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Abstract. In this paper we survey the construction of Lyapunov functions
(or functionals) for various ecological models which take the form of ODE
system (or Reaction-Diffusion PDE systems). First we consider the resources-
consumers type ecological models which study the competition of n microor-
gansims for a single limiting resource or two complementary resources in
the chemostat. Next we consider the Gause-type predator-prey systems and
the Lesile-type predator-prey systems. From the Lyapunov functions of the
predator-prey system we construct new Lyapunov functions for three-level food
chain models and one prey two predators models. Suppose a Lyapunov func-
tion is known for an ecological model which takes the form of ODE system.
Then we construct a Lyapunov functional for the corresponding reaction-
diffusion PDE systems. Open problems are indicated where there is gap in
the theory.

1. Introduction

In this paper we first survey various constructions of Lyapunov functions for the
mathematical models (in the form of systems of ordinary differential equations) in
population biology, especially in mathematical ecology. For a given mathematical
model x′ = f(x), x ∈ R

n
+, in population biology, if E is the only locally asymptot-

ically stable equilibrium then in most cases we may expect E is globally stable in
R

n
+. However it is difficult to construct a Lyapunov function to establish the global

stability of the equilibrium E. If we are able to construct a Lyapunov function
for the system then the global stability follows directly from the following modified
LaSalle’s invariant principle [12][27].

Definition 1.1. : Consider the system of differential equations

(1.1)
dx

dt
= f(x),

where f : Ω ⊆ R
n → R

n is continuous. We call V is a Lyapunov function on G ⊆ Ω
for the system (1.1) if

(a) V is continuous on G,
(b) If V is not continuous at x̄ ∈ Ḡ (the closure of G) then lim x → x̄

x ∈ G

V (x) =

+∞,
(c) V̇ = gradV · f ≤ 0 on G.
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Figure 1

Theorem 1.1. : (LaSalle’s Invariance principle) Assume that V is a Lyapunov
function of (1.1) on G. Define S = {x ∈ Ḡ ∩ Ω : V̇ (x) = 0}. Let M be the largest
invariant set in S. Then every bounded trajectory (for t ≥ 0) of (1.1) that remains
in G approaches the set M as t → +∞.

Actually the first Lyapunov function in population biology was constructed by
Vito Volterra ([3] p.414) in 1920. He considered the following predator-prey model
which describes the fluctuation of predator species (selachians (sharks)) and prey
species (the food fish) in Mediterranean sea. Let x(t), y(t), respectively, be the
population densities of the prey and predator species at time t. The equations are

(1.2)
dx
dt = ax − bxy,
dy
dt = cxy − dy, a, b, c, d > 0

(1.3) x(0) > 0, y(0) > 0

Let x∗ = d
c , y∗ = a

b , E = (x∗, y∗). Then from (1.2) it follows that

dy

dx
=

dy
dt
dx
dt

=
cy(x − x∗)
−bx(y − y∗)

.

By separation of variables, we have

x − x∗

x
dx +

b

c

y − y∗

y
dy = 0

Introduce

(1.4) V (x, y) =
∫ x

x∗

η − x∗

η
dη +

b

c

∫ y

y∗

ξ − y∗

ξ
dξ.

Then from (1.2) we have

V̇ (x, y) =
dV

dt
=

x − x∗

x

dx

dt
+

b

c

y − y∗

y

dy

dt
≡ 0.

Thus V (x(t), y(t)) ≡ V (x(0), y(0)) ≡ c and the solution (x(t), y(t)) of I.V.P. (1.2)
and (1.3) is a periodic solution of (1.2).
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Thus we have a family of neutrally stable periodic solutions for the system (1.2)
(See Fig.1). We note that B. S. Goh [11] used a Lyapunov function of the type
(1.4) to establish the global stability of ecological models.

In Section 2, we shall construct several Lyapunov functions for the resources-
consumers type ecological models.

In Section 3, we discuss constructing Lyapunov functions for the predator-prey
systems.

In Section 4, we construct Lyapunov functionals for the corresponding reaction-
diffusion systems to the ODE systems for which the Lyapunov functions are known.
In section 2, 3, 4 open problems are indicated where there is a gap in the theory.

Section 5 is the discussion section. Since Lyapunov functions and Lyapunov
functionals are difficult to construct for the mathematical models in population
biology, we survey several non-Lyapunov methods in the literature.

2. Resource-Consumer Type Ecological Models

In this section we first consider the exploitative competition of n microorganisms
for a single-limited nutrient in a chemostat. The chemostat is a piece of laboratory
apparatus that captures the essentials of exploitative competition in an open sys-
tem. Basically, it consists of three vessels connected by pumps. The first is called
the feed bottle and contains all of the nutrients essential for growth of microor-
ganisms with one, hereafter called the nutrient, is short supply. The contents of
the feed bottle are pumped at at constant rate into the second vessel, the reac-
tion chamber which will be charged with microorganisms and which is well mixed.
The contents of the reaction vessel are pumped at the same constant rate into the
final vessel, called the overflow vessel. Thus the volume of the reaction vessel is
constant, an important assumption. Other names in use are continuous culture,
CSTR (Continuously Stirred Tank Reactor) and bio-reactor. In ecology this is a
laboratory model of a simple lake while in bio-technology this is the laboratory
model of a commercial reactor, perhaps manufacturing a product with genetically
altered organisms.

A derivation of the chemostat equations can be found in almost any bioengineer-
ing text, for example in [33]. We give here a hueristic description and the reader
is refered to one of the above references for a more detailed description. Let S(t)
denote the concentration of the nutrient in the reaction vessel at time t, S(0), the
concentration of the nutrient in the feed bottle, F , the flow rate (determined by
the pump speed), V , the volume of the reaction vessel and define the parameter D,
called the dilution rate, by D = F

V . If there were no microorganisms, the rate of
change of the concentration of the nutrient in the reaction vessel would be given by

dS(t)
dt

=
(
S(0) − S(t)

)
D,

the simple statement that change in concentration is proportional to the difference
between the incoming concentration and the resident concentration. If organisms
are consuming the nutrient then this needs to be corrected for the consumption
and the consumed nutrient converted to growth is proportional to consumption.
Nutrient uptake (consumption) is usually taken to be of the Monod (or Michaelis-
Menten) form

mxS

a + S
,
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where m is called the maximal growth rate and a is called the Michaelis-Menten
constant. Thus, if x(t) denotes the concentration of a microorganism at time t, the
equations take the form (suppressing the t dependence in the independent variables)

S′ =
(
S(0) − S

)
D − x

y

mS

a + S
,

x′ = x

(
mS

a + S
− D

)
.

The constant y is a yield constant and represents the conversion of nutrient to
organism. S(0) and D are controlled by the experimenter and can be thought of
as environmental variables while m, a, and y are properties of the organism, to be
measured in the laboratory. There is also an underlying assumption that all other
effects are controlled and constant, temperature and pH, in particular.

With n competitors and the same assumptions, the equations become

(2.1)
S′ =

(
S(0) − S

)
D −∑n

i=1
xi

yi

miS
ai+S ,

x′
i = xi

(
miS
ai+S − D

)
.

Define λi as solution of the following equation:

(2.2)
miλi

ai + λi
= D.

The parameters λi, i = 1, 2, ..., n represent ”break-even” concentrations, values of
the nutrient where the derivatives of xi, i = 1, 2, ..., n are zero. In [18], the authors
used elementary mathematical methods to prove the following:

Theorem 2.1. : ([18]) Let 0 < λ1 < λ2 ≤ ... ≤ λn ≤ S(0). Then

lim
t→∞S(t) = λ1,

lim
t→∞x1(t) = S(0) − λ1 = x∗

1 > 0,

lim
t→∞xi(t) = 0, i = 2, 3, ..., n.

Competitive exclusion holds; only one competitor survives.

In [2] Armstrong and McGehee consider the general monotone functional re-
sponses in the chemostat equation. Then (2.1) takes the form

(2.3)
S′ =

(
S(0) − S

)
D −∑n

i=1 fi(S)xi,
x′

i = (fi(S) − D) xi,
S(0) ≥ 0, xi(0) > 0, i = 1, 2, ..., n,

where the functional response fi(S), i = 1, 2, ..., n, satisfies

(i) fi(0) = 0,
(ii) f ′

i(S) > 0, S > 0.

We note that from the scaling we may assume the yield constants yi = 1 for all
i = 1, 2, ..., n.

Let the ”break-even” concentration λi be defined as fi(λi) = D. Then we have
the following:
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Theorem 2.2. : ([2],[33]) Let 0 < λ1 < λ2 ≤ ... ≤ λn ≤ S(0). Then

lim
t→∞S(t) = λ1,

lim
t→∞x1(t) = x∗

1 = S(0) − λ1 => 0,

lim
t→∞x2(t) = 0, i = 2, 3, ..., n.

Competitive exclusion also holds for general monotone functional responses.

Proof. : Set

Φ = S +
n∑

j=1

xj − S(0),

and observe that in the variables Φ, x1,...,xn, (2.3) takes the form

(2.4)
Φ′ = −Φ,

x′
i = xi

[
fi

(
S(0) + Φ −∑n

j=1 xj

)
− D

]
,

i = 1, 2, ..., n.

Obviously

(2.5) lim
t→∞Φ(t) = 0,

and so it follows that the solutions of (2.3), (2.4) are positive and bounded. We are
led to consider the limiting system of (2.4)

(2.6) x′
i = xi

[
fi

(
S(0) −∑n

j=1 xj

)
− D

]
,

i = 1, 2, ..., n.

The relevant domain for (2.6) is the set

Ω =

⎧⎨
⎩x ∈ R

n
+ :

n∑
j=1

xj ≤ S(0)

⎫⎬
⎭ .

It is easy to verify Ω is positively invariant.
Let E1 =

(
S(0) − λ1, 0, ..., 0

)
be an equilibrium of (2.6). Define ∆ = {x ∈ Ω :∑

j xj = S(0) − λ1}, B = {x ∈ Ω :
∑

j xj < S(0) − λ1}, and C = {x ∈ Ω :
∑

j xj >

S(0) − λ1}. It will be shown that a solutions starting in C either remains in C and
converges to E1 or enters B and remains there.

First, observe that⎛
⎝ n∑

j=1

xj

⎞
⎠

′

=
n∑

j=1

xj

(
fj

(
S(0) −

∑
k

xk

)
− D

)
< 0,

for all x ∈ (C ∪ ∆) \ E1 by the monotonicity of the fj and the fact that S(0) −∑n
k=1 xk ≤ λ1. It follows immediately that if x(t) ∈ ∆ \ E1 for some t then

x(s) ∈ B for s > t. In particular, once a solution enters B, it can never get out.
Suppose the solution x(t) remains in C for all t ≥ 0. Introduce Lyapunov function

V (x) =
∑n

j=1 xj in C then V̇ (x) < 0. It is easy to see that

V̇ (x) = 0 for x ∈ C ∪ ∆ if any only if x = E1.

By the LaSalle’s invariance principle x(t) → E1 as t → ∞.
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Next we consider a solution x(t) of (2.6) which belongs to B for t ≥ 0 and for
which x1(0) > 0. For such a solution,

x′
1(t) = x1(t)

⎛
⎝f1

⎛
⎝S(0) −

n∑
j=1

xj

⎞
⎠− D

⎞
⎠ > x1(t) (f1(λ1) − D) = 0,

so limt→∞ x1(t) exists and exceeds x1(0) > 0. Obviously if V (x) = −x1 in B then
V̇ (x) < 0. Further, V̇ (x) = 0 for x ∈ B ∪ ∆ if and only if either x ∈ ∆ or x ∈ B
and x1 = 0. By LaSalle’s invariant principle and x′(t) > 0, x1(0) > 0 for t ≥ 0, we
conclude the w-limit set w (x(0)) ⊂ ∆ and x(t) → E1 as t → ∞. �

Obviously Theorem 2.2 is not only a generalization of Theorem 2.1 but also it’s
proof is much shorter than that of Theorem 2.1 in [18]. In the following we consider
chemostat equation with different removal rates:

(2.7)

S′ =
(
S(0) − S

)
D −∑n

i=1
miS
ai+S xi,

x′
i = xi

(
miS
ai+S − di

)
,

S(0) ≥ 0, xi(0) > 0, i = 1, 2, ..., n.

With different removal rate di, i = 1, 2, ..., n, the conservation property (2.5) no
longer holds and the techniques used in Theorem 2.2 will not work for the system
(2.7). Define λi, i = 1, 2, ..., n as solution of the following equation:

miλi

ai + λi
= di.

Hsu in [16] constructs a Lyapunov function for the system (2.7).

Theorem 2.3. : ([16],[33]) Suppose that

(H) 0 < λ1 < λ2 ≤ λ3 ≤ ... ≤ λn and λ1 < S(0).

Then

lim
t→∞S(t) = λ1,

lim
t→∞x1(t) = x∗

1 =
(
S(0) − λ1

)
/d1,

and
lim

t→∞xi(t) = 0, i = 2, 3, ..., n.

Proof. : On the set G =
{
(S, x1, ..., xn) ∈ R

n+1
+ : S > 0, x1 > 0

}
, define

(2.8) V (S, x1, ..., xn) =
∫ S

λ1

ξ − λ1

ξ
dξ + c1

∫ x1

x∗
1

η − x∗
1

η
dη +

n∑
i=2

cixi,

where ci = mi

mi−di
. Then it follows that in G

d

dt
V (S(t), x1(t), ..., xn(t)) = �V · (S′, x′

1, ..., x
′
n)T

= (S − λ1)
(

S(0) − S

S
− m1x

∗
1

a1 + S

)
+

n∑
2

(λ1 − λi)
mixi

ai + S
.

The term x∗
1 may be rewritten as

x∗
1 =

S(0) − λ1

d1
=

(
S(0) − λ1

)
(a1 + λ1)

m1λ1
,
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so that the term
S(0) − S

S
− m1x

∗
1

a1 + S
,

may be simplified to

− a1(S − λ1)
λ1S(a + S)

.

This in turn may be substituted into the expression for dV
dt to obtain

dV

dt
=

− (S − λ1)
2
a1

(a1 + S)Sλ1
+

n∑
2

mi (λ1 − λi)
xi

ai + S
≤ 0.

The set

E =
{

(S, x1, ..., xn) :
dV

dt
= 0

}
,

is given by
E = {(λ1, x1, 0, ...0) : x1 > 0} .

Since λ1 < S(0), the only invariant set in E is

S = λ1,

x1 =
(
S(0) − λ1

)
/d1,

xi = 0, i = 2, ..., n.

An application of the LaSalle’s invariance principle gives the desired result. �
We note that the Lyapunov function of the form (2.8) is not applicable to the

following model with general monotone functional responses and different removable
rates:

(2.9)
S′ =

(
S(0) − S

)
D −∑n

i=1 fi(S)xi,
x′

i = (fi(S) − di) xi,
S(0) ≥ 0, xi(0) > 0, i = 1, 2, ..., n.

where fi(S) is the general monotone functional response as in the system (2.3).
Obviously E1 = (λ1, x

∗
1, 0, ...0) be an equilibrium where x∗

1 = (S(0)−λ1)D
d1

.
In [25] Wolkowicz and Lu introduce a Lyapunov function for the system (2.9):

(2.10) V (S, x1, ..., xn) =
∫ S

λ1

Q(ξ)dξ +
∫ x1

x∗
1

ξ − x∗
1

ξ
d +

n∑
i=2

cixi,

where the function Q(S) and the positive constants ci, i = 2, ..., n will be determined
according to the following computations. Differentiating both sides of (2.10) with
respect to time t yields

(2.11)

V̇ = dV
dt = Q(S)

[(
S(0) − S

)
D −∑n

i=1 fi(S)xi

]
+x1−x∗

1
x1

[f1(S) − d1] x1 +
∑n

i=2 ci (fi(S) − di) xi

=
[
Q(S)

(
S(0) − S

)
D − x∗

1 (f1(S) − d1)
]

+x1 (f1(S) − d1)
[
1 − Q(S)

(f1(S)−d1)
f1(S)

]
+
∑n

i=2 xi [−Q(S)fi(S) + ci (fi(S) − di)] .

Choose

Q(S) =
x∗

1 (f1(S) − d1)(
S(0) − S

)
D

.
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Figure 2

Then from x∗ = (S(0)−λ1)D
d1

, (2.11) becomes

(2.12)
V̇ = x1 (f1(S) − d1)

(
1 − (S(0)−λ1)f1(S)

d1(S(0)−S)

)

+
∑n

i=2 xi

[
ci (fi(S) − di) − fi(S)(f1(S)−d1)(S(0)−λ1)

(S(0)−S)d1

]
.

The first term in (2.12) is nonpositive and equals to zero when x1 = 0 or S = λ1.
If we can choose positive constants ci, i = 2, 3, ..., n such that

(2.13) hi(S) = ci (fi(S) − di) −
fi(S) (f1(S) − d1)

(
S(0) − λ1

)(
S(0) − S

)
d1

≤ 0,

then from LaSalle’s invariance principle, it follows that (S(t), x1(t), x2(t), ..., xn(t)) →
(λ1, x

∗
1, 0, ..., 0) as t → ∞. From (2.13) and the assumption λ1 < λ2 ≤ λ3 ≤ ... ≤

S(0), we note that
hi(S) ≤ 0 for λ1 ≤ S ≤ λi .

Hence we need to choose ci > 0 satisfying

ci <
fi(S) (f1(S) − d1)

(
S(0) − λ1

)
(fi(S) − di)

= wi(S), for λi ≤ S ≤ S(0),

ci > wi(S), for 0 < S < λ1,

(See Fig.2)
or equivalently

(2.14) max
0≤S≤λ1

wi(S) < ci < min
λi≤S≤S(0)

wi(S).

In [25] Wolkowicz and Lu verify that by symbolic computation, the Lyapunov
function works for the sigmoidal-type functional responses

fi(S) =
miS

2

(ai + S)(bi + S)
, n ≥ 1.

Hsu and Waltman [24] succeeded in applying the type of Lyapunov function (2.10)
in their study on the two species competition in chemostat when one competitor
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Figure 3

produces a toxin. We note that the type of Lyapunov function (2.8) does not work
for the model in [24].

In [28] Bingtuan Li constructs a Lyapunov function V (S, x1, ..., xn) for the system
(2.9) as follows

V =
∫ S

λ1

(f1(ξ) − d1)
(
S(0) − λ1

)
d1

(
S(0) − ξ

) dξ +
∫ x1

x∗
1

η − x
(
1

η
dη

+C

(
n∑

i=1

xi

)
+

n∑
i=2

Mxi,

where M is a constant to be determined and C(u) is a continuously differentiable
function such that C ′(u) is a piecewise linear function shown as Fig.3

Let Dmax = max{D, d1, ..., dn} and Dmin = min{D, d1, ..., dn}.
In [28] the author shows that if DS(0)

Dmin
−DS(0)

Dmax
< λ2−λ1, then limt→∞ (S(t), x1(t), x2(t),

..., xn(t)) = E1.
Furthermore the method can also be applied to the case of nonmonotone func-

tional responses, for example, the inhibited functional responses fi(S) = mS
(a+S)(b+S) .

In the following we propose an open problem for the competition of n microor-
ganisms for a single limited nutrient:

Open problem 1: Under the assumption (H), prove competitive exclusion holds for
the system (2.9) with any general monotone functional responses and any different
removable rates.
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Next we consider the exploitative competition of n microorganisms for two com-
plementary nutrients in a chemostat. The model takes the form [20]:

(2.15)

S′ =
(
S(0) − S

)
D − 1

ys1
f1(S,R)x1 − 1

ys2
f2(S,R)x2,

R′ =
(
R(0) − R

)
D − 1

yr1
f1(S,R)x1 − 1

yr2
f2(S,R)x2,

x′
1 = (f1(S,R) − D) x1,

x′
2 = (f2(S,R) − D) x2,

S(0) ≥ 0, R(0) ≥ 0, x1(0) > 0, x2(0) > 0,

where S(0), R(0) are the input concentrations and ysi, yri are the yield constants of
i-th species, with respect to nutrient S and R respectively and

fi(S,R) = min (pi(S), qi(R)) ,

pi(S) =
msiS

asi + S
, qi(R) =

mriR

ari + R
.

Since S′ + x′
1

ys1
+ x′

2
ys2

= S(0) −
(
S + x1

ys1
+ x2

ys2

)
, it follows that

(2.16) S(t) +
x1(t)
ys1

+
x2(t)
ys2

= S(0) + O
(
e−Dt

)
.

Similarly we have

(2.17) R(t) +
x1(t)
yr1

+
x2(t)
yr2

= R(0) + O
(
e−Dt

)
.

From conservation properties (2.16) and (2.17), we reduce the system (2.15) to its
limiting system

(2.18)
x′

1 = (f1(S,R) − D) x1,
x′

2 = (f2(S,R) − D) x2,

where

S = S(0) − x1

ys1
− x2

ys2
,

R = R(0) − x1

yr1
− x2

yr2
.

Let λsi, λri be the solution of the equation

msiλsi

asi + λsi
= D,

and
mriλri

ari + λri
= D.

Biologically λsi, λri are the break-even concentrations of i-th species with respect
to nutrients S and R respectively.

Definition 2.1. : Let Ci = ysi

yri
, Ti = R(0)−λri

S(0)−λsi
. we say i-th species is S-limited

(R-limited) if Ti > Ci (Ti < Ci).
For i = 1, 2, the isocline x′

i = 0 of the system (2.18) in the x1x2 plane is of type
either in Fig.4a or Fig.4b.
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Figure 4

With the various combinations of the isoclines x′
1 = 0, x′

2 = 0, it is easy to see
that the system (2.18) is similar to the classical two-dimensional Lotka-Volterra
competition model. For details, the reader may consult [20]. In [29] Li and Smith
extend the results in [20] to the case of n species competing for two complementary
nutrient S and R. They complete the study for the case n = 3.

For the cases n > 3, there are still some open problems left. In [34] Huisman
and Weissing did extensive numerical studies on the system of n species competing
for k complementary nutrients. They found that for k = 3 or k = 5 there are some
parameters ranges for the existence of periodic oscillations and ”chaos”.

The above discussions are for the case of n species competing for k complemen-
tary nutrients with same dilution rates D. With the assumption of same dilution
rates D, we are able to reduce the system of n + k equations to its limiting system
of n equations. For case of different removable rates, the problem is open. We
propose the following open problem:

Open problem 2: (i) Analyze the follow system of one species consuming two com-
plementary nutrient S and R:

S′ =
(
S(0) − S

)
Ds − 1

ys1
f1(S,R)x1,

R′ =
(
R(0) − R

)
Dr − 1

yr1
f1(S,R)x1,

x′
1 = (f1(S,R) − d1) x1,

S(0) ≥ 0, R(0) ≥ 0, x1(0) > 0.
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(ii) Analyze the following system of two species competing for the two complemen-
tary nutrient S and R:

S′ =
(
S(0) − S

)
Ds − 1

ys1
f1(S,R)x1 − 1

ys2
f2(S,R)x2,

R′ =
(
R(0) − R

)
Dr − 1

yr1
f1(S,R)x1 − 1

yr2
f2(S,R)x2,

x′
1 = (f1(S,R) − d1) x1,

x′
2 = (f2(S,R) − d2) x2,

S(0) ≥ 0, R(0) ≥ 0, x1(0) > 0, x2(0) > 0.

3. Predator-Prey System

Let x(t), y(t) be the population densities of prey and predator at time t respec-
tively. Consider the following Gause-type predator-prey system [17]:

(3.1)
x′ = xg(x) − cp(x)y,
y′ = (p(x) − d)y,
x(0) > 0, y(0) > 0,

where g(x) is the intrinsic growth rate of prey species, p(x) is the specific growth
rate of predator species, c > 0 is the conversion rate and d > 0 is the death rate of
predator species. We assume g(x) and p(x) satisfy the followings

(H1): g(0) > 0 and there exists K > 0 such that g(K) = 0, g(x) > 0 for
0 ≤ x < K. (K is called the carrying capacity of prey species)

(H2): p(0) = 0, p′(x) > 0 for 0 ≤ x ≤ K.

From (3.1), x′ = 0 if and only if y = xg(x)
cp(x) and y′ = 0 if and only if x = x∗ where

x∗ satisfies p(x∗) = d. We call the curve y = xg(x)
cp(x) the prey-isocline and the curve

x = x∗ predator isocline.
In [10], Freedman showed that the unique interior equilibrium (x∗, y∗) exists if

x∗ < K and (x∗, y∗) is locally asymptotically stable provided d
dx

(
xg(x)
cp(x)

)
|x=x∗ < 0 .

To show that (x∗, y∗) is globally stable in the first quadrant of xy-plane, Hsu [17]
introduced the following Lyapunov function

(3.2) V (x, y) =
∫ x

x∗

p(ξ) − d

p(ξ)
dξ + c

∫ y

y∗

η − y∗

η
dη.

Then it follows that

(3.3)

V̇ = dV
dt (x(t), y(t))

= p(x)−d
p(x) (xg(x) − cp(x)y) + cy−y∗

y (p(x) − d) y

= p(x)−d
p(x) (xg(x) − cp(x)y∗ − cp(x)(y − y∗)) + c(y − y∗)(p(x) − d)

= c (p(x) − p(x∗))
(

xg(x)
cp(x) − y∗

)
≤ 0,

provided the horizontal line y = y∗ and the vertical line x = x∗ separate the prey
isocline y = xg(x)

cp(x) into two disjoint parts (See Fig.5)
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Figure 5

A. Ardito and P. Ricciardi [1] improved the above results by introducing the
following mixed type Lyapunov function:

(3.4) V (x, y) = yθ

∫ x

x∗

p(ξ) − d

p(ξ)
dξ +

∫ y

y∗
ηθ−1(η − y∗)dη.

Then it follows that

V̇ (x, y) = yθ (p(x) − d)
[
xg(x)
p(x)

− y∗ + θ

∫ x

x∗

p(ξ) − d

p(ξ)
dξ

]
.

We note that if we choose θ = 0 in (3.4) then V (x, y) becomes (3.2). In [1] the
authors showed that with appropriate θ > 0, V (x, y) ≤ 0 in several important
examples, e.g., p(x) = mx

a+x , g(x) = r
(
1 − x

K

)
.

In [8] Hsu and Chui consider the following three level food chain model:

(3.5)

x′ = rx
(
1 − x

K

)− m1x
a1+xy,

y′ =
(

m1x
a1+x − d1

)
y − m2y

a2+y z,

z′ =
(

m2y
a2+y − d2

)
z.

In order to prove the extinction of top predator z in (3.5), they introduce the
Lyapunov function of the following form:

(3.6) V (x, y, z) =
∫ y

y∗
ηθ−1 (η − y∗) dη + yθ

∫ x

x∗

p1(ξ) − d1

p1(ξ)
dξ + cz.

Choosing appropriate θ > 0 and c > 0 in (3.6) such that V̇ (x, y, z) ≤ 0, they proved
the global stability of the equilibrium (x∗, y∗, 0).

In [7] Chui also applied the mixed type Lyapunov function to the following one
prey-two predators model [19]:

(3.7)

x′ = rx
(
1 − x

K

)− m1x
a1+xy1 − m2x

a2+xy2,

y′
1 =

(
m1x
a1+x − d1

)
y1,

y′
2 =

(
m2x
a2+x − d2

)
y2.
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Let 0 < λ1 < λ2, K < a1 + 2λ1, p1(x) = m1x
a1+x . Construct the following Lyapunov

function

(3.8) V (x, y1, y2) = yθ
1

∫ x1

λ1

p1(ξ) − d1

p1(ξ)
+

∫ y1

y∗
1

ηθ−1 (η − y∗
1) dη + cyθ

1y2.

Choosing suitable c > 0, θ > 0, Chui is able to show V̇ (x, y1, y2) ≤ 0 for the system
(3.7).

Next we consider the Lesile-type predator-prey system ([22], [23])

(3.9)
x′ = xg(x) − p(x)y,
y′ = y

(
δ − β y

x

)
, δ, β > 0,

x(0) > 0, y(0) > 0.

where g(x) and p(x) satisfies the hypotheses (H1) and (H2).
In [22] Hsu and Hwang showed that there exists a unique interior equilibrium

(x∗, y∗) for the system (3.9). The equilibrium (x∗, y∗) is locally asymptotically
stable if h′(x∗) ≤ 0 where y = h(x) = xg(x)

p(x) is the prey isocline.
For the system (3.9), we obtain the similar result as the system (3.1) by con-

structing the following Lyapunov function

V (x, y) =
∫ x

x∗

ξ − x∗

ξp(ξ)
dξ + c

∫ y

y∗

η − y∗

η
dη,

where c = x∗
βy∗ . Then

V̇ =
(x − x∗)

x

(
xg(x)
p(x)

− y∗
)
− cβ

(y − y∗)
x

≤ 0,

provided

(3.10) (x − x∗)
(

xg(x)
p(x)

− y∗
)

< 0 for 0 < x < K.

In particular if g(x) = r
(
1 − x

K

)
and p(x) = kx then (3.10) hold and hence (x∗, y∗)

is globally stable.

4. Reaction Diffusion Systems

Let Ω be a bounded domain in R
N with smooth boundary, α(x) and β(x) be

continuous function on ∂Ω, and the matrix (aij(x)) be symmetric and positive
definite.

First we consider the scalar nonlinear PDE

(4.1)
ut =

∑N
i,j=1

∂
∂xi

(
aij(x) ∂u

∂xj

)
+ f(x, u) in Ω,

α(x)u + (1 − α(x)) ∂u
∂ν = β(x) in ∂Ω.

Take ([13],[30])

(4.2)
V (u(t, ·, φ) =

∫
Ω

[
1
2

∑
aij(x) ∂u

∂xi

∂u
∂xj

− F (x, u)
]
dx

+
∫

∂Ω
a
[

α(x)
2 u2 + 1−α(x)

2

(
∂u
∂ν

)2 − βu
]
dσ
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where

a(y) =

⎛
⎜⎝∑

i

⎡
⎣∑

j

aij(y)Nj(y)

⎤
⎦

2
⎞
⎟⎠

1
2

, F (x, u) =
∫ u

0

f(x, ξ)dξ

and N(y) is the unit outer normal to ∂Ω at y.
Then from (4.2) it follows that

d

dt
V (u(t, ·, φ)) = −

∫
Ω

(
∂u

∂t

)2

dx ≤ 0.

Next we consider the following reaction-diffusion PDE system with Neumann bound-
ary condition:

(4.3)
∂u
∂t = D∆u + f(u) in Ω ⊆ R

N ,
∂u
∂ν = 0 in ∂Ω,

where u = u(x, t) ∈ R
n, D = diag(d1, ..., dn), di > 0, i = 1, ..., n, f : R

n
+ −→ R

n is
continuously differentiable. We assume there exists a Lyapunov function V (u) for
the corresponding ODE system

(4.4) u′ = f(u).

Then V (u) satisfies

(4.5) V̇ (u) = graduV · f(u) ≤ 0 for all u ∈ R
n
+.

To study the global behavior of the system (4.3), we introduce the following Lya-
punov functional ([35], [36], [14])

(4.6) W (t) =
∫

Ω

V (u(x, t)) dx.

Then from (4.5), (4.6), we have

(4.7)

dW
dt =

∫
Ω

graduV · ∂u
∂t dx

=
∫
Ω

graduV · (D∆u + f(u)) dx

=
∫
Ω

(∑n
i=1 di

∂V
∂ui

∆ui

)
dx +

∫
Ω

V̇ dx.

From Green’s identity, it follows that

(4.8)

∫
Ω

∂V
∂ui

∆uidx =
∫

∂Ω
∂V
∂ui

∂ui

∂ν − ∫
Ω
∇x

(
∂V
∂ui

)
· ∇xuidx

= − ∫
Ω

[∑n
j=1

∑n
k=1

∂2V
∂ui∂uk

∂ui

∂xj

∂uk

∂xj

]
dx

Thus, in addition to the assumption (4.5), we assume

(4.9) the matrix
(

∂2V

∂ui∂uk

)
is positive definite for i, k = 1, 2, ..., n

then from (4.7), (4.8) we have

(4.10)
dW

dt
≤ 0.

In particular if V (u) satisfies the followings:

(i) V (u1, ..., un) =
n∑

i=1

hi(ui), i.e. V (u) is of separable form,(4.11)

(ii) h′′
i (u) ≥ 0 i = 1, 2, ..., n,(4.12)
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then (4.9) holds.
For the diffusive predator-prey system corresponding to ODE (3.1):

(4.13)

∂u
∂t = d1∆u + (ug(u) − cvp(u)) in Ω,
∂v
∂t = d2∆v + (p(u) − d)v in Ω,
∂u
∂ν = ∂v

∂ν = 0 in ∂Ω,
u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0 in Ω.

If we take the Lyapunov functional W as

(4.14) W (t) =
∫

Ω

V (u, v)dx,

where V (u, v) is (3.2). Then V (u, v) satisfies (4.11) and (4.12). Hence if (3.3) holds
then equilibrium (u∗, v∗) is globally stable for the system (4.13). Although the
function V (u, v) introduced in (3.4) is a Lyapunov function for the corresponding
ODE (3.1), the functional W defined in (4.14) does not necessarily satisfy (4.10)
since V (u, v) defined in (3.4) does not satisfy (4.11) and (4.12). However in [21] we
show that if d

du

(
ug(u)
p(u)

)
|u=u∗ < 0 then the equilibrium (u∗, v∗) of the RD system

(4.13) is locally asymptotically stable for any diffusion constants d1 > 0, d2 > 0.
Hence we propose the following open problem:

Open Problem 3: Let d
du

(
ug(u)
p(u)

)
|u=u∗ < 0. Prove or disprove the global stability

for the equilibrium (u∗, v∗) of the system (4.13).

Next we consider the following diffusive predator-prey system with Lesile-type
[9]

(4.15)

∂u
∂t = d1∆u + u(λ − αu − βv) in Ω,
∂v
∂t = d2∆v + µv

(
1 − v

u

)
in Ω,

∂u
∂ν = ∂v

∂ν = 0 in Ω,
u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω.

The system (4.15) has a unique constant equilibrium (u∗, v∗) where u∗ = v∗ = λ
α+β .

In [9] the authors construct the following Lyapunov functional

W (t) =
∫

Ω

V (u(x, t), v(x, t)) dx,

where

(4.16) V (u, v) =
∫ u

u∗

ξ − u∗

ξ2
dξ +

β

µ

∫ v

v∗

η − v∗

η
dη.

Denote
f(u, v) = u (λ − αu − βv) , g(u, v) = µv

(
1 − v

u

)
.

We have

(4.17) V̇ =
∂V

∂u
f(u, v) +

∂V

∂v
g(u, v) = −α

(u − u∗)2

u
− β

(v − v∗)2

u
≤ 0

and

(4.18)
W ′(t) =

∫
Ω

(
u−u∗

u2 d1∆u + cv−v∗
v d2∆v

)
dx +

∫
Ω

V̇ dx

= − ∫
Ω

(
d1

2u∗−u
u3 |∇u|2 + cd2

v∗
v2 |∇v|2

)
dx +

∫
Ω

V̇ dx
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If α > β then 2u∗ = 2λ
α+β > λ

α . From the first equation of (4.15), we have

∂u

∂t
≤ d1∆u + u(λ − αu).

Then u(x, t) < U(x, t) and U(x, t) → λ
α as t → ∞. Hence 2u∗ − u(x, t) > 0. From

(4.17), (4.18) we have W ′(t) < 0 and the following

Theorem 4.1. : When α > β, the constant equilibrium (u∗, v∗)attracts every
positive solution of (4.15).

Next we show how the restriction α > β can be relaxed by using a different
Lyapunov function. Define

V ∗(u, v) =
∫ u

u∗

ξ2 − (u∗)2

ξ2
dξ + c

∫ v

v∗

η − v∗

η
dη,

with c > 0 to be determined. Let

W ∗(t) =
∫

Ω

V ∗ (u(x, t), v(x, t)) dx.

In [9] the authors proved the following theorem.

Theorem 4.2. : Suppose α
β > s0, where s0 ∈ (

1
5 , 1

4

)
is the unique positive zero of

h(s) = 32s3 + 16s2 − s − 1.

Then (u∗, v∗) attracts every positive solution of (4.15).

Open Problem 4: We conjecture the conclusion of Theorem 4.2 is valid for all
α, β > 0.

5. Discussion

In the previous sections we presented the constructions of Lyapunov functions
for various mathematical models in population biology. However it is difficult to
construct a suitable Lyapunov function to prove the global stability of a locally
asymptotically stable equilibrium. In case when we do not succeed in construct-
ing an appropriate Lyapunov, we need to use some non-Lyapunov approaches to
complete the proof. In the following we shall review several non-Lyapunov methods.

First for the two-dimensional ODE system

(5.1)
x′ = f(x, y),
y′ = g(x, y),

if we are able to eliminate the possibility of the existence of periodic orbits then
from Poincaré-Bendixson Theorem [12] we establish the global stability of the local
stable equilibrium. To exclude the existence of periodic solutions of (5.1), we may
apply Dulac’s criterion, i.e. to find h(x, y) ∈ C1 such that

∂(hf)
∂x

+
∂(hg)

∂y

has same sign. Interested readers may consult the papers [19], [22], [26]. The
another approach combined with Poincaré-Bendixson Theorem is to show∫

Γ

∂f

∂x
+

∂g

∂y
dt < 0
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for any periodic orbit Γ of (5.1). Then the periodic orbit Γ is orbitally stable. Since
equilibrium (x∗, y∗) is asymptotically stable, it is impossible to have a stable limit
cycle enclosing a stable equilibrium. Hence there exists no periodic solution. The
readers may consult [33](p.54), [5].

For three dimensional irreducible competition system, Hirsch and Smith [15], [32]
showed that the Poincaré-Bendixson Theorem holds. To rule out the possibility of
the existence of periodic solutions, Chih et al [6] construct a surface and a vector
field to obtain a contradiction to Stoke’s Theorem. In [25], Hsu and Waltman
apply the uniform persistence theorem to obtain global stability of a local stable
equilibrium for a three-dimensional competitive system from a mathematical model
of two species competing for a single limit resource in the chemostat with external
inhibitor. For n > 3, Mallet-Paret and Smith [31] establish Poincaré-Bendixson
Theorem for a monotone feedback system.
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