
§3.10 Two dimensional phase portraits, Fixed points and linearization 

The general form of a nonlinear two dimensional vector filed on the phase plane is 

),( 2111 xxfx            

),( 2122 xxfx            

where 1f  and 2f  given functions. This system can be written more compactly in 

vector notation as 

)x(fx              

where ),(x 21 xx  and ))x(),x(()x(f 21 ff . Here x  represents a point in the phase 

plane, and x  is the velocity vector at that point. By flowing along the vector field, a 

phase point traces out a solution )(x t , corresponding to a trajectory winding through 

the phase plane (Figure 3.10.1). 

 

Furthermore, the entire phase plane is filled with 

trajectories, since each point can play the role of an initial 

condition. 

For nonlinear systems, there’s typically no hope of 

finding the trajectories analytically. Even when explicit formulas are available, they are 

often too complicated to provide much insight. Instead we will try to determine the 

qualitative behavior of the solutions. Our goal is to find the system’s phase portrait 

directly from the properties of )x(f . An enormous variety of phase portraits is possible; 

one example is shown in Figure 3.10.2. 

 
Figure 3.10.1 



 

Figure 3.10.2 

Some of the most salient features of any phase portrait are: 

1. The fixed points, like A , B , and C  in Figure 3.10.2. Fixed points satisfy 

0)x(f  , and correspond to steady states or equilibria of the system. 

2. The closed orbits, like D  in Figure 3.10.2. These correspond to periodic 

solutions, i.e., solutions for which )(x)(x tTt   for all t , for some 0T . 

3. The arrangement of trajectories near the fixed points and closed orbits. For 

example, the flow pattern near A  and C  is similar, and different from that 

near B . 

4. The stability or instability of the fixed points and closed orbits. Here, the fixed 

points A , B , and C  are unstable, because nearby trajectories tend to move 

away from them, whereas the closed orbit is stable D . 

 

In this section we extend the linearization technique developed earlier for 

one-dimensional systems. The hope is that we can approximate the phase portrait near a 

fixed point by that of a corresponding linear system. 

 



Linearized System 

 Consider the system 

),( yxfx             

),( yxgy             

and suppose that ),( ** yx  is an equilibrium, i.e., 

0),( ** yxf , 0),( ** yxg .       

Let 

*xxu  , *yyv           

denote the components of a small disturbance from the fixed point. To see whether the 

disturbance grows or decays, we need to derive differential equations for u  and v . 

Let’s do the u –equation first: 

xu           (since *x  is a constant) 

),( ** vyuxf       (by substitution) 
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f


  and y
f


 , but please remember that 

these partial derivatives are to be evaluated at the fixed point ),( ** yx ; thus they are 

numbers, not functions. Also, the shorthand notation ),,( 22 uvvuO  denotes quadratic 

terms in u  and v . Since u  and v  are small, these quadratic terms are extremely 

small. 

 Similarly we find 
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Hence the disturbance ),( vu  evolves according to 
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Quadratic terms.  )1.10(  

The matrix 
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is called Jacobian matrix at the fixed point ),( ** yx . 

 Now since the quadratic terms in )1.10(  are tiny, it’s tempting to neglect them 

altogether. If we do that, we obtain the linearized system 
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whose dynamics can be analyzed by the methods of Section 3.9. 

 

The Effect of Small Nonlinear Terms 

 Is it really safe to neglect the quadratic terms in )1.10( ? In other words, does the 

linearized system give a qualitatively correct picture of the phase portrait near ),( ** yx ? 

The answer is yes, if the linearized system predicts a saddle, node, or a spiral, then the 

fixed point really is a saddle, node, or spiral for the original nonlinear system. The 

equilibrium ),( ** yx  is locally stable if each eigenvalues   of ),( ** yxJ  satisfies 

0Re  . 

 

Remark: Consider the map 

),(1 nnn yxfx   

 



),(1 nnn yxgy   

and suppose ),( ** yx  is a fixed point, i.e. 

*** ),( xyxf  , *** ),( yyxg   

Let *xxu nn  , *yyv nn   denote the components of a small disturbance from the 

fixed point. Then 
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Similary 
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Then the deviations ),( nn vu  evolves according to 
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We obtain the linearized system 
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The fixed point ),( ** yx  is locally stable if each eigenvalue   of jacobian matrix 

),( ** yxJ  satisfies 1 . 


