## §3.9 Two dimensional linear flow

A two-dimensional linear system is a system of the form

$$\dot{x} = ax + by$$
  

$$\dot{y} = cx + dy$$
(9.1)

where a, b, c, d are parameters. (9.1) can be written in vector form

$$\dot{X} = AX$$

where

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ and } X = \begin{pmatrix} x \\ y \end{pmatrix}$$
(9.2)

Such a system is a linear in the sense that if  $X_1(t)$  and  $X_2(t)$  are solutions of (9.2), then is any linear combination  $c_1X_1(t) + c_2X_2(t)$ . Assume det  $A \neq 0$ , then X = 0 is the unique equilibrium of (9.2). The solution of  $\dot{X} = AX$  can be visualized as trajectories moving on the (x, y) plane, in this context called phase plane. For the general solutions of (9.2) we seek trajectories of the form

$$X(t) = e^{\lambda t} v \tag{9.3}$$

where  $v \neq 0$  is some fixed vector to be determined and  $\lambda \in C$  to be determined. Substitute (9.3) into (9.2), we obtain  $\lambda e^{\lambda t} v = e^{\lambda t} A v$ . Cancelling the nonzero scalar factor  $e^{\lambda t}$  yields

$$Av = \lambda v \tag{9.4}$$

i.e.  $(\lambda, v)$  is an eigenpair of  $2 \times 2$  matrix A. It is easy to find that the eigenvalues  $\lambda_1, \lambda_2$  of A are

$$\lambda_1 = \frac{\tau + \sqrt{\tau^2 - 4\Delta}}{2}, \quad \lambda_2 = \frac{\tau - \sqrt{\tau^2 - 4\Delta}}{2}$$
(9.5)

where

$$\tau = trace(A) = a + d$$
,  $\Delta = \det A = ad - bc$ 

If  $\lambda_1 \neq \lambda_2$  then the corresponding eigenvectors  $v_1$  and  $v_2$  are linearly independent. Any initial condition  $X_0$  can be written as a linear combination of eigenvectors, say,  $X_0 = c_1V_1 + c_2V_2$ . This observation allows us to write down the general solution X(t) as

$$X(t) = c_1 e^{\lambda_1 t} V_1 + c_2 e^{\lambda_2 t} V_2$$
(9.6)

There are following cases for various  $\lambda_1$  and  $\lambda_2$ .

**Case 1:**  $\lambda_1$ ,  $\lambda_2$  are real and  $\lambda_2 < \lambda_1$ 

**Case 1a** (Stable node)  $\lambda_2 < \lambda_1 < 0$ 

Let  $L_1$ ,  $L_2$  be the line generated by  $V_1$ ,  $V_2$  respectively. Since  $\lambda_2 < \lambda_1 < 0$ ,  $X(t) \approx c_1 e^{\lambda_1 t} V_1$  as  $t \to \infty$  and the trajectories are tangent to  $L_1$ 



**Case 1b** (Unstable node)  $0 < \lambda_2 < \lambda_1$ 

Then  $X(t) \approx c_1 e^{\lambda_1 t} V_1$  as  $t \to \infty$ 



**Case 1c** (Saddle point)  $\lambda_2 < 0 < \lambda_1$ . In this case, the origin 0 is called a saddle point and  $L_1$ ,  $L_2$  are unstable manifold and stable manifold.



**Case 2:**  $\lambda_1$ ,  $\lambda_2$  are complex.

Let  $\lambda_1 = \alpha + i\beta$ ,  $\lambda_2 = \alpha - i\beta$  and  $V_1 = U + iV$  and  $V_2 = U + iV$  be complex eigenvectors. Then

$$x(t) = c e^{(\alpha + i\beta)t} V_1 + \overline{c} e^{(\alpha - i\beta)t} \overline{V_1} = 2 \operatorname{Re}(c e^{(\alpha + i\beta)t} V_1)$$

Let  $c = ae^{i\delta}$ . Then

$$x(t) = 2ae^{\alpha t} \left( u\cos(\beta t + \delta) - v\sin(\beta t + \delta) \right).$$

Let P and Q be the line generated by U, V respectively.

**Case 2a** (Center)  $\alpha = 0$ ,  $\beta \neq 0$ .



**Case 2b** (Stable focus, spiral)  $\alpha < 0$ ,  $\beta \neq 0$ .



**Case 2c** (Unstable focus, spiral)  $\alpha > 0$ ,  $\beta \neq 0$ .

