
§3.11 Predator-Prey models 

Let )(tx  be the population density of prey, )(ty  be the population density of 

predator at time t . The general model for predator-prey interaction is following 
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In 1923 Volterra proposed a simple model to explain the oscillatory levels of a certain 

fish catches in Adriatic. The model takes the form 
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In )2.11(  we assume the prey grows exponentially in the absence of predation. The 

prey is consumed by predator with the amount bxy  per unit time and is converted into 

the new population of predator at the rate cxy . d  is the death rate of predator. We 

note that )2.11(  was also derived by chemist Lotka in 1920 for the auto catalysis of 

chemical reaction BA  . )2.11(  is called Lotka-Volterra predator-prey model. In 

)2.11(  we have following equilibria: )0,0( , ),( ** yx  where c
dx * , b

ay * . 

Consider the Jacobian matrix of )2.11(  at ),( yx . 
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and )0,0(  is a saddle point with stable manifold y –axis and unstable manifold 

x –axis. 

If ),( ** yxE   then 
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and ),( ** yx  is a center. The linearization provides no information for nonlinear 

system )2.11( . 

Write )2.11(  as 
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Elimination variable t , we obtain equation 
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In x y  phase plane. From )3.11(  we have 
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Integrate )4.11(  we obtain 
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Then each solution of )2.11(  is a periodic solution and we obtain a series of “neutral” 

stable closed curves in x y  plane (See Fig 11.1). 



 

  Figure 11.1 

 If we assume the prey grows logistically with carrying capacity K  in the absence 

of predation, then the predator-prey model takes the form 
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Then there are two cases 

Case 1: Kc
d   

Then there are two euqilibria: )0,0(  which is a saddle, )0,(K  which is a stable. From 

the isocline analysis we predict )0,(K  is global stable, i.e., every solution of )5.11(  

approach )0,(K  as t  (See Fig. 11.2). 

Case 2: Kc
d   

Then there are three equilibria: )0,0(  which is a saddle, )0,(K  which is a saddle and 
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predict that ),( ** yx  is global stable. 

 

Figure 11.2 

 

    Figure 11.3 

Remark: 

 There are five distinct types of biological interactions between two species: 

1. Mutualism or symbiosis (++): Each species has a positive effect on the other. 

2. Competition (--): Each species has a negative effect on the other. 

3. Commensalism (+0): One species benefits from the interaction, whereas the 

other is unaffected. 



4. Amensalism (-0): One species is negatively affected, whereas the other is 

unaffected. 

5. Predation (+0): One species benefits, whereas the other is negatively 

affected. 

 


