nearly (K — a)/
2. Result: limiting perodic solution is realizable because prey
are not driven to extremely low values; (¢) No methyl cel-
lulose added, but prey K reduced substantially, reducing (K —
a)/2 to nearly A. Result: limiting periodic solution again re-
alizable, but with much reduced amplitude. Predator never
builds to levels high enough to drive prey to extremely low
densities,
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tor—prey systems to become increasingly oscillatory
with increases in K, the ““paradox of enrichment.’” but
he erroneously concluded that such oscillations are
relaxed. leading to the extinction of the predator. or
of both predator and prey. Gilpin (1972) found “*limit
cycles " instead of relaxed oscillations when A < (K —~
a)/2, and attributed Rosenzweig’s (1971) result to in-
sufficiently low error bounds in the numerical simu-
tation. We have provided a rigorous proof of Gilpin's
(1972) numerical result (for 2-dimensional periodic so-
lutions).

However, we agree with Gilpin (1972) that. biolog-
ically, Rosenzweig (1971) may often be right in pre-
dicting extinctions when K is large. Gilpin (1972)
found cases in which the numerical solutions gave un-
realistically small population sizes to predator and
prey at the cycle lows—sizes often <1 individual. In
such cases the populations of organisms in question
would be expected to die out. Further detailed nu-
merical studies would be required to establish pre-
cisely what parameter values produce these unrealist-
ically low values. It is clear, however, that the smaller
X becomes in relation to (K — a)/2, the larger is the
amplitude of the limit cycle, and the deeper and more
prolonged the lows become. May (1972, 1973) ob-
tained an estimate of the ratio of the predator’s mini-
mum population and the predator’s mean population
for a very stmilar predator—prey model exhibiting a
limit cycle. He showed that this ratio is approximately
equal to exp[—afK/5*)}, where « is a constant near
unity, K is the prey carrying capacity, and $* is mean
prey population size. If (K/S¥) is large, then this ratio
is extremely small, and the predator population falls
below 1 individual, and therefore becomes extinct,
before the minimum of the limit ¢ycle ts reached. In
our system, if the predator is a very efficient hunter
(has a small half-saturation constant) and has a high
intrinsic rate of increase, then X is small, and the pred-
ator can drive the prey population to very low levels.
The predator will then crash to very low levels itself.
If this level is <1 individual, the limit cycle is biolog-
ically unrealizable; and the predator becomes extinct.
This discrepancy between the model and nature only
arises when the populations of predator or prey are
very small, and is due to the model’s assumption that
population size is a continuous variable.

[t is of interest to relate our findings on the | pred-
ator—! prey system to the experimental results of
Luckinbill (1973}, who studied a predator-prey system
consisting of the ciliate protozoans. Didiniuwm nasu-
e and Paramecium aurelia. Previously, Gause
(1934) had studied this system, but he was unable to
prevent Didinitm from consuming all the Paramecium
without providing some sort of physical refuge for the
prey. Luckinbill (1973) showed that he could signifi-
cantly prolong the coexistence of predator and prey
either by adding methyl cellulose to the culture me-
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dium. or by reducing the bacterial food supply to the
Paramecium. The methyl cellulose increased the vis-
cosity of the medium. thereby reducing the rate of
encounters between predator and prey. The reduction
in bacterial food supply for the Paramecium reduced
the carrying capacity for the prey species. Our results
provide a consistent explanation of these experimental
findings. The explanation lies in the effect of the ex-
perimental manipulations on the relative positions of
the predator {dx/dr = 0) isocline and the peak of the
prey (dS/dt = 0) isocline. Consider first the control
case in which no methyl cellulose has been added. and
the carrying capacity K is high for the Paramecium
prey (Fig. 7a). The predator isocline. located at § =
A.is at a very low value relative to (K — a)/2. the peak
in the prey isocline. The parameter X is small because
the half-saturation constant and death rate of Didinium
are small in comparison with its intrinsic raie of in-
crease, Didinium tends to divide and become smaller
in the absence of food. so its death rate is very low.
The result is an approach to a limit cycle which is of
very large amplitude. For the reasons given above,
however, biologically, the limit cycle is not realizable,
and the prey are driven to extinction.

Now suppose methyl cellulose is added to the cul-
ture medium. Immediately. the effect is to lower the
" encounter rate between Didinium and Paramecium
because swimming rates are reduced more in Didinium
than in Paramecium due to differences in cell shape.
Only the encounter rate is affected; handling time re-
mains unchanged. Recall from the Introduction that
the half-saturation constant is the inverse of the
product of encounter rate, ¢, and handling time, h.
Hence, any reduction in encounter rate produces an
increase in the predator’s half-saturation constant,
which produces an increase in A, The result is that A be-
comes more nearly equal to (K — «)/2. When A is in-
creased (Fig. 7b), the predator and prey still oscillate,
but the limit cycle has a much-reduced amplitude, and
the chance of prey extinction is much reduced. This is
precisely, what happened in Luckinbill's (1973) exper-
iments,

Finally. suppose that no methyl cellulose is added,
but the Cerophyl medium used to grow the bacterial
food of the Paramecium is reduced. This will have the
effect of reducing K and the value of prey density at
which the peak occurs on the prey isocline (Fig. 7c).
This happens because the Paramecium carrying ca-
pacity is reduced. while the half-saturation censtant
for Didinium is unchanged. The effect of lowering K
is therefore to make A closer to the peak. thereby again
reducing the amplitude of the predator—prey cycles as
well as the chance of prey extinction.

Luckinbill (1974) also obtained greater persistence
and smaller cycle amplitudes merely by increasing the
volume of his culture. The total amcunt of Cerophyl
added was kept the same. This volume increase had
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the effect of simultancously lowering the prey carrying
capacily (calculated as a density of number of Para-
mecinm supportable/m!) and lowering the predator’s
encounter rate. Both of these factors should increase
A relative to (K — «@)/2.

From the results we have presented. it is tempting
to predict that if culture volumes had been increased
still further. a point would have been reached where
A was greater than the peak value of (K — «)/2: and
Didinium and Paramecitun would have achieved a
stable equilibrium. This outcome would be expected
except for the fact that Didinium exhibits a short time
lag in response to changes in Paramecinm abundance.
We have not yet studied time lags in the model given
by (2.1). but in general the effect of time lags is to
increase the oscillatory tendencies of a system. Such
time lags might also give rise to outcomes in which
the Didinivm drive the Parameciam to extinction.

In the Introduction we raised the question of how
often one might expect to find predator—prey limit
cycles in nature. The likelihood is increased if the
predator in question derives its food solely or princi-
pally from | prey species. It is further increased if the
predator is an effective hunter at low prey density
(half-saturation constant small) and has a high intrinsic
rate of increase. It is further increased if the prey
species is capable of becoming very abundant if pre-
dation pressure is relaxed.

The predator-prey model developed here assumed
density-independent mortality for the predators. but
we predict that incorporation of density-dependence
in the predator death rates will have little qualitative
effect on our conclusions. Rosenzweig (1971) and Gil-
pin (1972) numerically studied models with density-
dependent predator death rates. and the only effect
was to shift slightly the position of the peak in the prey
isocline. '

We return now to Table | and the discussion of the
2-predator system.

Case [11: This case represents the most interesting
and potentially:complex situation of the 2 predator-|
prey system. In this case. both predators can handily
survive when grown alone on the prey. This condition
is met when the prey carrying capacity exceeds the
value of A for each predator. Consider first the case
in which A, < A, In the case of a resource supplied
at a constant rate, we have proven that A, < A, would
be sufficient to guarantee that predator | wins and
predator 2 dies out. However, when the prey regen-
erates logistically. this relationship between the A is
neither a necessary nor a sufficient condition for sur-
vival of predator | and extinction of predator 2.

The principaltresult of our numerical simulation was
to locate the 2 curves 5 and 6 in Figs. |A—IH referred
to in the discussion above. Designate the region below
line 7 in the a, — K parameter space (for fixed a.. b,.
b, to the left of curve S as Q,. the region between
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curves 5 and 6 as (72, and the region to the right of
curve 6 as (@3 The results known only by simulation
are marked in the table with the symbol L. (These, of
course, are candidates for future theorems.)

In the subcase {I1A, predator 1 wins and approaches
a constant value. In the first instance, species | wins
because it has the lower half-saturation constant as
well as the higher intrinsic rate of increase of the 2
competitors. It is interesting that species | also wins
even when it has a higher half-saturation constant, so
long as A, is < A,.

Coexistence arises in subcase IIIB{2)b(ii) in which
species 1 not only has the lower half-saturation con-
stant, but also the lower birth rate/death rate ratio of
the 2 predators. Analytically, we have shown only that
predator 1 persists in case that K < a, + 2X,, but we
have not been able to prove that coexistence is pos-
sible. However, we have unequivocal numerical re-
sults which justify this claim (see below), confirming
the findings of Koch (1974). (See Fig. 3.)

All of the cases of coexistence we found had peri-
odic solutions. (We are aware, of course, that numer-
ically one might not be able to distinguish periodic and
almost periodic solutions.) The proof of Theorem 3.5
of Hsu et al. {1977) shows that limiting constant be-
havior is possible only if x, wins. The numerical ex-
periments show that predator 2, the species with
higher half-saturation constant and intrinsic rate of in-
crease, loses when the prey carrying capacity is too
low, wins when K is high, and coexists with predator
1 at intermediate values of K, for fixed values of A,
and A,. In general, we predict that whenever Ay < Ay <
K, a, < a, and b, < b, there must exist a range of
K values for which coexistence between the compet-
ing predators results. Indeed, we predict that the co-
existence region can be made arbitrarily large by ap-
propriate choice of parameters.

It should be noted that this coexistence results
merely from the dynamics of growth of the predators
and prey, and to characteristics of the predators’ func-
tional responses, and not from any spatial heteroge-
neity or from any externally applied, periodic forcing
function; the system is completely autonomous.

It is interesting to relate these results to published
speculations and conclusions about competitive co-
existence between species. When the predators have
nonlinear functional responses and the prey popula-
tion has density-dependent (nonlinear) growth, dy-
namic coexistence between competing predators is
possible (McGehee and Armstrong 1976). This result
has been missed by most theoretical studies of com-
petition because of linear assumptions about function-
al responses and a lack of treatment of resource dy-
namics (Armstrong and McGehee 1976). Also,
typically only equilibrium conditions have been ex-
amined, with the result that periodic solutions may be
missed entirely.

In an early work, MacArthur (1960) spoke of ““op-

5. B. HSU ET AL.

Ecological Monographs
Vol. 48, Np. 3

portunist” and ‘‘equilibrium’ species, a concept
which he later refined in the notions of **r-strategist™
and “K-strategist’’ (MacArthur and Wilson 1967). In
resource terms, we can redefine an r-strategist as a
species with a high maximal intrinsic rate of increase,
but a species of poor competitive ability at low re-
source density. The r-strategist is capable of growing
at its maximal rate only at high resource densities. A
K-strategist, however, has only a low maximal intrin-
si¢ rate of increase, but it is capable of growing at its
maximal rate at very low levels of resource.

MacArthur (1958) argued that opportunist species
could coexist with equilibrium species, provided that
they could predictably find communities in which re-
source abundances were locally superabundant in
space or time. Hutchinson (1961), however, in consid-
ering why there were so many coexisting species of
plankton, rejected as unlikely that the community was
composed of opportunistic species. He felt that chance
extinctions were very likely to be much greater for
opportunistic species, thereby reducing their impor-
tance and frequency in the community. However,
Hulbert (1970} found that many planktonic species in
the Sargasso came and went with the seasons, showing
h1|1ge fluctuations in density; but that other species
showed hardly any seasonal change in abundance,
having little response to increases or decreases in
the seasonal species. Stewart and Levin (1973) then
showed analytically that coexistence was possible for
2 species sharing a common limiting resource in a pe-
riodic environment in which resources fluctuate from
high to low levels. The resource was depleted at the
end of each season, and the populations of plankton
were restarted in the next season by means of smalil
seed populations. Although they did not refer to the
coexisting species in terms of r-strategist and K-strat-
egist, it is interesting that the numerical case of co-
existence illustrated (Fig. 1, p. 177) fits our require-
ment for a, < a, and b, < b, (note a different
notational use of a and b in the Stewart and Levin
[1973] paper).

Perhaps it is somewhat premature to judge the im-
portance of coexistence of r- and K-strategists by the
method proposed. In the deterministic case studied
here, with fixed K, it is not at all clear that there is an
upper limit to the number of dynamically coexisting
predator species (Armstrong and McGehee 1[976).
However, we speculate that the parameter space
which allows for the successive additions of predator
species supported by the same prey resource gets rap-
idly smaller with each new predator added. In nature,
we suspect that the number of species coexisting on
a single resource: is severely limited by stochastic
forces. We have noted that the coexistence region de-
pends critically upon the size of the carrying capacity
of the prey population, a number much more subject
to rapid change than the evolutionarily adjusted, func-
tional-response and population-growth parameters of
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the predators. Thus, extending the argument of Hutch-
inson (1961). a fluctuation of K too high or too low for
too long could result in the extinction of 1 or more of
the predator species.

Nevertheless. we can say that, in nature, 2 species
are probably rarely limited forever and anon by a sin-
gle resource. In the context of multiple resources. it
seems likely that a diversity of life-history patterns
across the r—K continuum would allow for a greater
number of species to coexist than otherwise. Indeed,
it might represent | of the principal ways by which
species can outnumber their limiting resources.
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