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ON A SYSTEM OF REACTION-DIFFUSION EQUATIONS ARISING 

FROM COMPETITION IN AN UNSTIRRED CHEMOSTAT* 


SZE-BI HSUt AND P. WALTMANS 

Abstract. A system of reaction-diffusion equations modeling two-species competition in an unstirred che- 
mostat is considered. The asymptotic behavior of solutions is given as a function of the parameters, and it is 
determined when neither, one, or both competing populations survive. Techniques include the maximum 
principle, theory of uniform persistence in infinite-dimensional dynamical systems, and the theory of strongly 
order-preserving semidynamical system. 

Key words. chemostat, maximum principle, uniform persistence, infinite-dimensional system, strongly 
order-preserving semiflow 

AMS(M0S) subject classification. 92A 17 

I .  Introduction. The chemostat has a well-established role as a model open system 
in ecology as attested to in the survey articles [FS], [HET], [JM],  [V],  [W2], and 
[WHH].  In the simplest case, the theory [HHW], [Hsu], [Wl] ,  and experiments [ H H ]  
are in agreement. Basically, the chemostat consists of a nutrient input-with all nutrients 
needed for growth in abundance except one-pumped at a constant rate into a well- 
mixed culture vessel whose volume is kept constant by pumping the contents out at the 
same rate. In addition to being a piece of laboratory apparatus for the continuous culturing 
of bacteria, it is a model for a very simple lake where exploitative competition is easily 
studied. The input concentration of nutrient S ' O )  and the washout rate D are assumed 
constant and are under the control ofthe experimenter. If S( t )  is the nutrient concentration 
at time t, and if u( t ) ,  v( t )  are the concentration ofthe competing populations, the model 
is given by [HET], [TW], [WHH] 

where miis the maximal growth rate and a, is the Michaelis-Menten (or half-saturation) 
constant. The mathematical analysis shows that only one of the populations u or v survives. 
However, the coexistence of competing populations is obvious in nature. A candidate 
for an explanation is to remove the "well-mixed" hypothesis. 

A piece of laboratory apparatus designed for this purpose by Lovitt and Wimpenny 
[LW] is called a gradostat. The mathematical analysis of this apparatus has been the 
subject of several papers [T I ,  [JSTW], [STW], and a survey of the general results is 
given in [SW]. The simple gradostat consists of n vessels with constant nutrient input 
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into the left vessel and output in the leftmost and rightmost vessels. The contents of the 
vessel are pumped into the nearest neighboring vessels at the same constant rate. This 
creates a "discrete" nutrient gradient. The equations take the following form: 

where 

m,,S m"S
f;l(S)= -a,,+ S ' h ( S )= n,+S. 

S,( t ) ,u i ( t ) ,  v, ( t )are the concentration of nutrient, competing species at the ith vessel. 
Another alternative is simply to use one vessel and remove the "well-stirred" hy- 

pothesis of the basic chemostat yielding a system of reaction-diffusion equations of the 
following form (assuming equal diffusion rates, see 8 5 for comments): 

with boundary conditions 

as 
-( t , 0 ) = -S(O),
ax 

du dv 
-( t , 0 ) = - ( t , 0 ) = 0, 
ax ax 

as
- ( t ,  1 )  + rS(t , 1 )  = 0, 
ax 

-
du 

( t ,  1) + ru(t , 1 )  = 0, 
ax 

dv 
- ( t ,  1) + rv(t , 1 )  = 0 
ax 
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and initial conditions 

S(0, x )  = So(x) L 0, 

v(0, x )  = vo(x)2 0, vo(x) z 0. 

The steady-state behavior of this system was investigated in [SOW]. Standard bi- 
furcation theorems were used to show coexistence, but without any stability results. In 
this paper, we investigate the above reaction-diffusion system as a dynamical system, 
and we do obtain some stability results. The point of view is much like that of [DRS], 
particularly as reinterpreted in [HS, 8 51, where strong use of the persistence theorem 
of [HW] is used. The paper may be considered a dynamical extension of the steady-state 
results in [SOW]. We note that [SOW] shows that the "steady states" are not constant 
functions, but space-dependent, as we would anticipate from the boundary conditions. 

The boundary conditions in ( 1.2) are fairly intuitive and appropriate for this type 
of equation; a derivation of the condition at the left-hand end was given in [SOW], and 
the condition at the other end follows similarly. However, the derivative conditions are 
not clearly defined in terms of the operating parameters and are not directly related to 
the parameters of the original basic chemostat model. It is instructive to consider the 
problem in a heuristic way to see how the units compare between the basic chemostat 
and the chemostat without the assumption of well mixing. To keep matters simple, we 
consider only the nutrient equation without consumption (equivalently, zero initial con- 
ditions for the microorganisms). The basic chemostat takes the form S t ( t )  = (S(O' -
S( t ) )D .  The units of Sare concentration, mass/volume. The total mass of substrate is 
VS, where V is the volume of the vessel; if F is the flow rate (the rate of the pump 
operating the chemostat), the parameter D is defined as F/V. Rewriting the above equation 
for the mass of the substrate in the vessel yields 

Equation ( 1.4) simply says that the rate of change in mass is proportional to the difference 
between the incoming flux and the outgoing flux. 

When switching to the partial differential equation (PDE), the basic quantity 
S(t ,  x )  becomes a density measured in units of mass per unit length. The nutrient equation 
for the unstirred chemostat is governed by 

(1.5) s,= dS,. 


Integrate over the interval [0, 11 to obtain an equation for the total mass of nutrient, 


The two terms on the right-hand side represent the flux at the right and left endpoints, 
respectively, and so ( 1.6) is the counterpart of ( 1.4). These quantities should be given 
by the boundary conditions. The flux at the left end is given by S'O'F, where S'O' cor-
responds to the S ' O )  of the basic chemostat (as a density, i.e., the units are m/l) .  The 
condition at the left endpoint can be written as 

ds,(t, 0)  = -S(O)F, 

or if we define ( a  slight abuse of terminology) 
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the first boundary condition in ( 1.2) is obtained. Similarly, the flux at the right-hand 
end is given by dS, i t ,  1 ) = F S ( t ,  1 ) . Thus, if r is defined by r = F l d ,  then the second 
boundary condition holds. 

Equation ( 1.6) shows that the rate of change of the mass of the nutrient in the vessel 
is proportional to the difference between the input nutrient flux and the output nutrient 
flux, just like the basic chemostat. The diffusion coefficient d has units length squared 
over time, 12/ t .Thus the units match. 

2. Simplification. The following basic lemma allows the problem to be simplified. 
LEMMA2.1. The solutions S ( t ,  x ) ,  u ( t ,  x ) ,  v ( t ,  x )  of (1 .1)-(1.3)  exist for all 

t > 0 ,  0 < x < 1 ,  are nonnegative, bounded, and 

for some a > 0 ,  where 

Proof. Local existence is standard [Sm, p. 1931. The positivity of solutions can be 
established by showing that the region { ( S ,  u ,  v) l  S 2 0 ,  u 2 0 ,  u 2 0 )  is invariant 
[CCS] and by using the strong maximum principle [L, p. 531. 

Let w ( t ,  x )  = S ( t ,  x )  + u ( t ,  x )  + v ( t , x )  - 4 ( x ) .Adding the equations, initial 
conditions and boundary conditions yield that w ( t ,x ) satisfies 

Let 170 > 0 and $ = $(x)> 0 be the least eigenvalue and principal eigenfunction, re- 
spectively, for 

It follows from [CL, p. 2121 that $(x)> 0 on ( 0 ,  1 ).  However, uniqueness of 
solutions of initial value problems allow us to conclude that $ ( 0 ) > 0 and $( 1 ) > 0 or 
$ ( x )> 0 on [O, 11 as claimed. 

We seek to solve (2 .3)-(2.6) by separation of variables. Following [L] ,  let 

where a > 0 is to be determined. It follows easily that z ( x ,  t )  satisfies 

dz dz 
- (2,  0 )  = 0 ,  - ( t ,  1 )  = 0.
dx dx 
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Let a satisfy 0 < a < 70.Then using (2.10),(2.1l),  and the maximum principle, it 
follows that z(t,x)has no nonnegative maximum M at interior point unless M = 0. 
Hence 

z(t, x) 5 max z(0, x). 
0 5 x 5  l 

Similarly, replacing zby -z in (2.10)and (2.11 ) yields that 

-z(t, x)5 max (-z(0, x)) or z(t, x) 2 - min z(0, x) 
osxs 1 osxs l 

Hence, (2.10)and (2.11 ) imply that Iz(t, x) 1 5 C for some C > 0.Equation (2.1) now 
follows from (2.9),and the lemma is established. 

The function +(x)represents the distribution of nutrient in the case where there 
was no consumption (uo(x)= 0, vo(x) = 0).The lemma reflects the fact that the total 
nutrient and equivalent organism biomass equilibrate to this function as well. This is 
essentially a definition of the chemostat if all variables are taken into account. The pa- 
rameters S'O)and r are reflected in the function 4(x).These are the operating parameters 
of the chemostat. 

Solutions of ( 1.1 )-( 1.3 ) generate a semidynamical system on C+X C+X C+,where 
C+is the set of nonnegative, continuous functions on [0,1 1  with the usual supremum 
norm. This semidynamical system is denoted by T(t)x,where t 2 0 and x represents 
the triple of initial conditions given by ( 1.3).For t > 0,the operator is compact [HI .  
The lemma shows that the system is dissipative and hence has a connected global attractor 
[H, p. 191.Equation (2.1) allows us to conclude that the attractor (and hence all omega 
limit sets) lies in the subset given by S + u+ v -4 = 0.On this set, ( 1.1 )-( 1.3)becomes 

-

du 
(t,  0)= 0, -

du 
(t,  1 )  + ru(t,1 )  = 0, 

ax ax 


where 

This is the system that is investigated in the following sections. Theorem 4.1of [Th] 
connects the dynamics of ( 1.1 )-( 1.3)to the dynamics of system (2.13)-(2.15)whenever 
we are able to show the existence of a stable attractor for (2.13)-(2.15). 

3. Single population growth and extinction results. As noted in the Introduction, 
the parameters S'O)and r are under the control of the experimenter. The constants rn, 
and a , ,  i = 1 ,  2,represent properties of the organisms. Equal diffusion is a simplification. 
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It is important to know that the two classes of organisms are viable under the chemostat's 
operating parameters without competition. The population of each must be able to survive 
alone in the chemostat if it is to be able to survive with a competitor. 

If the initial condition v o ( x )= 0 , then a lower-dimensional dynamical system results, 
formally equivalent to setting v( t ,  x )= 0 in ( 1 . 1  ). Since Lemma 2.1 still holds, studying 
the growth of a single population is equivalent to setting v ( t , x ) = 0 in (2.13). Thus it 
is appropriate to consider 

If u ( t ,  x )  = 0 in (2 .13) ,then we have 

-

dv 
( t ,  0 )  = 0 ,  -

dv 
(1, I )  + r v ( t ,  1 )  = 0.  

ax ax 

The following theorem provides conditions under which an organism cannot survive 
in the given environment, that is, given the fixed washout rate r and the fixed input 
concentration 9'). 

THEOREM3.1. ( i )  If m l  < Xod, then u ( x ,  t )  decays to zero exponentially as t -, 
a s ,  where X o  > 0 is the first eigenvalue of 

(ii)  I f m 2  < pod, then v ( x ,  t )  decays to zero exponentially as t + a s ,  where po > 
0 is the first eigenvalue of 

This theorem states that, if the maximum growth rate is small or if the diffusion 
coefficient is large, then the organism tends to extinction as time becomes large. We also 
note for reference that [ K ]  

Sd ( $ ' ( x ) ) ~d x  + rq2(1 ) 
A, = min > 0 ,+ [Sd wl ( x )$ ' ( x )dxl ' I 2  

S ,  ($1(x>>2d x  + r f i2 (1 1  
(3 .5 )  pg = min > 0 ,

+ [Sd ~ z ( x ) $ ~ ( x )dxl 
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where 

Proof. We prove part ( i ) ;  (i i)  follows similarly. From Lemma 2.1, given E > 0 ,  
there exists to > 0 such that S ( t ,x ) 5 4(x )+ E for all t 2 to ,  0  5 x 5 1 .  Let U ( t ,x ) be 
the solution of 

We show that u ( t ,  x )  < U ( t ,  x )  for all t L to ,  0  S x 5 1 .  Let w ( t , x )  = u ( t ,  x )  -
U ( t ,x ) .Then, from (2.13)and (3.1 ), it follows that 

-
dw 

(1, 0 )  = 0 ,  -
dw 

( t ,  1 )  + rw( t ,  1 )  = 0 ,  
ax ax 

The above assertion is equivalent to w ( t ,  x )  <0 for all t L to, 0  5 x 5 1 .  
If not, let t l be the first time for which there is an x l  with w ( t l ,xl) = 0. Then, from 

(3 .9 ) for 0 < x < 1, to  < t S t l , it follows that 

From the maximum principle [PW, p. 1601, the maximum of w on 0 5 x 5 1, to 5 t 5 
t l  must occur along S1 = { t o S t S t l ,  x  = 0 )  or S2 = ( t o S t S t l ,x = 1 )  or S3 = 

{ t = to, 0  < x < I ) .  Equation (3.11) rules out a nonnegative maximum occurring on 
S3 ,If w has a nonnegative maximum w ( t ,  0 )  on S I ,then, from the maximum principle 
[PW, p. 1701, it follows that ( d w / d x ) ( t ,  0 )  < 0 , which contradicts (3 .10) .Similarly, if 
w has a nonnegative maximum w( t  , 1) on S2,then (dwl  ax)(  t  , 1 ) > 0 ,which contradicts 
(3.10) since ( d w / d x ) ( t ,1 )  = - y w ( t ,  1 )  5 0.  

Next, we establish that U ( x ,  t )  5 Ke-"('-'o) for some K > 0 , a > 0 and for all t L 
to ,  0  S x 5 1 .  Let $ ( x ) > 0 ,  0  5 x S 1 ,  1 1 $ 1 1 2  = 1 be the principal eigenfunction corre- 
sponding to the first eigenvalue X o  >0 of (3 .2) .Apply "separation of variables" by setting 
U ( x ,  t )  = z ( x ,  t ) $ ( x )  e-""-'~',where a > 0 is to be determined. Then z ( x ,  t )  satisfies 
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Consider the square bracket in (3.12).From the assumption ml/ d  < X o  and (3 .2 )  

with X = Xo, it follows that 

* d*" + a* + m l ( m ( x )+ 
+ 4 ( x )+ E 

provided that E > 0 ,  a > 0 are sufficiently small. From (3 .12) ,we have 

Equations (3 .13) ,  (3 .14) ,  and the maximum principle yield 

U ( x ,  to) 
z ( x , 1 )  5 z ( x ,  to) s sup

o s x ,  I ( *(x)  ) 
Hence, it follows that u ( x ,  t )  5 U ( x ,  t )  5 K~-*"- 'o )for some K > 0.  This completes 
the proof of Theorem 3.1 ( i ) .  

THEOREM3.2. If m l  > Xod and u ( t ,  x )  is the solution of (3.1 ), then lim,,, u ( t ,  
x )  = B ( x ) ,  where C(x)is the unique positive steady-state solution of' 

-
du 

( t ,0 ) = 0 ,  -
du 

( t ,  1 )  + r u ( t ,  1 )  = 0 ,  
ax ax 

The proof begins with a simple lemma. 
LEMMA3.3. Zfml > Xod and u ( t ,  x ) is a solution of ( 3 .  I ), then 

lim sup Ilu(t, . ) [ I , > 0.  
I + a  

Proof. If not, then u ( t ,x )-,0 as t + co ,uniformly on 0 5 x 5 1 .  Then, for any 
E > 0 , there exists to> 0 such that u ( t ,x ) < E for t 2 to ,0 5 x S 1 .  Thus u ( t ,x ) satisfies 

The maximum principle yields u ( t ,x ) 2 U ( t ,  x ) ,  where U ( t ,x ) satisfies 

U ( t o ,x ) < u(t0,  x ) ,  0 5 x 5 1 .  
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Again, we attempt a separation of variables by setting 

= ~ ( t ,(3 .16)  U ( t ,X )  x )$(x)e8('-l0), 

where 6 > 0 is to be determined. Then z ( t ,  x )  satisfies 

dz dz 
- ( t , 0 )  = 0 ,  -( t ,  1 )  = 0.  
dx  dx  

Since m l  / d  > Xo, for small E ,  > 0 ,  it follows that 

for all 0 5 x S 1. From (3 .17) ,  (3 .19) ,  we have that 

Then (3 .18) ,  (3 .20) ,  and minimum principle yield 

z ( x ,  t )  2 Z ( X ,  t o )  L inf 

Hence it follows that u ( x ,  t )  L K e P ( ' - ' ~ )for some K > 0. This contradicts the boundedness 
of u ( t , x ) and completes the proof of the lemma. 

LEMMA3.4. If m l  > Xed, there exists a  unique positive steady-state solution of C ( x )  
of (3 .15)  and lim,,, u ( t ,  x )  = l i ( x ) .  

Proof. Any steady state of (3.15 ) satisfies 

du" + m1(O - U )  

a l + 4 - u  
(,,= 

In [SOW] the authors proved that, when m l  is considered as a bifurcation parameter, 
the bifurcation occurs at m l  = Xod, and for m l  / d  > X o  there exists a positive solution 
i ( x )of (3 .22) ,  (3 .23)  satisfying 0 < i ( x )< $ ( x ) . Suppose that u l ( x ) ,U Z ( X )were two 
positive steady states satisfying 0 < u l ( x ) ,U Z ( X )  < 4(x )for 0 S x 5 1 .  Then we have 
the following two cases. 

Case 1 .  The curves y = u l  ( x )  and y = u 2 ( x )do not intersect on 0 S x 5 1 .  Without 
loss of generality, assume that u l ( x )< u 2 ( x )for all 0 5 x 5 1. Let w = u 2 / u I .Then it 
follows that 
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where 

From (3 .25)and maximum principle, w ( x ) = constant. Since 0 < ul  ( x )  < u 2 ( x )for all 
x E [O, I ] ,  w ( x )  = 0 . This contradicts the fact that w = u 2 / u l> 0 for all 0 5 x 5 1 .  

Case 2. The curves y = u l  ( x )  and y = u 2 ( x )intersect at some point. Without loss 
ofgenerality, from (3 .23) ,  u: ( 0 )  = 0 , i = 1,2, and the uniqueness of solutions of ordinary 
differential equations, we may assume that u l ( 0 )< ~ ~ ( 0 )and u l ( x )< u 2 ( x )on ( 0 ,  6 )  
for some 0 < 6 < 1 ,  u 1 ( 6 )= ~ ~ ( 6 ) .  = u 2 / u I .Then o ( x )satisfies (3.24)-(3.26)Let w 
and w ( 0 )> 1. From the maximum principle, the maximum of w ( x ) on [O,61 occurs at 
x = 6. Hence w ( 6 )  > o ( 0 )> 1 or ~ ~ ( 6 )> u1  ( a ) ,  which is a contradiction. 

It remains to show the convergence claimed in the lemma. Consider the Lyapunov 
functional [H,  p. 791 

where 

and 

Then it follows that 

and u ( x ,  t )  approaches the largest invariant set where Sd ( d u ~ d t ) ~d x  = 0 ,  that is, the 
set of steady states. Since m l / d> Xo, from Lemma 3.3, the only positive steady state is 
zi. This completes the proof of Theorem 3.2. 

Similar results hold for the v population. If we label the v equation with a prime, 
as we do with the following variation on (3.1 '): 

then a similar theorem holds for v ( t ,  x ) ,  where po replaces Xo. We refer to these results 
as Theorem 3.2'. We can now easily obtain the following extinction result. 

THEOREM3.5. Let u ( t ,  x )  and v ( t ,  x )  be solutions o f (2 .13) - (2 .15) .  ( i )  I f m l  > 
hod and m 2  < then lim,,, u ( t ,  x )  = i ( x )  and lim,,, v ( t , x ) = 0  uniformly for 
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0 5 x 5 1, where G ( x )  is the unique positive steady state of 

(ii)  If ml < Xod and m2> pod, then lim,,, u ( t ,  x )  = 0 and lim,,, v ( t ,  x )  = 

5 ( x )  uniformly for 0  5 x 5 1, where 5 ( x )  is the unique positive steady state of 

dv dv 
-dx ( t ,  0 )  = 0 ,  -

dx 
( t ,  1 )  + r v ( t ,  1 )  = 0 ,  

Proox We prove part ( i ) .  Part (ii)  follows similarly. Let u( t ,  x ) ,  v ( t ,  x )  be solutions 
of (2 .13)-(2.15) .Then v ( t ,  x )  satisfies 

Compare the solution of this inequality to V ( t ,  x ) ,  a solution of (3 .1 ' )where v O ( x )5 
v ( 0 ,  x ) .  It follows that v ( t ,  x )  5 V ( t ,  x ) .  From Theorem 3.1 (ii), lirn,, a v ( t ,  x )  = 

O(e-"I) .  Consider the dynamical system defined by (2.13)-(2.15) on C+ X C+. The 
omega limit set lies in C+ X ( 0 ) .  Any solution of (2.13)-(2.15) with v O ( x )= 0 ,  
u O ( x )2 0 ,  u O ( x )  s 0 ,  has u ( t ,  x )  as a solution of ( 3 . 1 ) .Since ml > Xod, all such 
trajectories have (G,  0 )  as their omega limit set. This completes the proof. 

The following theorem restates the results of this section in terms of the original 
system (1 .1)-(1.3) .  

THEOREM3.6. Zfml < Xod and m2< pod, 

lim S ( t , X )  = 4 ( x ) ,  lim u ( t ,  x )  = 0 ,  lim v ( t ,  x )  = 0.  
1 - a  [+a  I +  a 

If ml < Xod and m2> pod, 

(3 .27)  lim S ( t , x ) = 4 ( x ) - b ( x ) ,  lim u ( t , x ) = O ,  lim v ( t , x ) = O ( x ) .  
1- z I +  a I +  a 

If ml > Xod and m2< pod, 

(3 .28)  lim S ( t ,  x )  = 4 ( x )- G ( x ) ,  lim u ( t ,  x )  = G ( x ) ,  lim v ( t ,  x )  = 0.  
f + a  1, cc 1- a 

Thus, to have an interesting problem (i.e., to have meaningful competition), we 
make the basic hypothesis 

( H I  ml > dXo, m2 > dpo. 
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Under hypothesis ( H ) ,  each competitor would survive in the chemostat without com- 
petition. In the following, an extinction result under the hypothesis ( H )  is established. 

THEOREM3.7. Let ( H )  hold. ( i )  I f  

then (3.28) holds. (ii) I f  

tlzrn (3.27) holds. 
Before we prove Theorem 3.7, we begin with the following technical lemma. 
LEMMA3.8. There rsists Co>0 such that the solution S ( t  ,x )  of( 1.1)-( 1.3) satisfies 

S ( t ,  x )  L Co > 0 jbr t L to , 0 S x i 1 for to sz~giciently large. 
Prou/!f:From (2.1 ) and the first equation of ( 1.1 ), given E > 0 , there exists T > 0 

such that for all t 2 T, 0 5 x $ 1 ,  we have 

as- 2 d - - d 2 s  
c S ( K  - S ) ,

dt - dx2 

where 

ml m2 c =  man andz) (;, K >  2ll4ll,. 

Comparing the solution S ( t , x )with the solution z ( t ,x ) of 

dz d2z 
-= d ,  - C Z ( K- z ) ,
at ax 


dz dz 

-( t ,  0 )  = -St0), - ( t ,  1) + r z ( t ,  1)  = 0 ,
dx dx  

(3.31 ) 0 < z ( T , x )  < S ( T ,x), 

yields S ( t ,x )  h z ( t ,  x ) ,  t 2 T ,0 ix i 1. The solution z ( t , x ) is positive, and converges 
to the set of steady states of (3 .29) ,  (3 .30)  [ H 2 ] .  We show that (3 .29) ,  (3.30) has a 
unique positive steady state, and hence z ( t ,  x )  converges to the unique positive steady 
state z* ( x ) .  Let Co satisfy 0 < Co < 1 minosx5 z * ( x ) .Then, for t sufficiently large, it 
follows that S ( t , x ) L z ( t , x ) L Co, and the proof of the lemma is complete. 
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Let z l( x )and z 2 ( x )be two positive solutions of 

Without loss of generality, there are two possible cases: ( i )  z l( x )< z 2 ( x )for all 0 5 x 5 
1,  and ( i i )  z l ( x )and z 2 ( x )intersects transversally at some points. For either case, we 
may assume that z l ( x ) < z 2 ( x )on (6 ,  l ) ,  where 6 satisfies 6 = 0 ,  z 1 ( 6 )< ~ 2 ( 6 ) ,  
z ' ,(6) = z i ( 6 )  = -S(O' in case ( i ) ,while, for case (ii), 6 > 0 ,  z 1 ( 6 )= z2(6), z i ( 6 ) 2 
z\ ( 6 ) .  Integrating (3.35) from 6 to 1 yields 

and 

for i = 1, 2. Since llz, [ l a  5 l1411a S K / 2 ,  it follows that Z Z ( X ) ( K- z ~ ( x ) )> 
z l ( x ) ( K- z l ( x ) )for 6 < x S 1 .  Then it holds that 

0 = z i (  1 ) + rz2(1 ) 

This is the desired contradiction. 
Proof of Theorem 3.7. Proof is given for Theorem 3.7( i ) ;part (ii)  follows by the 

same argument. Let w = v l u .  Then w ( t ,x ) satisfies 

d o  dw 
-(1,0 ) = 0 ,  -( t ,  1 )  = 0 ,dx dx 

where 

S 
--

( a , + S)(a2 + S )  
[ (m2- m l ) S+ (m2al- mla2)l.  

From the assumptions in ( i )  and Lemma 3.8, there exists 6 > 0 ,  c ( x , t ) 5 -6 for 
t L to ,0 5 x 5 1 .  We show that w ( x , t ) decays to zero exponentially. Let 

o ( t , x )  = z ( t , x ) e-N1'-o), 
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where /3 > 0 is to be determined. By substituting into (3 .33) ,  (3 .34) ,  we see that z ( t ,x )  
satisfies 

Let 0 < 0 < 6. Then P + c ( x ,  t )  < 0 for all t L to ,  0  5 x I1 .  From the maximum 
principle, it follows that z ( x ,  t )  5 z ( x ,  t o ) ,  t  L to ,  0  5 x 5 I ,  and hence that 

V ( X ,t ) = U ( X ,  t ) z ( x ,  t o )  e-13('-'0)5- M e-@I 

for some M > 0. Thus v ( x ,  t )  decays to zero exponentially. Then the same dynamical 
systems arguments used in Theorem 3.5( i )complete the proof of the theorem. 

4. Coexistence. As noted above, on a set contained in the attractor, the semidy- 
namical system satisfies 

du dv 
-( t ,0 ) = - ( t ,  0 )  = 0 ,
dx dx 

We first determine the stability of the rest points. Linearize about ( f i ,  0 )  to obtain 

du d2u -mla l f i  m 1 ( 0- f i )  -mlalti
= d 7 +  2 +dr ax [ ( a l+ 4 - ti) ( a l + 4 - $ ) I u + [ ( a ,+ 4 - ti)' 1" 

dv d2v m 2 ( 4- f i )
- = d 7 +  

ti v,dl dx a2 + 4 -

du dv 
-( t ,  0 )  = - (1,  0 )  = 0 ,
dx dx 



SZE-BI HSU A N D  P. WALTMAN 

Let u ( t ,  x )  = p ( x )  e", v ( t ,  x )  = q ( x )  eX'.  Then we have that 

Ap(x) = dp" + + -rnlalu^ 

Aq(x) = dq" + m2(4 - 9 
4 ,a 2 + 4 - u ^  

Since (4.1) is a competitive system [S],  from [PI ,  it follows that the eigenvalue with the 
largest real part is real. Hence it is sufficient to consider the second equation, which is 
independent of p. 

Think of rn2 as a parameter and let i ( r n 2 )be the largest eigenvalue of the above 
Sturm-Liouville problem. (Note that the sign of eigenvalue is opposite the Sturm-Liou- 
ville problem, as found in [CL], so that the largest is correct.) From [K] ,  we have 

(4.2)  

-dr q 2 ( 1 )  - dx  + Sd rn2S(x ) / (a2  dxd Sd ( q ' ( ~ ) ) ~  + S ( x ) ) q 2 ( x )
i ( r n 2 )= max IY > O  So' q 2 ( x )  dx  

From (4 .2) ,  i ( r n 2 )  is a strictly increasing function of rn2 satisfying i ( r n 2 )< 0 if rn2 is 
small and i ( r n 2 )+ +co as rn2 + +co. Since i ( r n 2 )is monotone; there is a unique 
value rn; such that i ( r n $ )= 0. If rn2> rn$, the largest eigenvalue is positive, and E is 
unstable. There is a similar result for g.Table 1 describes the situation. 

THEOREM4.1. Fixrnl andrn2 so that ( H )  holds. I f m l  > rnT andrn2 > rn;, then 
the sernidynarnical system generated by (4.1 ) is uniformly persistent. 

Proof. We seek to apply the general persistence theorem in [HW]. Undefined terms 
are taken from that paper. As noted previously, (4.1) generates a semidynamical system 
T ( t ) xon C+[O, 11 X C+[O, 11. T is compact for t > 0, and it has already been noted that 
T ( t ) xis dissipative. Let 

x0= { ( u ,V )  E C+[O, 11 X CXIO, 11, U ( X )  > 0 and v ( y )> 0, some x ,  (0, 1 ) )  

X O  is open and invariant, and axois invariant. Let X = 2.Since E attracts ( u ,0) ,  
u Z 0, u 2 0 and attracts (0, v ) ,  v  Z 0, v 2 0, the omega limit sets of the semidynamical 
system on the boundary, denoted (as in [HW]) by kg,are given by k6= {Eo,E ,  l?}. 
Let M = { M I ,  M 2 ,  M 3 }  = { Eo, E ,  l?} be a covering of k6as defined in [HW]. Since 
the origin is repeller, there are no cycles [HW] in the boundary. It remains to check that 
the stable sets of W + ( M i )do not intersect Xo;  that is, W + ( M , )fl X o  = $Zf and that 
the covering is an isolated covering. Essentially the same argument is used for both 
these facts. 

Exists Unstable Stable 

E? = (0, 0) Always Always Never 
E = (ti, 0) m,> Xod m2> mi m2 < F O ~  

2 = (0, a )  m2 > pod m, > my m,< ~ , d  
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Suppose that there exists (uo ,  vo) in the stable set of (a,0 )with uo> 0, vo > 0. Let 
U ( X ,t ) and v ( x ,  t )  be the (necessarily positive) solutions with these initial conditions 
satisfying lim,, ,u( ., t )  = û( .) and lim,, ,v( ., t )  = 0. For E > 0, there is a to > 0 
such that, for t 2 t o ,  

Hence v ( x ,  t )  satisfies 

Comparing this solution with the corresponding solution of 

allows us to conclude that 0 < V ( t ,  x )  < v ( t ,  x ) .  We seek to solve the linear equation 
by separation of variables. Let 

V ( x ,  t )  = z ( x ,  t ) \ k (x )  e P ( ' - ' ~ ) ,  

where p is to be determined and \ k (x )> 0 is the principal eigenfunction corresponding 
to the largest eigenvalue i ( m 2 )of 

= dq" + ( 
m2(4(x )- u^(x))

Xq 
a2 + 4 ( x )- u^(x)Iq. 

Recall that this is real and that the eigenfunction is positive for m2 large enough. A 
computation yields that z ( x ,  t )  satisfies 

We estimate the term in the square brackets by 
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provided that P > 0 and E > 0 are chosen sufficiently small. Then 

Thus the minimum principle implies that (note Neumann boundary conditions) 

V(x.to) - C > Oz(x ,  t)  2 z(x ,  to) 2 inf ----
0 5 x 5 1  \k(x) 

and hence that v(x,  t)  2 V(x,  t)  2 C\k(x) eP"-fo) 2 K eP"--'o). This contradicts the 
assumption that lim,,, v(x,  t )  = 0. 

If one of the rest points is not isolated, then a trajectory must remain in every 
neighborhood of that rest point, say, in a neighborhood of E. Then inequality (4.3) must 
be satisfied for every E > 0 and some trajectory. The same estimates apply. Hale and 
Waltmon [HW, Thm. 4.11 complete the proof of uniform persistence. 

From [HW, Thm. 3.21, there are global attractors, A. in X O ,  A6 in dX, and A in 
and 

where W-(A6) consists of orbits with alpha limit sets in A6. If we introduce an order by 
(ul ,v l  ) < K  ( u2, v2) if ul 2 u2, v l  5 v2, then T ( t )x  is a monotone semidynamical system. 
Using the results of Hirsch [Hi]  and Matano [ M l  1, A. must contain a stable rest point, 
and, if it contains only one, must be identical to it. The foregoing discussion is summarized 
in the following statement. 

THEOREM4.2. I f ( H )  holds and ml  > my, m2 > m:, there exists at least one 
positive, stable equilibrium of (4.1 ), (u,( .), v,( .)). Ifthere is only one equilibrium, then 
limr+= (u ( t ,  .), v( t ,  = (uc( . ) ,  vc(.)). 

Theorems 4.1 and 4.2 apply to the reduced system (4.1 ). It is natural to ask about 
the full system given by ( 1.1)-( 1.3). Theorem 4.2 applies directly, since any fixed point 
must lie in the set given by S + u + v - 4 = 0. The points of A. (given by the above- 
cited decomposition) in C+ X C+ can be viewed as points in C+ X C+ X C+ of the form 
F = ( 4  - u - v, u, v).  By Lemma 3.8, 6 - u - v 2 Co > 0. Hence we can take an 
epsilon neighborhood about F that does not intersect the boundary of C+ X C+ X C+. 
All trajectories with positive initial conditions are eventually in this set, so that system 
( 1.1)-( 1.3) is uniformly persistent. 

5. Discussion. We have analyzed a model ofthe chemostat without the assumption 
that the vessel is well mixed. The principal result is that removing this hypothesis can 
lead to coexistence of competing populations in contrast to the competitive exclusion 
that holds in the basic chemostat. This is biologically important in that it may offer an 
explanation for coexistence under exploitative competition. The model took the form of 
a system of reaction-diffusion equations, and recent results on uniform persistence for 
infinite-dimensional systems [HW] played a prominent role. The results also provided 
stability results in terms of the PDEs in contrast to the previous work [Sow].  When 
there is a unique steady state in the interior, coexistence solutions converge to it. The 
conjecture is that there is at most one interior equilibrium. This would be of interest 
even in the n-vessel gradostat. 

A major disadvantage of the model is the assumption of equal diffusion rates. It is 
not clear whether this makes a difference in the asymptotic behavior, but it is certainly 
necessary for the approach here. Handling different diffusim rates remains an open 
question, one worthy of (and presently under) further study. 
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In the case ofthe gradostat [JSTW], [STW], more detailed information was available, 
and a more complete classification was presented. There is a major untreated gap in this 
presentation where E ,  E might both be stable ( Xod < m, < m 7 ,  < mz < m; ), or 
one is stable and one is unstable. We conjecture that the first case cannot occur and that, 
in the second, the locally stable rest point is globally stable. There is hope of answering 
both if we could establish that a necessary and sufficient condition for the existence of a 
rest point is that E and I? are both unstable. 

Acknowledgment. Sze-Bi Hsu thanks the Department of Mathematics and Computer 
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