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Abstract

In “The Yang-Mills equations over Riemann surfaces’ ([AB]), Atiyah and Bott
studied Yang-Mills functional over a Riemann surface from the point of view of
Morse theory. In “Yang-Mills Connections on Nonorientable Surfaces’ ([HL4]),
we study Yang-Mills functional on the space of connections on a principal Ggr-
bundle over a closed, connected, nonorientable surface, where G is any compact
connected Lie group. In this monograph, we generalize the discussion in [AB] and
[HL4]. We obtain explicit descriptions of equivariant Morse stratification of Yang-
Mills functional on orientable and nonorientable surfaces for non-unitary classical
groups SO(n) and Sp(n). When the surface is orientable, we use Laumon and
Rapoport’s method [LR] to invert the Atiyah-Bott recursion relation, and write
down explicit formulas of rational equivariant Poincaré series of the semistable
stratum of the space of holomorphic structures on a principal SO(n,C)-bundle or
a principal Sp(n, C)-bundle.
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CHAPTER 1

Introduction

Let Gg be a compact, connected Lie group. The complexification G of Gy
is a connected reductive algebraic group over C. For example, when Gg = U(n),
then G = GL(n,C). Let P be a C principal Gg-bundle over a Riemann sur-
face ¥, and let & = P x@g, G be the associated C'*° principal G-bundle. The
space A(P) of Gr-connections on P is isomorphic to the space C(&) of (0,1)-
connections (0 operators) on & as infinite dimensional complex affine spaces. In
the seminal paper [AB], Atiyah and Bott obtained results on the topology of the
moduli space M(&p) of (S-equivalence classes of) semi-stable holomorphic struc-
tures on &y by studying the Morse theory of the Yang-Mills functional on A(P).
The absolute minimum of Yang-Mills functional is achieved by central Yang-Mills
connections, and M(&y) can be identified with the moduli space of gauge equiva-
lence classes of central Yang-Mills connections on P. When the absolute minimum
of the Yang-Mills functional is zero, which happens exactly when the obstruction
class o(P) € H?(X,m(G)) = 71 (G) is torsion, the central Yang-Mills connections
are flat connections, and M (&p) can be identified with the moduli space of gauge
equivalence classes of flat connections on P.

Atiyah and Bott provided an algorithm of computing the equivariant Poincaré
series PY (Css: Q), where Cy, is the semi-stable stratum in C(&) and G€ = Aut(&)
is the gauge group. They proved that the stratification of C(¢y) is GC-equivariantly
perfect, so

P (C(¢); Q) = PE (Cos @) + Y 2% PF(C,5Q)
AeEéO
where d,, is the complex codimension of the stratum C,,, which is a complex sub-
manifold of C(&y), and the sum is over all strata except for the top one Css. The
left hand side can be identified with P;(BG;Q), the rational Poincaré series of the
classifying space BG of the gauge group G = Aut(P). On the right hand side,
Ptgb (Cu; Q) can be related to the equivariant Poincaré series of the top stratum of
the space of connections on a principal G,-bundle, where G, is a subgroup of G.
So once P;(BG;Q) is computed, PtgC (Css; Q) can be computed recursively. Zagier
solved the recursion relation for G = GL(n,C) in [Za], and Laumon and Rapoport
solved the recursion relation for a general connected reductive algebraic group G

C

over C in [LR]. The series P¢ (Cys; Q) can be identified with PC*(Vis(P);Q),
where Vis(P) is the representation variety of central Yang-Mills connections on P.
When the obstruction class 02(P) € H?(X; 71 (G)) = m1(G) is torsion, Vis(P) is the
representation variety of flat Yang-Mills connections on P, which is a connected
component of Hom(71(X), Gr).

In [HL4], we study Yang-Mills functional on the space of connections on a prin-
cipal Ggr-bundle P over a closed, connected, nonorientable surface ¥. By pulling
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back connections to the orientable double cover 7 : ¥ — X, one gets an inclusion
A(P) — (P) from the space of connections on P to the space of connections on
P, where P = 7P — . The Yang-Mills functional on A(P) is the restriction of
the Yang-Mills functional on A(P). For nonorientable surfaces, the absolute min-
imum of the Yang-Mills functional is zero for any P, achieved by flat connections.
The moduli space of gauge equivalence classes of flat Gg-connections on P can be
identified with a connected component of Hom(7 (%), Gr)/Gr, where Gg acts by
conjugation.

In this paper, we generalize the discussion in [AB] and [HL4] in the following
directions:

(1)

(2)

In Chapter 2, we compute the rational Poincaré series P;(BG;Q) of the
classifying space of the gauge group G of a principal Gg-bundle over any
closed connected (orientable or nonorientable) surface. The case where X
is orientable is known (see [AB, Theorem 2.15], [LR, Theorem 3.3]).
When ¥ is orientable and Gss = [G, G] is not simply connected (for ex-
ample, when G = Gss = SO(n,C), n > 2), the recursion relation [LR,
Theorem 3.2] that Laumon and Rapoport solved in [LR] is not exactly the
Atiyah-Bott recursion relation [AB, Theorem 10.10]. As a result, their
formula for P*(G, ;) [LR, Theorem 3.4] is not exactly PZ (Css(€0); Q)
when G is not simply connected. In Appendix A, we show that the
method in [LR] inverts the Atiyah-Bott recursion relation and yields a
closed formula for PtgC (Css(£0); Q) = PE*(V,y(P); Q), where Gy is any
compact connected real Lie group (Theorem 4.4, Theorem A.9).

In [HL4], we established an exact correspondence between the gauge
equivalence classes of Yang-Mills Gr-connections on ¥ and conjugacy
classes of representations I'r(¥) — Gg, where I'g(X) is the super cen-
tral extension of w1 (X). This correspondence allows us to obtain explicit
description of G-equivariant Morse stratification by studying the corre-
sponding representation variety of Yang-Mills connections. In Chapter 4,
we recover the description in terms of Atiyah-Bott points for orientable
Y., and determine candidates of Atiyah-Bott points for nonorientable X.
In Chapter 5, Chapter 6, and Chapter 7, we give explicit descriptions of
G-equivariant Morse strata of Yang-Mills functional on orientable and non-
orientable surfaces for non-unitary classical groups SO(2n + 1), SO(2n),
and Sp(n). When ¥ is nonorientable, some twisted representation vari-
eties (introduced and studied in Section 4.6 and Section 4.7) arise in the
reduction of these non-unitary classical groups. This is new: in the U(n)
case (see [HL4, Section 6, 7]), the reduction involves only representation
varieties of U(m), where m < n, of the nonorientable surface and of its
double cover.

When ¥ is orientable, we use the closed formula in (2) to write down ex-
plicit formulas for PE®(V,4(P); Q) for non-unitary classical groups (The-
orem 5.5, Theorem 6.4, and Theorem 7.4). These formulas are analogues
of Zagier’s formula for U(n).

The topology of Hom(m(X), Gr)/Gr is largely unknown when ¥ is nonori-
entable. Using algebraic topology methods, T. Baird computed the SU (2)-equivariant
cohomology of Hom(m(X), SU(2)) and the ordinary cohomology of the quotient
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space Hom(m (X)), SU(2))/SU(2) for any closed nonorientable surface ¥ [B]. He
also proposed conjectures for general G.

For the purpose of Morse theory we should consider the Sobolev space of
L? | connections A(P)*~! and the group of L? gauge transformations G(P)* and
GC(P)*, where k > 2. We will not emphasize the regularity issues through out the
paper, but refer the reader to [AB, Section 14] and [Da] for details.



CHAPTER 2

Topology of Gauge Group

Let 3 be a closed connected surface. By classification of surfaces, ¥ is home-
omorphic to a Riemann surface of genus ¢ > 0 if it is orientable, and > is homeo-
morphic to the connected sum of m > 0 copies of RP? if it is nonorientable.

Let Gr be a compact connected Lie group. Let P be a principal Gr-bundle over
%, and let Aut(P) = G(P) be the gauge group. When ¥ is orientable, the rational
Poincaré series P;(BG(P); Q) was computed in [AB, Section 2| for Gg = U(n).
The computation can be generalized to any general compact connected Lie group
(see [LR, Theorem 3.3]). In this section, we will compute P;(BG(P); Q) when Gg
is any compact connected Lie group and ¥ is any closed connected (orientable or
non-orientable) surface.

Following the strategy in [AB, Section 2], we first find the rational homotopy
type of the classifying space BGr of Ggr (see [Se]). Note that BGg is homotopic
to BG, where G is the complexification of Gg. Let Hrg be a maximal torus of Gg.
Then Hg = U(1)", and

H*(BHR7Z) = Z[ula v 7un]a
where u; € H?(BHg;Z). The Weyl group W acts on H*(BHg; Q) = Qlu1, . .., uy),
and
H*(BGg;Q) = H*(BHg; Q)" = Q[I1,...,1,]

where [ is a homogeneous polynomial of degree dj in w1, . .., u,. We may take I} €
Zluy,. .., uy,), so that Iy € H?¥*(BGg;Z). We may assume that dy = --- =d, = 1,
and dy > 1 for k > r. Then r = dimg(Z(Gr)), where Z(Gg) is the center of Gg.
In particular, » = 0 if and only if G is semisimple. The classes I, ..., I, are the
universal characteristic classes of principal Gg-bundles. Each I}, € H?%% (BGy;7Z)
induces a continuous map I} : BGr — K(Z;2d}) to an Eilenberg-MacLane space,
so we have a continuous map

BGy — [[ K(z,2dy).
k=1
This is a rational homotopy equivalence.

Fact 2.1. Let g denote rational homotopy equivalence. Then
BGs 2 ﬁ K(Z,2dy)
k=1
In addition to Fact 2.1, we need the following two results:
PROPOSITION 2.2 ([AB, Proposition 2.4]).
BG(P) ~ Mapp(XZ, BGRr),

4



2. TOPOLOGY OF GAUGE GROUP 5

where the subscript P denotes the component of a map of ¥ into BGr which induces
P.

THEOREM 2.3 (Thom).

Map(X,K(A,n)) = HK(Hq(XaA)vnf Q)

q

where K(A,n) is the Eilenberg-MacLane space characterized by

mam) ={ 5 17"

Since my(X xY) = my(X) x 7y (Y), we have
K(Al X Ag,’n) = K(Al,n) X K(AQ,?’Z)

Let ¥ be a Riemann surface of genus ¢. Then
Map(z, [[&. 2dk)) = [[ Map(S, K(Z, 2d))
k=1 k=1

- ﬁ (K(HQ(Z;Z), 2dy — 2) x K(HY(%;7Z),2dy — 1) x K(H°(%,7Z), de))
k=1
= (zxK@V*x K 2))T

< 1 (K(Z, 2y — 2) x K(Z,2dy — 1)* x K(Z, 2dk))
k=r+1

where the factor Z" corresponds to different connected components. So
Mapp (S, BGg) = (K@ 1)* < K@, 2))T

< 1 (K(Z, 2y — 2) x K(Z,2dy — 1)* x K(Z, de)).
k=r+1

It follows that

THEOREM 2.4 ([LR, Theorem 3.3]). Let BG be the classifying space of the
gauge group G of a principal Gg-bundle over a Riemann surface of genus £. Then

Pt(Bg;Q):<(1+t)%> H( (1 4 (246 —1)2¢

1= ) 22 1 —2dk=2)(1 — ¢2dk )’

Note that P;(BG;Q) does not depend on the topological type of the underlying
principal Gg-bundle.
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Let X be the connected sum of m > 0 copies of RP?. Then

Map(z, [[ &, Qdk)) = [ Map(E. K(Z, 2dy))
k=1 k=1

- I (K(HQ(E;Z), 2y — 2) x K(HY(:2),2dy — 1) x K(H°(S,Z), de))
k=1

= I (Z/QZ x K(Z,1)" ! x K(Zﬂ))

k=1

< 1 (K(Z/ZZ, 2dy — 2) x K(Z,2dx —1)™! x K(Z, Qdk)>
k=r+1
where the factor (Z/2Z)" corresponds to different connected components. So

n

Mapp(E, BGg) = H( (Z,2d), — 1)1 x K(Z,Qdk))

It follows that

THEOREM 2.5. Let BG be the classifying space of the gauge group G of a princi-
pal Gr-bundle over a non-orientable surface which is diffeomorphic to the connected
sum of m > 0 copies of RP®. Then

n 1+t2dk 1\m—1
nBg:) = [ )
k=1

For classical groups we have:

(A) Gr =U(n): W = S(n), the symmetric group, so
H*(BU(n); Q) = Qua, ..., un]*™ = Qley, ..., ¢,

where ¢, is the k-th elementary symmetric function in uq,...,u,. In fact,
the generator ¢, € H?*(BU(n); Q) is the universal rational k-th Chern
class. Sody =k, k=1,...,n

(B) Ggr = SO(2n+1): W = G(n), the wreath product of Z/2Z by S(n), so

H*(BSO(2n+1);Q) = Q[uy,. .. ,un]G(”) =Qlp1,..-,pnl,
u2. In fact,

where py, is the k-th elementary symmetric function in u?, ..., u2.
pr € H*(BU(n); Q) is the universal rational k-th Pontrjagin class. So
dp, =2k, k=1,...,n.

(C) Gr = Sp(n): W = G(n), the wreath product of Z/2Z by S(n), so

H*(BSp(n); Q) = Qu, ..., u, 9™ = Qlov, ..., 0],

where oy is the k-th elementary symmetric function in u?,...,u2. So
dp =2k, k=1,...,n
(D) Gg = SO(2n): W = SG(n), the subgroup of G(n) consisting of even

permutations, so

H*(BSO(2n); Q) = Q[uq, . . . 7un]SG(") =Qlp1,.--,Pn-1,€,

where py is the k-th elementary symmetric function in w?,...,u2, and

e=uy-u,. In fact, pp € H*(BU(n);Q) is the universal rational k-th
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Pontrjagin class, and e € H*"(BSO(2n); Q) is the universal rational Euler
class. Sod, =2k, k=1,...,n—1, and d,, = n.



CHAPTER 3

Holomorphic Principal Bundles over Riemann
Surfaces

Let G be the complexification of a compact, connected real Lie group Gg.
Then G is a reductive algebraic group over C. For example, if Gg = U(n) then
G = GL(n,C). We fix a topological principal Gg-bundle P over a Riemann surface
3, and let §g = P X, G be the associated principal G-bundle. Then the space
A(P) of Gr-connections on P is isomorphic to the space C(&) of (0, 1)-connections
(0-operators) on & as infinite dimensional complex affine spaces. More explicitly,
A(P) and C(&) are affine spaces whose associated vector spaces are Q!(X, gr) and
0%1(3, g), respectively, where gr and g = gr ®r C are the Lie algebras of Gg and
G, respectively. Choose a local orthonormal frame (61, 6%) of cotangent bundle T%;
of ¥ such that 6! = #2. Define an isomorphism j : Q' (3, gg) — Q%1(Z, g) by

J(X1®0" + X, ®0%) = (X1 +vV-1Xy) ® (6" — V-16%)

where X1, Xo € Q°(3, gr). It is easily checked that the definition is independent of
choice of (01, 60?).

Harder and Narasimhan [HN] defined a stratification on C(§y) when G =
GL(n,C), and Ramanathan [Ra] extended this to general reductive groups. It
was conjectured by Atiyah and Bott in [AB], and proved by Daskalopoulos in [Da]
(see also [Ra]), that under the isomorphism A(P) = C(&), the stratification on
C(&o) coincides with the Morse stratification of the Yang-Mills functional on A(P).

In this chapter, we first review the description of the stratification in terms of
Atiyah-Bott points, following [AB, Section 10] and [FM]. Then we write down the
Atiyah-Bott points for classical groups explicitly, similar to the description of the
stratification in terms of slopes when Ggr = U(n).

3.1. Preliminaries on reductive Lie groups and Lie algebras

We have
9=13c®lg, 9]
where 3¢ is the center of g and [g, g] is the maximal semisimple subalgebra of g.
Let Hgr be a maximal torus of Gg, and let hg be the Lie algebra of Hg. Then
h = bhr ®r C is a Cartan subalgebra of g. Recall that any two maximal tori of Gr
are conjugate to each other, and any two Cartan subalgebras of g are conjugate
to each other. We have ) = 36 @ b’ where ' = h N [g, g]. Here we fix a choice of
Hy, or equivalently, we fix a Cartan subalgebra h of g. Let R be the root system
associated to h. We have

s=ho@Pa=sceh &P g

a€ER aER
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We choose a system of simple roots A C R, and let Ry be the set of positive
roots. The Borel subalgebra associated to A is given by

b=bho P ga-

aER

The Lie algebra of a Borel subgroup B of G is a Borel subalgebra of g. We have
BN Ggr = Hg.

A parabolic subgroup P of G is a subgroup containing a Borel subgroup, and
a parabolic subalgebra p of g is a subalgebra containing a Borel subalgebra. A
parabolic subalgebra containing b is of the form

p:b@$ga

acll

where
(3.1) I'=R,U{a€R|acspan(A—1)}.

for some subset I of the set A of simple roots. There is a one-to-one correspondence
between any two of the following:

(i) Subsets I C A.
(ii) Parabolic subalgebras containing a fixed Borel subalgebra b.
(iii) Parabolic subgroups containing a fixed Borel subgroup B.

In particular, I being the empty set corresponds to G (or g), and I being the entire
set A corresponds to B (or b).
Given a parabolic subalgebra

p:h®@gav

acl

with T as in (3.1), define —T" to be the set of negatives of the members of T'. In
other words, -I' = —R, U{a € R | a € span(A — I)}. let

(=he P g v= P 0

acel’'N-T a€el’,a¢-T

so that p = [ u. Then [, u are subalgebras of p and u is an ideal of p. The
subalgebra u is nilpotent, and is called the nilpotent radical of p. The subalgebra
[ is reductive, and is called the Levi factor of p. Let P be the parabolic subgroup
with Lie algebra p. Let P = LU be the semi-direct product associated to the direct
sum p = [P u, so that the Lie algebras of L and U are [ and u, respectively. The
reductive Lie group L is called the Levi factor of P, and U is called the unipotent
radical of P. We have PN Ggr = Lg, the maximal compact subgroup of L; L is the
complexification of L.

For simple Lie groups, there is a one-to-one correspondence between simple
roots and nodes of the Dynkin diagram. In particular, a (proper) maximal parabolic
subgroup corresponds to omitting one node of the Dynkin diagram. See for example
[FH, Lecture 23].

(A) Gr = SU(n), G=SL(n,C), n > 2.
The Dynkin diagram of sl(n,C) is A,,_;. Omitting a node of A,,_1, we get
the disjoint union of A,,, 1 and A,,,_1, where n;+ns = n, ny,ng > 1 (with
the convention that Ag is empty). The corresponding parabolic subgroup
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P of SL(n,C) is the subgroup which leaves the subspace C™ x {0} of C"
invariant. We have

PN SU(n) ={diag(A,B) | A€ U(ny), B € U(nz),det(A) det(B) = 1}.

For a general parabolic subgroup P of SL(n,C), we have
PNSUn)={AeU(ny) x - xU(n.) | det(A) =1}
corresponding to omitting (r — 1) nodes, where ny +---+n, =n, n; > 1.
Gr =50(2n+1),G=S0O2n+1,C), n > 1.
The Dynkin Diagram of so(2n+1, C) is B,, (with the convention B; = A;).
Omitting a node of B,,, we get the disjoint union of A,, _; and B,,,, where
ny+mng2 =n, ny > 1, ng > 0 (with the convention that By is empty). The
corresponding parabolic subgroup of SO(2n+ 1, C) is the subgroup which
leaves the following ni-dimensional subspace of C2"*! invariant:

{(21, V=121, ..., 2n,, V=12,,0,...,0) | 21,...,2,, €C}.
We have
PNSO@2n+1)=U(ny) x SO(2ny + 1).
For a general parabolic subgroup P of SO(2n + 1,C), we have
PNSO2n+1)=2U(ny) x - x U(np—1) x SO(2n, +1)

corresponding to omitting (r—1) nodes, where ny+---+n, = n, n; > 1 for
i # r, and n, > 0 (with the convention that SO(1) is the trivial group).
Gr = Sp(n), G = Sp(n,C), n > 1.

The Dynkin diagram of sp(n,C) is C,, (with the convention C; = A;).
Omitting a node from C,,, we get the disjoint union of A,,_; and C,,,
where ny + no = n, n; > 1, ng > 0 (with the convention that Cj is
the empty set). The corresponding parabolic subgroup of Sp(n,C) is the
subgroup which leaves the subspace C™t x {0} of C?" invariant. We have

PN Sp(n) = U(ny) x Sp(ne).
For a general parabolic subgroup P of Sp(n,C), we have
PSp(n) = Um) x -+ x Ulny_1) x Sp(n,)

corresponding to omitting (r — 1) nodes, where ny + -+ +n, =n, n; > 1
for i # r, and n, > 0 (with the convention that Sp(0) is the trivial group).
Gr = SO(2n), G = S0O(2n,C), n > 1.

The Dynkin diagram of so(2n,C) is D,, (with the convention Dy = Ay,
Dy = Ay x Ay, D3 = A3). Omitting a node of D,,, we get the disjoint
union of A,,_; and D,,, where ny + no = n, n; > 1, ng > 0 (with
the convention that Dy is empty). The corresponding parabolic subgroup
of SO(2n,C) is the subgroup which leaves the following n;-dimensional
subspace of C?" invariant:

{(z1, V=121, .., 2n,,V—12,,0,...,0) | 21,...,2n, € C}.

We have
PNSO(2n) 2 U(ny) x SO(2ns).

For a general parabolic subgroup P of SO(2n,C), we have
PNSO@2n)=2U(ny) x - xU(ny—1) x SO(2n,)
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corresponding to omitting (r—1) nodes, where ny+---+n, = n, n; > 1 for
i # r, and n, > 0 (with the convention that SO(0) is the trivial group).
Note that SO(2) = U(1).

3.2. Harder-Narasimhan filtrations of dual vector bundles

Let E be a holomorphic vector bundle over ¥, and let
O0=FEyCFEyC---CE,=F
be the Harder-Narasimhan filtration, where D; = E;/E;_, is semi-stable, and the
slopes p; = deg(D;)/rank(D;) satisfy pq > -+ > p,. The vector pp = (p1,..., pr)

is the type of E. Let I denote the trivial holomorphic line bundle over X, and let
EY = Hom(E,I) be the dual vector bundle, so that

E) = Hom(E,,C).
Define the subbundle EY; of EV by
(EY))e ={a € E; | a(v) =0 Vv € (Ej).}.
then (EY,), = (E./(E;)z)", and we have
0=EY.CEY,,,C---CEY, CEj =E"

Let F; = EY,,,/EY, .. ;. Then rankF; = rankD,_;, deg Fj = —deg D, 11,

s0 pu(Fj) = —p(Dyy1-5) = —pr+1-5. The type of EY is given by (—py, ..., —m),
where —p, > -+ > —py.

3.3. Atiyah-Bott points

Let & be a holomorphic principal G-bundle over a Riemann surface, and let
E = adf = & xg g be the associated adjoint bundle.

The Lie algebra g has a nondegenerate invariant quadratic form g — C. There-
fore, there is a nondegenerate invariant quadratic form I on E, which implies F is
self-dual EV = E. So the Harder-Narasimhan filtration of E is of the form

OCE_TCE_T_HC"'CE_lCEQCE1C"'CET_1CE.

where
(E—j)x = {U e kb, | I(U,’U) =0Vue (Ej—l)x}

and Dy = Ey/E_; has slope zero. Then Ej is a parabolic subbundle of the Lie
algebra bundle E. The structure group G of £ can then be reduced to a parabolic
subgroup @, such that £ = {g x g G, where {g is a holomorphic principal ()-bundle
with adfg = Ep. The parabolic group is unique up to conjugation, and there is
a canonical choice for a fixed Borel subgroup B. This choice gives the Harder-
Narasimhan reduction and @ is called the Harder-Narasimhan parabolic of &.

The stratification of the space of holomorphic structures on a fixed topological
principal G-bundle £ is determined by the Harder-Narasimhan parabolic @) together
with the topological type of the underlying principal @-bundle which is an element
in m1(Q). To make this more explicit, we describe the stratification in terms of
Atiyah-Bott points, following [FM, Section 2].

Let H be a Cartan subgroup of G. Then 7y (H) can be viewed as a lattice in
v/—1bg such that 7 (H) @z R = /—1bg.

1 (H) 2 {X € V—1bg | exp(2rV—1X) = e} C V—1bp.
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For example, Gg = U(n), hbg = {27v—1diag(t1,...,tn) | t1,...,t, € R}, and
m1(H) can be identified with the lattice {diag(k1,...,kn) | k1,...,kn € Z} C
V—1bg.

The set AV of simple coroots span a sublattice A of m1(H), and 71 (G) =
m1(H)/A. The lattice A is called the coroot lattice of G. Let A be the saturation of
A in w1 (H). Then 71(Gss) = A/A. Under the above identification, the short exact
sequence of abelian groups

1 - m(Gss) = m(G) = m1(G/Ggs) — 1
can be rewritten as

0— A/A — mi(H)/A — m(H)/A — 0,

where A/A is a finite abelian group, and 7 (H)/A is a lattice. Let Z, denote the
connected component of the center of G containing identity. Then D = ZgNG,;s is a
finite abelian group, and G/Gl, = Zo/D. m1(G/Gys) = 1 (H)/A can be identified
with a lattice in v/—13¢,, where 36, = 3¢ N bg, such that m(G/Gss) @z R =
\/jlﬁG'R'

Let & be a principal G-bundle over a Riemann surface .. Its topological type
is classified by the second obstruction class ¢1(&y) € H2(Z;m1(G)) =2 m1(G). Let

/1’(50) € 7T1(61/(;55) C \/jlﬁGm

be the image of ¢1(&y) under the projection
m(Q) = m (H)/A — 71 (G/Gys) = m (H)/A.

The group G = Hom(G,C*) = Hom(G/G,,,C*) can be identified with the dual
lattice of 7y (H)/K

Let P! be a parabolic subgroup determined by I C A, and let LT be its
Levi factor. The topological type of a principal L! bundle 1y is determined by
c1(no) € m1(L). Given & € Pring(X), we want to enumerate

(32) {770 € Pringr (E) ‘ No X1 G = 50}
Consider the commutative diagram
0

0
0 — 7T1(Lss) :AL/AL L’ Wl(Gss) :K/A M) EBQGIQ/Z

m(L)=m(H)/A,  —L— m(@) =mH)/A T 5,Q/Z

PL J{ yde]

m1(L/Les) = m(H)/A, —2— m1(G/Gys) = m(H)/R

| l

0

where w, are the fundamental weights. In the above diagram, the columns and
the first row are exact.

o
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Given a principal L-bundle 7, ¢1(n9) € 71 (L) is determined by

jler(no)) = ci(no x G) € m(G), prlei(no)) = (o) € m1(L/Lss).

Given & € Pring(X), we have ¢1(&) € m(G) and u(&o) € m1(G/Gss). The map
pr, restricts to a bijection j71(c1(&)) — p~1(1u(&)). Note that the set in (3.2) can
be identified with 5= (c1(&o))-

LEmMMA 3.1 ([FM, Lemma 2.1.2]). Suppose that ng is a reduction of & to a
standard parabolic group P! for some I C A, possibly empty. The Atiyah-Bott
point p(ne) and the topological type of & as a G-bundle determine the topological
type of no/U! as an L'-bundle (and hence of no as a P! bundle). Given a point
i € b, there is a reduction of & to a P'-bundle whose Atiyah-Bott point is . if
and only if the following conditions hold:

(i) € v=13p1,, where 311, is the center of the Lie algebra of Ly = L' NGrg.
(ii) For every simple root o € I we have wy (1) = wa(c) (mod Z).
(iii) x () = x(c) for all characters x of G.

DEFINITION 3.2 ([FM, Definition 2.1.3]). A pair (u,I) consisting of a point
p € V/—1bg and a subset I C A is said to be of Atiyah-Bott type for ¢ € m1(G) (or
& where c1(&0) = ¢) if (i)-(iii) hold. A point p € /—1bg is said to be of Atiyah-
Bott type for c if there is I C A such that (u, I) is a pair of Atiyah-Bott type for
c.

One may assume pu € Co, where Cy is the closure of the fundamental Weyl
chamber

Co={X € vV—1bg | a(X) > 0 Va € A}.

We may choose the minimal I such that a(u) > 0 for all & € I. Then the stratum
C,, of the space of (0,1)-connections on {, are indexed by points p of Atiyah-Bott
type of ¢1(£o) such that u € Cy. We may incorporate this by adding

(iv) a(p) >0 for all a € I.

Let C(&o) be the space of all (0, 1)-connections defining holomorphic structures
on a principal G-bundle &, with ¢1(§) = ¢ € m1(G). As a summary of the above
discussion, we have following description of the Harder-Narasimhan stratification
of C.

DEFINITION 3.3. Given a point u € Cy of Atiyah-Bott type for c, the stratum
C. C C(&o) is the set of all (0,1)-connections defining holomorphic structures on &y
whose Harder-Narasimhan reduction has Atiyah-Bott type equal to p. The strata are
preserved by the action of gauge group. The union of these strata over all u € Cy
of Atiyah-Bott type for & is C(&p).

3.4. Atiyah-Bott points for classical groups

In this section, we assume

NiyenoesNp € Loy, N1+ -+ Ny =n.
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3.4.1. Gg=U(n). G=GL(n,C), and
vV—1lbhr = {diag(tl, . ,tn) ‘ t; € R}
Let e; € v/—1bhr be defined by t; = d;;. Then {e1,...,e,} is a basis of v/—1hg. Let
{01, ...,0,} be the dual basis of (v/—1hg)¥ = Hompg(v/—1hg,R). Then
m(H)=2Ze1 ® - ®Ze, CV—1bgr
A={a;=0; = 0iy1li=1,...,n—1} C (V-1hr)"
AV ={a) =e;—e1|i=1,...,n—1} CV/—1bg

m(U(n)) 2 71 (GL(n,C)) 2 7 (H)/A 2 Z is generated by e; (mod A). Let ¢ = key
(mod A). Then p satisfies (i)-(iv) in Section 3.3 if and only if

k ki
= diag(il-[rn IR 7]'”7‘)
ny Ny
where
k k
ok ke
ny %) Ny

ki,.... k. €2, ki +---+k.-=k,

3.4.2. Gg=S0(2n+1). G=5S0(2n+1,C), and
vV—1bhgr = {\/—ldiag(tlJ, R . 0[1) ‘ t; € R}

0 -1
=(17)
Let e; € v/—1bg be defined by ¢; = &;;. Then {ei,...,e,} is a basis of /—1hg. Let
{61, ...,0,} be the dual basis of (v/—1hg)V. Then
7T1(H) =7Ze ®--- P Ze, CV—1bgr
A={a;=0; =01 li=1,...,n =1} U{a, = b,} C (V-1bg)"
AV ={a)=e;—er1|i=1,...,n—1}U{a) =2e,} CV-1br
m(SO2n + 1)) 2 7 (SO(2n + 1,C) 22 Z /27 is generated by e, (mod A). ¢ = ke,

(mod A) corresponds to wg = k where k =0, 1.
Case 1. a,, € I. Then p satisfies (i)-(iv) in Section 3.3 if and only if

where

k k.
u::«-&dmg(iauﬂ.“,—nhﬂoh)
ny Ny

where

ko k k,
ki, ke €7, ki+- 4k =k (mod2Z), “L>=2>..2 50

ni UP) Ty

Case 2. a,, ¢ I. Then p satisfies (i)-(iv) in Section 3.3 if and only if

k k_
;L::\/A—Idjag(Aﬁgjﬁl,..., 1Jﬁr_1,015nr+1)
ni Npr—1
where
k k kp_
ki, kp1€Z, —L>25...52Lyy

1 n2 Ny—1
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3.4.3. G = SO(2n). G = SO(2n,C), and
vV _1hR = {\/ —1diag(t1J, Ce 7th) | t; € R}

0 -1
(V)

Let e; € v/—1bgr be defined by t; = 0;;. Then {ei,...,e,} is a basis of /—1hg. Let
{61, ...,0,} be the dual basis of (v/—1hg)". Then

m(H)=Ze1 & ®Ze, CV—1bg

A:{aizﬁi—ﬁiﬂ \izl,...,n—l}u{an :Hn_1+0n} C (\/71‘)]]{)\/

AV ={af =e;—eip |i=1,...,n =1} U{ay =ep1 + ey} CV-1br
m1(SO(2n)) = m (SO(2n,C)) = Z/27 is generated by e, (mod A). ¢ = ke,, (mod
A) corresponds to wg = k where k =0, 1.

Case 1. ap—1, € I, n,. = 1. Then p satisfies (i)-(iv) in Section 3.3 if and
only if

where

k Ky
W= v—ldiag(—lJnl,...,;Jnrfl,er)
ni Tyr—1
where
k k ki
ki,....ky €Z, ki+-+k =k (mod27), —>-2>...>"L5 k]
nne ny—1

Case 2. a1 € I, ay, ¢ I, ny > 1. Then p satisfies (i)-(iv) in Section 3.3 if and
only if

k Ky ky k,
L e A )
n1 Np—1 Ny oy
where
ko k k,
ki,... kr €Z, ki+-—+k =k (mod2Z), —>2>...>>0.
nq N9 ny

Case 3. ap—1 ¢ I, ay, € I, ny > 1. Then p satisfies (i)-(iv) in Section 3.3 if and
only if
k ky
W= \/—1diag(—1,]n1,. o —Jm)
ny Ny

where

ki k k,
ki,....kr €Z, ki+---+k, =k (mod 2Z), 771>772>"'>77>0'
1 2 r

Case 4. ap_1 ¢ I, oy ¢ I. Then p satisfies (i)-(iv) in Section 3.3 if and only if

k Ky
= «/—1diag(—1Jn1,. —1Jnr,0Jm)
ny Np—1

where
k k ky_
ki,....kp_1€7, 2> 5. . 501
ny no Ny—1
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3.4.4. Gg = Sp(n). G = Sp(n,C), and
V—=1bg = {diag(t1, ..., tn, —t1,...,—ts) | t; € R}
Let e; € v/—1bg be defined by ¢; = &;;. Then {ey,...,e,} is a basis of v—1bg. Let
{61,...,0,} be the dual basis of (v/—1bg)Y. Then
m(H)=Ze1 @ - & Ze, CV—1bg
A={a;=0; =01 ]i=1,...,n—1}U{20,} C (vV—1br)"
AV ={a) =e;—ei1|i=1,....n—1}U{e,} C V—1bhg

m1(Sp(n)) = m1(Sp(n,C)) is trivial.
Case 1. a,, € I. Then p satisfies (i)-(iv) in Section 3.3 if and only of

k k. k k.
p=diag ("l S = =)
ni Ny ni e
where 5 % '
ki,... by €7, L >2s...52750.
niy no ny
Case 2. o, ¢ I. Then p satisfies (i)-(iv) of Section 3.3 if and only if
k ky_ k ky—
o= diag(—llnl,..., L) AN 1Y AL S Al Inrfl,OInr)
ny Np—1 ni Ny—1
where L L L
ki,.. . ky1 €7, —>2>...>"L5

ni n2 Nr—1



CHAPTER 4

Yang-Mills Connections and Representation
Varieties

Let Gr be a compact connected Lie group, and let P be a C* principal G-
bundle over a closed (orientable or nonorientable) surface. In [HL4, Section 3],
we introduced Yang-Mills functional and Yang-Mills connections on closed nonori-
entable surfaces.

In this chapter, we study the connected components of the representation vari-
ety of Yang-Mills connections. We recover the description of the Morse stratification
in terms of Atiyah-Bott points for orientable ¥ (Section 4.2), and determine candi-
dates of Atiyah-Bott points for nonorientable ¥ (Section 4.5). We also discuss and
give a closed formula for Ggr-equivariant rational Poincaré series of the represen-
tation variety of central Yang-Mills connections (Section 4.3). In Section 4.6 and
Section 4.7, we introduce certain twisted representation varieties that will arise in
Chapter 5, Chapter 6, and Chapter 7, and study their connectedness.

4.1. Representation varieties for Yang-Mills connections

Let A(P) be the space of Gg-connections on P, and let N'(P) be the space
of Yang-Mills connections on P. Let G(P) = Aut(P) be the gauge group, and let
Go(P) be the base gauge group. Let I'g(X) be the super central extension of w1 (X)
defined in [HL4, Section 4.1].

THEOREM 4.1 ([AB, Theorem 6.7], [HL4, Theorem 4.6]). There is a bijective
correspondence between conjugacy classes of homomorphisms T'r(X) — Gr and
gauge equivalence classes of Yang-Mills Gg-connections over Y. In other words,

U  NP)/G(P) = Hom(Ip(X),Gr)

P€Pringg ()

U N@)/GP) = Hom(le(¥),Gz)/Gr

PEPrinG]R (%)

To describe Hom(I'r(3), Gr) more explicitly, we introduce some notation. Let
Zg be the closed, compact, connected, orientable surface with £ > 0 handles. Let
> be the connected sum of £ and RP?, and let 34 be the connected sum of $§ and
a Klein bottle. Any closed, compact, connected surface is of the form Ef , where
¢ is a nonnegative integer and i = 0,1,2. X! is orientable if and only if i = 0.
Let (Gr)x denote the stabilizer of X of the adjoint action of Gg on gg. With the
above notation, Hom(I'r(Xf), Gg) can be identified with the representation variety
Xf(’li/[(GR), where

17
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Xél(\)/[(GR) = {(al,bl,...,a(,bg,X) S GR% X gRrR |
14
ai,b; € (Gr)x, [[las bi] = exp(X)}

=1
Xon(Gr) = {(a1,b1,. .. a0, b, e, X) € Gr* ! x gg |
14
ai,bi € (Gr)x, Ad(0)X = =X, []la:, bi] = exp(X)c’}
=1
Xya(Gr) = {(a1,bi,... a0,bp,dyc, X) € G2 x gg |
14
ai,bi,d € (Gr)x, Ad(e)X = =X, []lai, bi] = exp(X)ede™"d}

i=1
The Gg-action on X@&(GR) is given by
g- (Cla ceey €204, X) = (9019_17 e 7902€+ig_13Ad(g)X)‘

4.2. Connected components of the representation variety for orientable
surfaces

GR is connected, so the natural projection
X(Gr) = X (Gr) /G
induces a bijection
(Xt (Gz)) — mo(Xy3y(Gr) /Gi).
Any point in Xf(’l(\),[ (Gr)/GRr can be represented by
(a1,b1,...,ap,be, X)

where X € hg. Such representative is unique if we require that /—1X is in the
closure Cy of the fundamental Weyl chamber

Co={Yev-1hr|aY)>0, Vace Ry} ={Y € V-1bhr | a(Y) > 0, Va € A}.
Given X such that /—1X € Cy, we want to find the stabilizer (Gg)x of the
adjoint action of Gg on gg. Let G be the complexification of Gg. We use the
notation in Chapter 3. Let
Ix ={a € A|a(v-1X) > 0}.

Then Ix = A if /—1X € Cy, and Ix is empty if and only if X is in the center 3¢,
of gr. Let

'y =RiU{a € R|acspan(A —Ix)}.
The stabilizer gx of the adjoint action of g on itself is the Levi factor of the parabolic

subalgebra
px=h® P g

a€elx
We have px = gx @ ux, where gx and uy are the Levi factor and the nilpotent
radical of px, respectively. The Lie algebra of Gx is gx. We conclude that

(GR)X =Lxn Gr = L]{QX.
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Note that
¢

X e dpixs exp(X) = H[ai,bi] € (L]{{‘)SS.
i=1

Let ux = gX. Then
px € m(H)/ Ak C \/flgLung CV—1br

and (pux,Ix) is of Atiyah-Bott type for some ¢ € m1(G) = 71 (GRr).

We now state the condition for X € bhgr such that (ai,b1,...,ae,bp,X) €
X@E/I(GR) for some (ay,by,...,azby) € G?. Given I C A, let Z! be the con-
nected component of the identity of the center of L%, and let D! be the center of
(LL)ss. Then the Lie algebra for Z! is 3z:- Denote

T = {pevV-T41 |exp(=2nV~1p) € D'} = m (Z' /D) = 71 (Li /(LE)ss)
= {pe='nColalp) >0if acI}.

(1]

[1]

I
+
Given p € 2 | let X,, = —2m/—1p € br. Suppose that (a1,b1,...,as,be, X) €
Xf(’l(\)/[(GR). Then there is a unique pair (u,I), where I C A and p € L, such that
X is conjugate to X,,. Let C,, C gr denote the conjugacy class of X,,, and define

l
Xou(Gr)p = {(a1,b1, ... ar,be, X) € Ge*%C, | ai, bi € (Gr)x, [ [lai, bi] = exp(X)}.

i=1
Then Xf;l(\),[ (GRr) is a disjoint union of
{X9n(Gr)u | ne EL, T C A},
Each X7 (Gg), is a union of finitely many connected components of X4y (Gg).

Note that (Ggr)x, = L{& for p € Efr We define reduced representation varieties
(4.1)

£
V\f’i\%(GR)lt = {(alvbla LR aévbf) € (L]{Q)M | H[aia bW] = eXp(X“)} = X%l(\)/I(L]IIQ)IL
1=1

They correspond to the reduction from Gg to the subgroup L. More precisely, we
have a homeomorphism

Xél(\)/[(GR)u/GR = V\f’i\?{(GR)u/L]{{

and a homotopy equivalence

hG hL{
1

R 2,0
~ Vynm(Gr)u
where X"¢ denote the homotopic orbit space EG x ¢ X.

We now recall the formulation in [HL3, Section 2.1]. Let pss : (LE)ss — (Lk)ss
be the universal cover. Then the universal cover of L} is given by

X¢w(Gr)

—~—

p: LHIR =iy X (LI{&)SS - LJII%v (X,9) — expzr(X)pss(9)

where exp 1 : 3 L= Z! is the exponential map. We have

m1((Lg)ss) = Ker(pss), m(Lg) = Kerp C (—2my _1EI>XZ((L]{§)SS) - 3LT§X(L]{§)SS~
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The map
_ V-1
pr1 - Kerp — 2, (X,9)— ?X
coincides with the surjective group homomorphism
puy s m(Lk) = i (LL/(LE) o)
under the isomorphisms Kerp = 7y (LL) and ZF 2 7y (LL /(LL)ss)-
Define the obstruction map o : Vfﬁ(GR)M — pz}(u) as follows. Given a
R ~
point (a1,by,...,as,be) € Vfﬁ(GR)M, choose a; € p~'(a;), b; € p~1(b;). Define
o(ay, by, ... a5 bp) = Hf:l[di, 51] Note that this definition does not depend on the
choice of a;,b;. We have o(ai,by,...,asbe) € {0} x (LL)ss, and

pss(o(ai, b, ... ae,be)) = exp(X,).

More geometrically, given (a1,b1,...,as,b) € Vé’l\%(GR)#, let P be the underlying
topological Li-bundle. Then o(ay, by, ...,as,be) = 02(P) under the identification
m(LL) = H2(28; 71 (LL)). Tt is shown in [HL3] that for £ > 1, 0=!(k) is nonempty
and connected for all k € p;]{: (). We conclude that

ProroOSITION 4.2. For any I C A and p € Ej_, there is a bijection
2,0 ~ -1
o (VYM(GR)M) =Pr1 (1)
Consider the short exact sequence of abelian groups:

0 —— m((Lh)e) —— m(Ll) — o m(LL/(LL)w) — 0
| |

AL /AL m (H)/AY m (H) /ALY
There is a bijection
mo (Ve (Ge)u/ L) = 1 (1)-

Given any 3 € p;{i(u), there is a bijection
m(Eh)ss) = Pyt (), s ifa) + 6.
4.3. Equivariant Poincaré series
Given a C* principal G-bundle &, over Xf, let
Eep = {u € U Efr | 1 is of Atiyah-Bott type for 50}.

ICA
The Harder-Narasimhan stratification of the space C(&g) of (0, 1)-connections on &,
is given by
Cléo)= |J Culé
HEEg,
Recall that C(&p) is an infinite dimensional complex affine space, and each strata
C.(&) is a complex submanifold of complex codimension

(4.2) do= Y (alw+e-1)

a(p)>0,a€ Rt
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Let P be a C* principal Gg-bundle over ¥ such that P xg, G = &, and
let A(P) be the space of Gr-connections on P. Then A(P) = C(&) as infinite
dimensional complex affine spaces. In [AB], Atiyah and Bott conjectured that
the Morse stratification of the Yang-Mills functional on A(P) exists and coincides
with the Harder-Narasimhan stratification on C(§p) under the isomorphism A(P) =
C(&). The conjecture was proved by Daskalopoulos in [Dal]. Atiyah and Bott
showed that the Harder-Narasimhan stratification is G(&y)-perfect over Q, where
G(&) = Aut(&p) is the gauge group of &. Therefore,

(4.3) PP (&) = Y PP (€ (&); Q).
HEEg,

Let A, (P) C A(P) be the Morse stratum corresponding to C, (&) C C(&). It
is the stable manifold of a connected component N, (P) of N(P). Let (Gr), =
(Gr)x,. Then p and P uniquely determine a topological principal (Gg),-bundle

P,. Let Xf;&(GR)ff denote the connected component of X4y (Gg), which corre-
sponds to P € Pring, (Xf), and let Véi\(/)[ (GR)S"' denote the connected component
of Vé’&(GR)H which corresponds to P, € Prin(g,), (£f). Then Vfﬁ(GR)E‘L can be
identified with the representation variety Vis(P,) of central Yang-Mills connections
on P,. We have homeomorphisms

Niu(P)/G(P) = Xyyi(Gr))[ /Gr = Vis(Pu)/(Gr),

and homotopy equivalences of homotopic orbit spaces:
hG
N (PYM9P) (Xf;&(GR)fj) * s Vs (B)M(CGRn,

Combined with the homotopy equivalence C,, (§O)hg(5°) ~ N, ( P)hg(P)7 we conclude
that

PEECu (€0 Q) = PP (X (Gr) Q) = PO (Vi 1) Q)

REMARK 4.3. The connectedness of N,,(P) implies the connectedness of Vys(P,,),
but not vise versa, because Go(P) is not connected in general. We know C, (&) is
connected by results in [AB], and N,(P) = N(P)NA,(P) is a deformation retract
of A, (P) = Cu(&) by results in [Da, R&|, so N, (P) is connected.

Suppose that £ > 2. Then there is a unique po € Z¢, such that d,, = 0. Then
Cuo(&0) = Css(&o), the semi-stable stratum. Let
ASS(P) = Auo(P>v NSS(P) :Nuo(P), Elfo = E€0 \ {NO}-
Then
NSS(P)/QO(P) = VSS(P)'
The identity (4.3) can be rewritten as
(4.4) P.(BG(P);Q) = PC*(Ves(P);Q) + > 24 P (V((P,); Q)
=3
where P,(BG(P);Q) is given by Theorem 2.4. This allows one to compute
PF*(Ves(P); Q)

recursively.
When G = GL(n,C), equivalent inductive procedure was derived by Harder
and Narasimhan by number theoretic method in [HN]. Zagier provided an explicit
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closed formula which solves the recursion relation for GL(n,C) [Za]. Laumon and
Rapoport found an explicit closed formula which solves the recursion relation for
general compact G. When Gy is not simply connected, the recursion relation
[LR, Theorem 3.2] that they solved is not exactly the recursion relation (4.4). The
closed formula which solves (4.4) is the following slightly modified version of [LR,
Theorem 3.4] (see Appendix A for details):

THEOREM 4.4. Suppose that & = P Xa, G and
c1(&) = p e m(G) =m(H)/A.
Then

PEE(Ves(P)) =
$2dimc UT(£-1)

Z (*l)dimc 3,1 —dime 5GPt(BgL{§; Q) t4z,yel<ﬂ1,04v><wa(#)>

IcA [Toer (1 —trrem)
where 1
pI = 5 Z 57
BE Ry

(B,a) > 0 for some a € T
wa (1) € Q/Z, and (z) € Q is the unique representative of the class x € Q/Z such
that 0 < (x) < 1.

Theorem 4.4 coincides with [LR, Theorem 3.2] when Gy is simply connected,
for example, when Gg = U(n), G = GL(n,C). When Gg = U(n), Theorem 4.4
specializes to the closed formula derived by Zagier in [Za] (see [LR, Section 4] for
details):
THEOREM 4.5 ([Za], [LR, Section 4]).
U(n l,
PI (XU M) k)

(1 4 t2_] 1)2(

r 1
Z Z ( H tzn 1 (]_ _ t2j)2

tZ(Z*I) 2 icy iy

.Hffl(l — t2(ni+m+1))

=1

. t2Zf:_f("i+ni+1)<(”1+'“+nz‘)(*%))

REMARK 4.6. Forn > 2, we have

P (XU (n))o,...0) = X (XES (U (1))
= PIW(XE W) P (X5 (SUn))) = %psw (Xfm(SU(n)))

So Theorem 4.5 also gives a formula for PSU(n ( fla?t(SU( ))-
EXAMPLE 4.7.
PP (XU @)y )
(1+1)%(1 + %)% L+ 0>\ 2D L
(1—t4)(1 — 12)2 +(=1) ( 1—¢2 ) B
(141)%*

- i (e )
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where
1 k even
(=k/2) { 1/2 k odd
So
2¢
PU@ (0 (17(o % (1+¢3)2 —122(1 + 1)%*)  k even
o (EnU@)gy) (1) 3\20 _ 420 20
m((lﬂ%) — (1 + 1)) k odd
and

SU@) ’ B (1+t3)2é t2€+2(1+t)2€
PP XSV = T ma - ao e i

EXAMPLE 4.8.

PO (X (SU3)))
(1—&-153)26(1—&-155)% B (1+t)22(1+t3)26t42+2 N (1+t)42t66+2

(T — )1 — 21 —0) (1 —2)2(1 —th)(1—0) ' (1)1 - t1)?
PPV (XG0 (SU(4)))

B (1—|—t3)2é(1+t5)2£(1+t7)25 (1—i—t)%(l+t3)2£(1—|—t5)22t6£+2
=21 21— P = 1%) (1= 21— 21— )1~ 8%)
(1—|—t)2£(1+t3)4£t8£ (1+t)4£(1—|—t3)2£t10£
=23 — 21 —#8) T T(1—#2)3(1 — t4)2(1 — 1)
(1+t)4£(1+t3)2£t10£+2 (1+t)612t12z

(1—2)31 —t)(1—15)2  (1—1¢2)3(1 — 1)
We will use Theorem 4.4 to write down explicit closed formula for SO(2n + 1),
SO(2n), and Sp(n) in Section 5.2, Section 6.2, and Section 7.2, respectively.

4.4. Involution on the Weyl Chamber

Let m: X — ¥ be the orientable double cover of a closed, compact, connected,
nonorientable surface ¥, and let 7 : ¥ — X be the deck transformation. Let P
be a principal Ggr-bundle over X, and let P = 7*P. Then P and & = P Xap G
are topologically trivial. There is an involution 7, : P — P which covers the anti-
holomorphic involution 7 : ¥ — %. Under the trivialization P 2 3 x Gg, 7y is given
by (z,h) — (7(z),s(x)h), where s : ¥ — Gy satisfies s(7(z)) = s(x)~" (see [HL4,
Section 3.2] for details).

Let A(P) and A(P) denote the space of Gg-connections on P and on P respec-
tively, and let C(£y) be the space of (0, 1)-connections on the principal G-bundle &.
Then 7, induces an involution 7 : A(P) — A(P). Since P and &, are topologically
trivial, we may identify A(P) with Q!(3, gr) and identify C(&) with Q%(%, g).
Let 7 : Ql(i,gR) — Q%1(%, g) be defined as in the first paragraph of Chapter 3.
Given X = X; + v—1X, € g, where X1, X, € gg, define X=X, —v—1Xo; given
X % — g, define X : ¥ — g by z + X(z). Then jo7oj~':C(&) — C(&) is
given by

X ®0— Ad(s)T* X @ 70
where X € Q°(3,g) and 6 € Q%!(S). From now on, we denote j o 77 o j~! by 7.
We have isomorphisms of real affine spaces A(P) = A(P)7 2 C(&)7 .
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We will define an involution 7/ on the positive Weyl chamber Cj such that
T5Cp = Crr(p), where p € C) is of Atiyah-Bott type for & and C,, is the associated
stratum in C(&p).

The set

~Co={-Y |Y €Cy} CV-1hg.

is another Weyl chamber. There is a unique element w in the Weyl group W
such that w - Cy = —Cy. We have w? - Cy = Cp, so w? = id, /=y, Define
71 /=1hr — v/=1bg by X — w - (=X). Recall that 7 induces an involution on
the symmetric representation variety which maps X € gg to —Ad(¢)X € gr (see
[HL4, Section 4.5]). Given Y € Cy, 7/(Y) is the unique vector in Cp which is in
the orbit G- (=Y) = G- (—Ad(¢)(Y)) of the adjoint action of G on g. Thus 7' is
induced by the involution 7 on the symmetric representation variety. To simplify
notation, from now on we will write 7 instead of 7/. Obviously 7(Cy) = Cy. Given
Y € Cy, 7(Y) =Y if and only if Y € Cy is conjugate to —Y. In this case, we have
Ad(e)Y = —Y, where € € N(Hg) C Gg represents w € W = N(Hg)/Hg.

To demonstrate the above discussion, we list some examples of classical Lie
groups.

EXAMPLE 4.9. Let Ggr = U(n). then
Co = {diag(ty,...,tn) | t1,.. . tn EREy > >t}
—Cy = {diag(vi,...,vn) | v1,..., 00 ER vy <o <0, }

There exists a unique w in W = S(n) , the symmetric group, such that w(Cp) =
—Co. In fact, w - diag(t1,...,t,) = diag(t,,...,t1) is the action of such w on
V—1br. Thus, the involution 7(Y) defined as w-(=Y) gives us (diag(ty, ..., t,)) =

diag(—tn,...,—t1), and Y is conjugate to =Y (i.e. 7(Y) =Y ) if and only if
(t1,...ytn) = (—tn,...,—t1), or equivalently, if and only if Y is of the form
diag(vy, ..., v, 0,...,0,—vg,...,—v1).

EXAMPLE 4.10. Let Ggr = SO(2n+1). then

Co = {V-1diag(t1J,...,t,J,0I1) | t; > -+ >t, > 0},
—-Cy = {V-1diag(viJ,...,v,J,01) | vy <+ <w, <0},

=(1 )

The unique w in W = G(n), the wreath product of Zz by S(n), that maps Cy to
—Cl, acts as w-/—1diag(t1J, ..., t,J,0I1) = \/—ldijg(—tlJ, ooy —tnJ,0I1). Thus
T : v/ —1br — V—1bg is the identity map. AnyY € Cy is conjugate to the negative

of itself. Let
1 0
i )

and let H, = diag(H,...,H). The element
———

n

where

e = diag(H,, (-1)") € SO(2n + 1)
satisfies Ad(€)Y = =Y for allY € /—1hr and € = e.



4.5. CONNECTEDNESS OF THE REPRESENTATIONS FOR NONORIENTABLE SUFACES 25

EXAMPLE 4.11. Let Gg = SO(2n). Then
Co = {V-1diag(t1J,...,tyJ) | t1 > - =] t, |> 0},
—Coy = {V-1diag(viJ,...,vonJ) | v1 <+ < — v, <0}

The unique w in W = SG(n), the subgroup of G(n) consisting of even permutations,
that maps Cy to —Cy, belongs to the Zy part of SG(n), and

w -/ —1diag(tyJ, ..., t,J) = V—1diag(—t1J, ..., —t,_1J, (=1)" " t,J).
Thus
T (V-1diag(t1J, ..., t,J)) = V—1diag(t1J, ..., tn—1J, (—=1)"t,J)

If n is even, then any Y € Cy in conjugate to the negative of itself. If n is odd,
then Y € Cy is conjugate to =Y iff Y is of the form /—1diag(t1J, ... ,tn—1J,0).
Define

Hy .. . even
€= { diag(Hy 1, I2) € SO(2n) ifnis odd

Then € satisfies Ad(e)Y = =Y for all Y € /—1hg and € = e.
EXAMPLE 4.12. Let Gg = Sp(n). Then

Co = {diag(ty,...,tn,—t1,...,—tn) |t1 >+ >t, > 0},
—Cy = {diag(vi,...,vn, —V1,...,—0y) | vy < < v, <0}
the unique w in W = G(n), the wreath product of Zs by S(n), that maps Co
to —Cl, acts as w - diag(ty, ..., tn, —t1,...,—ty) = diag(—t1, ..., —tn,t1,. .., tn).

Thus T : /—=1br — /—1bg is the identity map, and any Y € Cy is conjugate to
the negative of itself just as in the SO(2n + 1) case. The element

62(1(1 o ) € Sp(n)

satisfies Ad(€)Y = =Y for all Y € \/—1bg but €2 # e. Indeed, let € be any element
that satisfies Ad(€)Y = =Y for all Y € \/—1br. Then we must have € = eu for
some u in the mazimal torus, and it is straightforward to check that & = —e.

4.5. Connected components of the representation variety for
nonorientable surfaces

GR is connected, so the natural projection
Xar(Gr) = X3a(Gr) /G
induces a bijection
7o (Xyar(Gr)) — o(Xyar(Gr))/Gr)-
Any point in Xf,’i,[ (Gr)/GRr can be represented uniquely by
(a1,b1,...,a0,bp,¢,X)

where X € Cy. Moreover, we must have X € 68. Similarly, any point in
X2 (Gr)/Gr can be represented uniquely by

(Cthl,...,Clbbg,d,C,X)
where X € Cj.
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Recall that 7 is an R-linear map from v/—1hg to /—1hg. Its dual 7* is an
R-linear map from (v/—1hg)" to (v/—1hr)Y. This 7* preserves A, the set of simple
roots, and restricts to an involution on it. To simplify notation, we will also denote
this involution by 7. Given I C A such that 7(I) = I, let

G ={pesl | 7(n) = p}
Suppose that (ai,b1,...,ap,bp,¢,X) € X\%A(GR)- Then there is a unique pair
(1, I), where I C A, 7(I) = I, and p € (EL)7, such that X is conjugate to
X, = —2m/—1p. Given p € (EL)7, where I C A and 7(I) = I, define

X€;§4(GR)M = {(al,bl,...,a[,bg,C,X) S GRQZ+1 x C )2 |
a1, bi,...,a0,b0 € (Gr)x,Ad(c) X = —X, Hal, ] = exp(X)c?}

Where C,,/, is the conjugacy class of X,/2. We define XY’M(GR);L similarly. For
i=1,2, X@&(GR) is a disjoint union of

{(Xyn(Gr)u | pe BT TS AT(I) =T}

When Gr = U(n), £ > 1, each XY’M(GR)M is nonempty and has one or two con-
nected components (see [HL4, Section 7]). We will see later that X7 (Gg) u can
be empty for other classical groups (Section 5.3, Section 6.3, Section 6.4 and Sec-
tion 7.3). When Xf(fv[ (Gr), is nonempty, it is a union of finitely many connected
components of X4! (Gg).

The reduction of Xf(fv[(GR) « is more complicated because c is not in Gx. To

do the reduction, we fix some € € Gg such that the involution on Cj is given by
X — —Ad(e)X. Thus Ad(e)X = —X if X is fixed by the involution. For any
p € (L), where 7(I) = I, we define e-reduced representation varieties

X
(45) Var(Gr)y = {(ar, by, .. ae,br, ') € (LE)* | Haz, i] = exp(fJec'ec')
(4.6)

X
Vi (Grly = (01,1, o by d, ) € (L) 2“2|Haz, i) = exp(Secd(ec) " d)

For i = 1,2, L acts on Vi3 (Ggr), b

g-(er, o ycaupi) = (gerg ™ty gearyiing € Tgecanrig ).
Recall that Ad(e)(X,) = =X, and L} = (Gr)x,. So we have a homeomorphism

4y ~ 140 I

XYll\/I(GR)u/GR = VYI\Z/I(GR)#/LR
and a homotopy equivalence between homotopic orbit spaces:
i hGr i nLi
XYll\/I(GR)# ~ VYK/{(GR)M :

When Gr = U(n), V\é’l&(GR)# can be viewed as a product of representation
varieties for U(m) (m < n) of £¢ and of its double cover L2T~1 (sce [HL4,
Section 7]. This is not the case for other classical groups. We will see in Section
5.3, Section 6.3, Section 6.4, and Section 7.3 that when Ggr = SO(n) or Sp(n),
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Vé&(GR) u 1s a product of twisted representation varieties defined in Section 4.6
and Section 4.7 below.
4.6. Twisted representation varieties: U(n)

Given n, k € Z, n > 0, define twisted representation varieties
¢
(47) Vf:]}: = {(a17 bly cees Qg bév C) € U(n)2l+1 | H[ai7 bz] = 6*2#\/*71]6/71[”60}
i=1

(4.8)

¢
Vrf/i = {(ahbh---,aé,be,d, c) € U(n)**?| H[az’,bi] = e 2™V Eded)
=1

where ¢ is the complex conjugate of c. In particular,
‘715,7’3 — U(1)2£+17 ‘7187,13 — U(1)2[+2.
For i =1,2, U(n) acts on Vf,’c by

(4.9) g-(a,b1,...,apbe,c) = (garg™t, gbrg™t, ..., gaeg™", gbeg™", geg™h)
(4.10)
g-(a1,b1,...,a0,bs,d,c) = (garg™ ', gbrg™, ..., garg™ ", gbeg™", gdg™", Geg™)
We will show that

PROPOSITION 4.13. f/rf; is monempty and connected for £ > 2i.

PROOF FOR ¢ = 1. For any (a1,b1,...,asbs,c) € ‘N/Tf,i, we have
det(a;) = eV~ det(b;) = eV~ 1%, det(c) = eV 17,
Define 8 : [0,1] — U(n)**+! by
ﬂ(t) _ (ef\/filt(il/na17 e*\/jltd)l/nbl’ . e*\/jlteg/na&ef\/jltqﬁg/nbe’ ef\/jlte/nc).

Then the image of 3 lies in Vf,& B(0) = (a1,b1,...,ae,be, ), and

def
By ewrl = {(anbi e anbec) € SUM)PY
¢
H[ai, b;| = e_Qka/"Inéc} C Vf;
i=1
So it suffices to show that Wﬁi is nonempty and connected.

Define 7 : Wﬁi — SU(n) by (a1,by,...,abe,c) — c. Then 7~1(c) is nonempty
and connected for any ¢ € SU(n). It remains to show that for any ¢ € SU(n), there
is a path v : [0,1] — Wﬁi such that v(0) € 7=1(e) and (1) € 7~ (c).

Let T be the maximal torus which consists of diagonal matrices in SU(n). For
any ¢ € SU(n), there exist g € SU(n) such that g~ lcg € T. We have

c=gexply', c=gexp(—-&g '

for some & € t. Let

k
§0 = —2mv/~1 diag(l,_1, (1 -n)l1) € ¢
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Then exp(&y) = e 2"V=I¥/n[ Let w be the coxeter element and a be the corre-
sponding element in SU(n). There are 19,7 € t such that
w-no—1n =&, w-n—n=_&
Let a € N(T) represent w € W = N(T')/T. Then
aexp(no — tn)a” exp(—no +tn) = exp(w - (no —tn) — (1o — tn))
= exp(§o — t§)
= e VI e i)
aexp(tn)a” exp(—tn) = exp(w - (tn) —tn) = exp(tE).
Now since SU(n) is connected, there are paths g : [0,1] — SU(n) such that
3(0) = e and §(1) = g. Now define ~ : [0, 1] — SU(n)**! by

v(t) = (a1(t), b1(t), az(t), ba(t), e, ..., e,c(t))

where
aa() = 50a (50) . bi(t) = 30 explmo — t) (50))
as(t) = gt)ag(t) ™,  ba(t) = §(t) exp(tn)g(t) ="
c(t) = §(t) exp(t&)g(t) !

Then

[a1(t),b1(t)] = e 2™V me(t),  [aa(t), ba(t)] = (1),

so the image of 7y lies in Wﬁ}c We have

v(0) = (a,exp(no),a,e,e,...,eee) € 7T_1(6)
(1) = (gag " gexp(no —mg ' gag” " gexp(n)g e, e c) € T c).
O
PROOF FOR ¢ = 2. For any (ay,b1,...,as,bs,d,c) € f/rfi, we have

det(a;) = eV~ det(b;) = eV, det(c) = eV, det(d) = eV 12
Define 3 : [0,1] — U(n)**+2 by
B(t) = (e VT /ngy e~V =Tt0/ny,
e—\/?1t9z/na£7 e—\/—iltaﬁz/nbe7 e—\/—iltd’/nd7 e—\/—ilw/nc).

Then the image of 3 lies in Vrfi, B8(0) = (a1,b1,...,ae,bs,d, c), and

ﬁ(l) S Wﬁ:i déf {(a17b1,~--;a€7b€ada C) € SU(”)2€+2‘

4
[Tla:, bi] = e*Q"Hk/”InécZéfld} cVir
=1

So it suffices to show that Wﬁi is nonempty and connected.

Define 7 : Wf;i — SU(n)? by (ay,b,...,asbe,d,c) — (d,c). Then 771(d, c)
is nonempty and connected for any (d,c) € SU(n)?. It remains to show that for
any (d,c) € SU(n)?, there is a path v : [0,1] — Wﬁi such that v(0) € 7= 1(e, )
and (1) € 771(d, ¢).
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Let T be the maximal torus which consists of diagonal matrices in SU(n). For

any ¢,d € SU(n), there exist g1,g92 € SU(n) such that g; 'cgi, gy 'dge € T. We
have

c=giexpéigr’, c=qiexp(—&1)gr ", d=goexplogy ', d=goexp(—&)g5 "
for some &1,&; € t. Let

k
§o = -2V _1ﬁdiag(In—17 (I-n)h) et
Then exp(&y) = e 2™V=I¥/n[ Let w be the coxeter element and a be the corre-
sponding element in SU(n). There are 79, 11,12 € t such that
W'Uj*”j:fja ]:07172
Let a € N(T') represent w € W = N(T')/T. Then

aexp(no — tm)a”"exp(—no +tm) = exp(w - (no —tm) — (o — tm))

= exp(§o — t&1)
T (i)

aexp(ftm)a*1 exp(tm) = exp(w- (—tm) +tn) = exp(—t&1)
aexp(—tng)a_l exp(tnz) = exp(w - (—tna) + tn2) = exp(—t&2).

Now since SU(n) is connected, there are paths g1, g2 : [0, 1] — SU(n) such that
G;(0) = e and §;(1) = g; for j = 1,2. Now define v : [0,1] — SU(n)?**2 by

’y(t) = (al(t), bl(t),ag(t), bz(t), CL3(t),b3(t)7a4(t), b4(t), €,y 6,d(t>7 C(t))

where
() =5:0a (70) 5 bl =@ esplmo i) (3 )
w2(t) = 3200 (70) + balt) = 520 exp(—tm) (300)
as(t) = g1(t)a (571(15))_1, bs(t) = gu(t) exp(tm) t)_
aa(t) = B2(0a (@200 ba(t) = Galt) explene) (3a(0)
c(t) = gi(t) exp(t&)ga ()™, d(t) = Ga(t) exp(t&a)ga(t)
Then

[ar (), br()] = e 2™V TRC(E), aa(t), ba(1)] = d(B),
as(®), b)) = @) laa(t), ba()] = d(t).
so the image of  lies in Wﬁi We have
v(0) = (a,exp(no),a,e,a,e,a,e,e,...,eee)€m (ee)
v(1) = (gragi '.grexp(no —m)gi Gzag  Gaexp(—m2)g2
gragi ' grexp(m)gi ' gaagy " g2 exp(m2)gy e e dc) €T (doc).
(]
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4.7. Twisted representation varieties: SO(n)

Let
O(n)y ={A € 0(n) | det(A) = +1}.
Then O(n)+ and O(n)_ are the two connected components of O(n), where O(n) =
SO(n). For n > 2, define

4
(411) V5L 4y ={(a1,b1,. - abe,¢) € SOm)* x O(n)x | [ [lai bi] = *}

=1
(4.12)
0
Vot e = {(an,br, . ap,be,d ¢) € SO(n)* ' x O(n) s | [[lai, bi] = cde™"d}
=1

Note that Vé’(in))ﬂ = Xﬁ;t(SO(n)). Recall that Xfl’ait(SO(n)) has two connected
components Xg;t(SO(n))‘H and Xﬁ’aZt(SO(n))_l.
For i =1,2, SO(n) acts on Vé’(ln) 4, by

(413) g (a1, br,...,ar,be,c) = (garg™ " gbig™ ", ... gaeg™ ", gbeg™ ", gcg™t)

(4.14)
g-(a,br,...,apbe,d,c) = (garg~ ', gbig™ ..., gaeg™ ", gbeg ™, gdg ™, geg™t)

When n = 2, we have diffeomorphisms O(2); =2 O(2)_ = U(1), and diffeomor-
phisms
Vo = Xn(UL) = UL)* " x {£1)
where ¢ = 1,2. For any d € SO(2) and ¢ € O(2)_, we have

=1, cdcld=1I,

SO
Vo1 = {lanbr,.. a0 by 0) € SO2)* x 0(2) | I = ¢}
= SO(2)* x0(2)_,
Vo1 = {lan,bi,.. aebe,d,c) € SOQ2)* T x 0(2)_ | I = ede™d}

= SO2)**' x0(2)_.

Fori=1,2, Vé’é)’fl is diffeomorphic to U(1)%*?, thus nonempty and connected.
From now on, we assume that n > 3 so that SO(n) is semisimple. Let p :
Pin(n) — O(n) be the double cover defined in [BD, Chapter I, Section 6], and
let Pin(n)x = p~1(O(n)+). Then Pin(n); and Pin(n)_ are the two connected
components of Pin(n), where Pin(n); = Spin(n). Note that Pin(n)_ is not a
group because if z,y € Pin(n)_ then zy € Pin(n)4.
Recall that there is an obstruction map

021 VoL 41 = X (SO(n)) — Ker(p) = {1, -1} € Spin(n)

given by

£
(a/la b17 s, Gy, bfﬁ C) = H[al’ Bi]E_Q
i=1
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where (@1, by, ...,as, by, ¢) is the preimage of (ay,bi,...,ap by, c) under p2tt?t .
Spin(n)?*! — SO(n)**!. Tt is easy to check that oy does not depend on the

choice of the liftings (@1, by, ... ,ds, by, &) because 2Ker(p) = {1}. Similarly, there is

an obstruction map os : Vé’fn) = Xﬁft(SO(n)) — {1, —1} given by
e ~ ~ ~
(a1,b1, ..., ae, by, d, c) = [ [las, bs)(eded) !
i=1
where (a1, bi,...,ac be,d, ¢) is the preimage of (a1, b1,...,ae, b, d, ) under p2t2 .

Spin(n)?+2 — SO(n)?+2, Again, 0y does not depend on the choice of @, b;, d, ¢.

‘For i = 1,2, define Vé’(lﬁﬂ)t,il = Xfl;’azt(SO(n))il = 0, '(£1). Then Vé’(z;;)r’il =
thi’;t(SO(n))“‘1 corresponds to flat connections on the trivial SO(n)-bundle (wy =
0 € HX(X%7Z/27) = 7/27), while Vé’(zr’b)_’il = X;L(80(n))~" corresponds to flat
connections on the nontrivial SO(n)-bundle (wy = 1 € H?(Xf;Z/27) = 7./27). Tt
was proved in [HL2] that X3’ (SO(n))™" and X' (SO(n))~" are nonempty and
connected if £ > i, ie., (¢,i) # (0,1),(0,2),(1,2). The result is extended to the
case (1,2) in [HL4]. 4

We now extend the definition of oy to Vi

O(n),—1° Define o5 : Vé’l —
{1,—-1} C Spin(n) by

(n)7_1

£
(a/la b17 sy Ay, b& C) = H[dl’ Bi]6_2
i=1

where (@1, b1,...,as, by, ¢) is the preimage of (aq,bi,...,ae by, c) under p2ttt :
Spin(n)?* x Pin(n)_ — SO(n)* x O(n)_. It is easy to check that oy does not
depend on the choice of (a1,b1,...,asbs,¢). Similarly, define o : Vé’z

(n)771
{1,-1} C Spin(n) by

—

14
(alv b17 <o, Gy, b@a da C) = H[dhgl](é(jéild}il
i=1

where (a1, by,...,ag, by, d,¢) is the preimage of (a1,b1,...,a¢be,d,c) under p2+2 .
Spin(n)** x Pin(n)— — SO(n)***! x O(n)_. Again, 0, does not depend on the
choice of (ay,b1,...,as, be,d,¢). Define Vé’&ﬁ)ﬂfl = 0, '(£1). We will show that

PROPOSITION 4.14. Suppose that £ > 2i, where i = 1,2, and n > 3. Then

Vé’(iy};rlq and Vé{,’gil are nonempty and connected.

PRrROOF. Define

14

Vet = {(@x, by, a, b, &) € Spin(n)* x Pin(n)_ | [ [las, bile™> = +1}
=1

Vemis = @by, ag, be, d, @) € Spin(n)*™! x Pin(n)_ |

4
[, bilede"d)~" = +1}

i=1
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Then p** : Spin(n)**+=1 x Pin(n)- — SO(n)**'=! x O(n)_ restricts to a
covering map Vﬁ;l(inl) — Vé’(lé)iil. It suffices to prove that Vlﬁ’;’;(rnlL and Vlﬁ;;(n
are nonempty and connected for £ > 2i. ) )

i = 1. Define 74 : Vlﬁ’;’(ﬂ;l)_ — Pin(n)_ by (a1,b1,...,asbe, ¢) — ¢ Note that

Spin(n) is simply connected and &, —é € Spin(n), so 71" (€) is nonempty and

connected for any ¢ € Pin(n)_. Let e; = ejeses, and let e = e;. Then e;,e_ €
Pin(n)_, and (e1)? = £1. It suffices to show that for any & € Pin(n)_, there is a
path vy : [0,1] — Ve’il’(j;l) such that 74 (0) € 73 (ex) and v4(1) € 7' (é).

Let T' be the maximal torus of Spin(n), and let t be the Lie algebra of T'. For
any ¢ € Pin(n)_, we have (ex)~'¢ € Spin(n), so there exists g1 € Spin(n) such
that (g+) '(e+) ég+ € T. We have

&= exge exp(éx)(g+) "
for some £, ,£_ € t. Let w be the coxeter element. There are n4,n_ € t such that
w-ne =Nt =&+

Let a € N(T) C Spin(n) be the corresponding element which represents w € W =
N(T)/T. Then

aexp(tni)a_1 exp(—tny) = exp(w - tny — tny) = exp(t€y).

Now since Spin(n) is connected, there are paths g+ : [0,1] — Spin(n) such
that g+ (0) = 1 and g+ (1) = g+. Now define 7 : [0, 1] — Spin(n)?* x Pin(n)_ by

v (t) = (ay (1), by (), a5 (1), b5 (), 1,..., 1, ¢ (1))

where

ay (t) = exga()alexg(t) ™, by () = exdu(t) exp(tne)(exg= (),

ay (t) = g=(t)a(ge(t) ", b3 (t) = g=(t )eXp(tni)(gﬂ:(t))il,

(1) = ex g (1) exp(tés) (G (8) ™
Then
[0 (),07 ()] = exge(t)[a, exp(tns)](exg+(1)) "

= exga(t) exp(tés)(exgs ()~ = c(t)(ex!) = c(t)(£es),

a3 (1),05 ()] = g (t)]a, exp(tne)](§ (1))~ = g () exp(téx) (F () ' = ex'e(t),
so the image of 4 lies in me(n) We have
v+(0) = (eiae; yLa,1,1,...,1eq) € W;I(Gi)
v:(1) = (exgralergs) ' exge exp(ne)(exgs) " gzalge) ", g exp(ne)(g+) ",

1,...,1,8) € 73 (&).

1 = 2. Define 74 : Vﬁfn(inl) — Spin(n) x Pin(n)_ by (dl,i)l, e ﬁg,i)g,d, ¢)
(d,&). Note that Spin(n ) is simply connected and éde=td, —eded e Spin(n),
so 1 (d,¢) is nonempty and connected for any (d ¢) € Spin(n) x Pin(n)_. Let
€+ =1, and let e_ = eges. Then ejere; ley, = ey leiejer = +1. It suffices to show
that for any (d,¢) € Spin(n) x Pin(n)_, there is a path v+ : [0,1] — V52E!

Pin(n)_ such
that v+ (0) € 71 (ex, e1) and v(1) € 731 (d, &).
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Let T be the maximal torus of Spin(n), and let t be the Lie algebra of T
Given d € Spin(n) and ¢é € Pin(n)_, there exist gy, g—, g € Spin(n) such that and
&,&4,&_ € tsuch that

é=ergexp(§)g",d = exgs exp(€s)(9+)
Let w be the coxeter element. There are n,7n4,n— € t such that
wn=n=§ w-ne—ne =&t
Let a € N(T') C Spin(n) be the corresponding element which represents w € W =
N(T)/T. Then
aexp(tn)atexp(—tn) = exp(w-tn—tn) = exp(tf),
aexp(tny)atexp(—tny) = exp(w-tne —tny) = exp(téy).

Now since Spin(n) is connected, there are paths g,gy,g— : [0,1] — Spin(n)

such that

-1

9(0)=3g+(0)=9g-(0) =1, g(1)=g, g=(1)=g=.
Now define v : [0,1] — Spm( )21 x Pin(n)_ by
), b1

Y= (t) = (a1 (t),bi(t), az (1), by (¢), a3 (1), by (8), a3 (1), by (8), 1, 1,d5 (1), e(t))

where

ar(t) = erg(talerg(t)) ™", bi(t) = erg(t) exp(tn)(e1g(t)) ™",

a5 () = erexga(talererd= (1) 7" by () = erexga(t) exp(tnz)(erexg«(1) 7",

ag (t) = erexg(t)alerexg(t)) ™", by (t) = erexg(t) exp(—tn)(ere+g(t)) ",

ay (t) = g (Dage ()", by (t) = g () exp(tne) g« ()",

c(t) = exg(t) exp(t€)g(t) ™', d¥(t) = exga(t) exp(tér)ga (t) "
Then

a1 (t), b1 ()] = erg(t)la, exp(tn)](e1g(t)) ™" = c(t)er ',
]

[

[ay (1), b5 (1)] = erexgs ()[a, exp(tne)] (erex g (1))~ = erd(t)(eres) ™
[a (), b5 ()] = erexq(t)[a, exp(—tn)]3(t) (elfi) b= erenc(t) T (Fen),
[a¥ (£), 03 (1)] = g (1) [a, exp(tna)|((1)) ™" = e d(t),

so the image of 4 lies in Vﬁfn(in) We have

7+(0) = (erae;’, 1, erexalerer) ™1, ereralerer) t1,a,1,1,...,1,ex,e1)
eril(ex,e1)

7+(1) = (ergalerg) ™", ergexp(n)(erg) ™, erergralerergs) ™,
erexgs exp(ne)(eresgs) ! erecga(eresg) ™! erecgexp(—n)(ererg)
gagy', grexp(ne)gr’, 1,...,1,d,8) € 7y '(d, )



CHAPTER 5

Yang-Mills SO(2n + 1)-Connections

The maximal torus of SO(2n + 1) consists of block diagonal matrices of the
form

diag(A1, ..., An, 1),

where Ay, ..., A, € SO(2), and I; is the 1 x 1 identity matrix. The Lie algebra of
the maximal torus consists of matrices of the form

0 —t1 0 0
tv O 0
27rdiag(t1J,...,th,Ofl) =2r . ,
0 —t,

0 t, 0 O

0 0 0 0
where

0 -1

(5.1) J = ( 1 0 > .

The fundamental Weyl chamber is
Co = {V-1diag(t1J, ..., t,J,001) | t; > to > - >, > 0}.
In this chapter, we assume

NiyeneyNp € Lsg, N1+ -+ 00 =n.

5.1. SO(2n + 1)-connections on orientable surfaces

Let J,,, denote the 2m x 2m matrix diag(J,...,J). Any p € Cj is of the form
——

m

n=v —1diag(/\1Jn1,. Cey )\TJnr,Ofl),

where \;y > --- > \. > 0.
Let X,, = —2mv/—1p. Then

SO(2TL+ 1)X” o { (I)(U(ﬂl)) X oo X CI)(U(TLT)), )\7‘ > 07

B(U(n1)) % -+ x D(U(nr_1)) x SO(2n, + 1), A, =0,

34
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where ® : U(m) — SO(2m) is the standard embedding defined as follows. Consider
the R-linear map L : R?™ — C™ given by

T

Y1 1+ V—1y1
N :

Tm Tm + \% _1ym

Ym

We have L~1 o (v/=11,,) o L(v) = J,v for v € R?™. If A is a m X m matrix, let
®(A) be the 2m x 2m matrix defined by

(5.2) L 'oAoL(v)=®A)(v), veR™,
Note that A(v/—11,,) = (vV=11,)A = J, ®(A) = ®(A)J,.
Suppose that (ai,bq,...,a¢,bs, X,) € X@&(SO(Zn +1)). Then

4

exp(Xy) = H[az‘, bi

i=1

where a;, b; € SO(2n + 1)x,. This implies that exp(X,) € (SO(2n + 1)x, )ss, the
semisimple part of SO(2n +1)x,

O(SU(ny1)) x - x ®(SU(n,)), A >0,

(50(2n+1))@)ss = { (I)(SU(TM)) X oo X (I)(SU(nr_l)) X 50(2717« + 1)7 Ar = 0.

Thus
k ki
X, = 27rdiag(—1Jnl7...,—Jnr,011)7
Ny
— k.
Bo= dlag( Inys- -~an7<]nra0-[1)a
where
k k.
ki,....ky €Z, L >...>"">0.
ny n,

This agrees with Section 3.4.2.
Recall that for each pu, the representation variety is

Vam(SO@2n+1)),, = {(a1,b1,...,ar, be) € (SO2n+1)x,)* | H ai,bi] = exp(X,)}.

Fori=1,---, ¢, write

a; = diag(Af,..., A}, I), b; = diag(Bj,..., By, I), when k. >0,
a; = diag(A%, ..., A%), b; = diag(B:,...,BY), when k, = 0,

where A%, B € ®(U(ny)) for j =1,. —1, and

i i @(U(nr)), when k, > 0,
A B € { SO(2n, +1), when ky, — 0.
Let
- [ cos(2mt) —sin(27t)
Ji = exp(2mt]) = ( sin(2wt)  cos(2wt) )’
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and let
(5.3) Ty = ®(2™V /L) = diag(Jyjn, - - - Ji/m) € SO(2n).
————

For j=1,...,r —1, define
1 1 4 14 26 % 7
(A5, Bj,..., A}, Bj) € (U \”A Bj] = nJ,kJ}

(5.4)

[l &

{ AL B, AL BY € Ung)™ | H B e%ﬁkﬂ‘/"i]nj)}
X

1%

wn(Umg)) x ki

If k. > 0, define V. by (5.4). If k. = 0, define

e T s
J

V., = {(AL,B.... A% B e SO@n, + 2"|H Z‘_Imﬂ}

1%

X0 (80(2n, +1)).
Then V&3 (SO(2n + 1)), = [1j—, Vj. We have a homeomorphism

[[vi/U ), k>0,
VEL(SO(2n+1)),/S0(2n+1)x, = {171
[1(V;/U(m))) x V./SO(@2n, +1), k=0,
j=1
and a homotopy equivalence

hSO(2n+1)x,, {H;zl VU ), k, >0,

Ve (SO(2n + 1 =
YM( ( ))u H;:} ijhU(nj) « Vr‘hSO(2nT+1)7 k. =0.

NOTATION 5.1. Suppose that m > 3. Let ¥ be a closed, orientable or nonori-
entable surface. Let PSCI,( ) and PSO( ) denote the principal SO(m)-bundle on X
with wg(Pgol( ) =0 and ws( So(m)) = 1 respectively in H?(3;7Z/27) = 7./27.
Let N (2 )SO (m) denote the space of Yang-Mills connections on Psﬂ*tol(m); and let
M (E)io(m) denote the space of flat connections on Psiol(m)

Fori=0,1,2, we have

Xor(S0(m)) = X1, (SO(m)) ™ U X4 (SO(m)) ™!

where

Xy (SOm)*! 2 N (S5 (1 /G0(PE5 ).
and _

Xk (SO(m)) = X1 (SO(m)) U X7, (SO(m)) ™!
where

X (SOm) = = No(Z)E5 ) /90(P3 ()
is monempty and connected for £ > 1. Let

Xoa(SOm))E = X43,(SO(m)), N Xga (SO(m))*!
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be the representation varieties for Yang-Mills connections of type p on Pétol(m). Let
i
M(Z, P35 my) = Xy (SO(m)) =1 /SO (m)

be the moduli space of gauge equivalence classes of flat connections on Psiol(m) over
Y. Let

M, P™F) = X0 (U () e x/U(n)
be the moduli space of gauge equivalence classes of central Yang-Mills connections

on a degree k principal U(n)-bundle over 26. Recall that there is no flat connection
on a degree k # 0 principal U(n)-bundle over Xf.

We have seen that va’l\(/}(SO(Qn +1)u = [Ij—, Vj is connected for &k, > 0
and disconnected with two connected components for k., = 0. To determine the
underlying topological type of the SO(2n + 1)-bundle, let us consider the group
homomorphism

¢u T (SO2n +1)x,) — m(SO(2n + 1)) = Z/27
induced by the inclusion SO(2n + 1)x, < SO(2n + 1). We have

[[mU®r) =z, A >0,
m(S0@n+1)x,) = 17
[ (U n) x 71(SO@n, + 1)) = 27~ x Z/2Z, A\ =0,
j=1

and

Sulkr, .. ky) =ky+ -+ K (mod 2).
Thus, for k, > 0, Vé’ﬁ(SO(?n + 1)), is from the trivial SO(2n + 1)-bundle if and
only if k1 +---+ k- =0 (mod 2); and for k, = 0, Vf’l\(}[(S’O@n + 1)), has two
connected components Vé’l\%(SO(Qn + 1))} and Vé’l\% (SO(2n + 1)), , where

r—1
kitethe_1

Ve (S0@2n+ 1)) = [ Vi x Xga(S0@2n, + 1)) ,

j=1

kyttky g+

r—1
Vyn(S0(2n +1)),, [TV x xga(so@n, +1)
j=1
To simplify the notation, we write
ﬁ ﬁ kT kr)

nl,...,nl,... n T

u:(ul,...,un):(

instead of
k
\/—ldiag(n—ljm,...,—Jnr,()ll).
1
Let
k1 k1 k., k. ’I’LjEZ>0, ny+--+n.=n
Iso@ny1) = {M = (* ey )’ }7

) ) PRI} . . -
ny nq n,y n,
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I§5(2n+1) = {1 € Iso@nin) | pn >0, (1) Hhr = 41},
Lo@nsy = 1€ Isoenty | pm =0}
From the discussion above, we conclude:

PROPOSITION 5.2. Suppose that £ > 1. Let

kl kl kr k'r
5.5 :(—,...,—7...,—,...,—) Tsoomat).
(5.5) 1 " " - . € 1so(2n+1)
ni Ny
() If o € IS anany, then Xym(SO@2n + 1)), = Xyy(SO(2n + 1)) is

nonempty and connected. We have a homeomorphism

Xeu(S0(2n +1)),/S0@2n +1) = [ M(56, Po—)

j=1
and a homotopy equivalence

hSO(2n+1) 1 hU (n;)
~TI(ER @) s )

n;tt g

j=1 J J

X42(50(2n+ 1)),

(i) If p e Ig0(2n+1)7 then Xf(’g/[ (SO(2n+1)), has two connected components
(from both bundles over ©f)
Xy (SO@2n+ 1)1 and  Xyy(SO(2n + 1)), %
We have a homeomorphism

r—1
)kt
X40(50@2n+1)E /50(2n+1) = [ M(zg,in—’w)xM(zg,P;E(;@QT;D )
j=1
and a homotopy equivalence

r—1

hSO(2n+1) hU(n;)
(X45i(s0en+1)F) S8 | [ ST IR R
j:l "nJ ? ’ "nJ

o1 ooty g\ PSO(2n,+1)
(Xf2(50@n, + 1))=Y -

PROPOSITION 5.3. Suppose that £ > 1. The connected components of the rep-
resentation variety Xf(’l?/[ (SO(2n + 1)) are

2,0 2,0
{Xym(S0@2n+1)), [ n e Isiol(gnﬂ)} U{Xym(SO@n+1);" [ e I$0(2n11)}-
The following is an immediate consequence of Proposition 5.2.

THEOREM b5.4. Suppose that £ > 1, and let p be as in (5.5).
(i) Ifp € Isié(2n+1), then

ny T

PO (X{u(50@n+ 1)) = [T P/ (X Wm)) s w)-
j=1
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(i) If p € IgO(2n+1)’ then
r—1
SO(2n+1 l, U(n, e,
PO 4—>(xy&(socml+1»§1)::Ilji< >(xy&(U@U»_§i”‘_i) «

j=1 J J

PtSO(QnTJrl) (Xfl;ﬂ(SO(Qnr n 1))i(_1)k1+...+k,,.,1) .

5.2. Equivariant Poincaré series
Recall from Chapter 3.4.2:
A={a;=0;—0;11]i=1,....n—1} U{a, =0,}
V={a)=¢e;—ei1|i=1,...,n—1}U{a) =2e,}

n—1

@Ze“ A= @Z —eir1) ® Z(2e,),

1(SO(2n +1)) = (e, & Z/QZ
We now apply Theorem 4.4 to the case Gg = SO(2n + 1).

1
Tar =01+ 40 =L n=1 @a, = (014 0n)

0 1<n

Case 1. oy, € I:

I = {a7zlaan1+7zga .- -aan1+~~~+n,‘,1ao¢n}
=GL(n1,C) x --- x GL(n;,C), ny+---+n.=n
n(n+1)

dime 370 — dime 3so@nti,c) =7, dimg U’ = Z ninj + ——5—,

1<i<j<r

1 r 7 N n
pzz2;(n_gjz_;nﬁm)(;onﬁ...mlﬂ.) Lot 0)

I v N + Niy1 . I Vv
<p 7an1+...+ni>:7fOI‘l:L'"aT_L <p ,Oén>:7’lr
Case 2. ay, ¢ I:
I= {anlvan1+n27 EN) an1+---+nr71}

= GL(n1,C) x --- x GL(n,—-1,C) x SO2n, +1,C), ny+---+n,.=n

dimc 371 — dimc 3so@2nt1,0) =7 — 1,

— 2 ’
1<i<j<r
1 -
o =33 (n- azn] [0 a0 mm—
i=1 j=1
n—n
+§(91 o+ Onyttn, ) + - (9711+~~+n7~71+1 o+ 0n)
n; +Tl‘+1 . Nyp—1
<Pla04x1+...+ni> = % fori=1,...,7—2, <p17a:7/,1+~~+nr_1> ==

2
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We have the following closed formula for the SO(2n + 1)-equivariant poincaré
series of the representation of flat SO(2n + 1)-connections:

THEOREM 5.5.
SO(2n k
PO (X0 (SO(2n 4 1)V )
t(é—l)(221v<j ninj+n(n+1))

[H:;fu - t2<m+m+l>>} (1~ tin)

(1 4 t2] 1)22

.
-1l
t2m YT (1 —t2)2

z=1

2 (i niga) Hang (k/2)

T ) H (1 + 420 1) H?L(l +t4j—1)2€
nlfl ’ 2N, :
1 - th g=1 (1 - tzj)Z Hj:l(l - t2j)

-2, j ninj4+n(n+1)—n,.(n.+1)) )
! - t222:11(m+m+1)+25(r)nr

T2 (1 men))] (1= e(r)izne-stine)

where

REMARK 5.6. We have
PO (X0 (S0(2n +1))T1) = PP (X5 (Spin(2n + 1)),

so Theorem 5.5 also gives a formula for Xﬁift(Spin@n +1)).

EXAMPLE 5.7.

PO (X0 (SO3) ) = PP (XS (Spin(3))
(1 +t)2ét2£+2 (1 +t3)2€

A=) —tY) T 1 —2)(1—t4)

PO (XN (SO3) )
(1+t)2¢2 (14183)%

=) —tY) T 1—2)(1—t4)

Note that Spin(3) = SU(2), so

PP (X8 (Spin(3)) = BV (XES (SU(2))

flat

SU(2) (XZ ,0

as expected, where P, fiat

(SU(2)) is calculated in Example 4.7.
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EXAMPLE 5.8.
PO (X0 (SO(5) ) = PO (XL (Spin(5)))

()P 7)o (14 t3)24(1 4 47)2
= - (1—12)2(1 —t4)(1—18) " (1 —2)(1 —t4)(1 —16)(1 — t8)
(14 t)48¢ (1+1)26(1 + ¢3)2¢¢6¢

Ao @I (1221 ) )
PO (X0 (SO(5)7)

B (14 £)26(1 + #3)26456-2 (1 +t3)2¢(1 4 ¢7)2¢
=22 -(1—8) T (I -2 (1—)(1 - 18)(1 - ¢9)
(1 4 t)4483¢=2 (1 +1)26(1 + ¢3)26¢6¢

A ERa ) T 1221 )1 o)

5.3. SO(2n + 1)-connections on nonorientable surfaces
We have Cjy = Cy (any € C is conjugate to —u). Any pu € Cj is of the form
p =/ —1diag(A1Jp,, - -y Apn,, 011)
where Ay > - > \. > 0. We have

B(U(m)) x - x B(U(n,)), A >0,
B(U(n1)) x -+ x B(U(ny_1)) x SO(2n, + 1), A, =0,

where X, = —2my/—1p, and ® : U(m) — SO(2m) is the standard embedding.
Given pu € Cy, define

. diag (H,, (—1)"1;), Ar >0,
e dlag (ann,.y (_1)71_”7‘[17 IQTL,.) ) >\r =0.

Then Ad(e,)X, = —X,. Suppose that
(a1,b1, ... a0,bs,euc, X, /2) € X0 (SO2n + 1)).

SO(2n+ 1)Xu = {

Then
¢
exp(X,/2)e e, d = H[ai,bi]
i=1
where
w bl c (U (ny)) x -+ x ®(U(n,)), Ar >0,
R D(U(ny)) x - X ®(U(ny—1)) X SO2n,. +1), A =0.

We first assume that A, > 0. Let L : R?” — C" defined as in Section 5.1.
Define

X, = Lo2rdiag(A1Jn,,-. ., Ardn, )0 L7}
= 2nmv—1diag(Ailn,,. .. s Arln,.) €u(ng) X -+ x u(n,).

We have L o H, o L™!(v) = v for v € C", where ¥ is the complex conjugate of
v. So

Lo H,®(d)H, o L' (v)

(LoH,oL Y)Y (Lo®(c)o L™ Y(LoH,oL Y)()
= (LoH,oL ")dv="cv=Ccv.

v
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So the condition on X}, is

4
exp(X},/2)¢c = [ [lai,bi] € SU(my) x -+ x SU(n,),

i=1
where a;, b;, ¢ € U(ny) x --- x U(n,.), and ¢ is the complex conjugate of ¢’. In
order that this is nonempty, we need 1 = det(e”‘/jl’\f I,;), or equivalently

2k;
(56) )‘j =1 kj, n; € L~

nj

forj=1,...,r.
When A, = 0, the above argument gives the condition (5.6) for j =1,...,r—1.
Similarly, suppose that

(a1,b1, ... a0, be,dy e, X, /2) € Xigr (SO(2n + 1)).

Then
¢

eXp(Xu/Q)(eucl)d(eucl)ild = H[azﬁ bi];
i=1
where
e L AU XX BT ), A >0,
T ®(U(ny)) x - x ®(U(ny—1)) x SO(2n, +1), A.=0.
When A, > 0, the condition on X, is

¢
exp(X},/2)¢dc ™ d = [ [lai,b:] € SU(n1) x -+ x SU(n,).
i=1
Again, we need 1 = det(e™ =1 I,,;), or equivalently (5.6). When A\, = 0 we get
condition (5.6) for j=1,...,r — 1.
We conclude that for nonorientable surfaces,

2k 2k, k k,
§= \/—ldiag(—lJnl,...,—Jnr,Oll), where ki,... k€2, L >...> " >
ni Lz ni r
Recall that for orientable surfaces we have
k k, k k.
§= \/—1diag(—1Jn1,...,—Jnr,()ll), where ki,... .k €2, “L>...> >,
n1 Ny ny ny

For each p, define ¢,-reduced representation varieties

Ve (So@2n +1)), {(a1,b1,... a0, be, ) € (SO(2n + 1) x, )2 F |

¢
H[ai, b;) = exp(X,/2)eu e’}
i=1
Vea(S0@2n+1)), = {(a1,bi,...,ae,be,d,c) € (SO2n+1)x, )%+ |
¢
H[ai, bi] = exp(X,./2)e,c'd(e ) d}.
i=1

Fori=1,...,¢, write
a; = diag(Al,..., Al T1), b; =diag(Bj,..., B} 1),
CI:diag(Cl,“';CMIl)a d:diag(Dla"'vaIl),
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when &, > 0, and write

a; = diag(A%,... AY), b; = diag(B:,...,B’),
¢ = diag(Cy,...,C,), d=diag(Dy,...,D,),

when k, = 0, where A;, B;», D;, C; € ®(U(ny)) for j=1,...,7r—1, and

P i (U (n,)) when k. >0
7 3 ?
Ar7 Br’ D’l") O’r G { SO(QTLT + 1) When ,ZCT —_ O_
i = 1. Let T,,x be defined as in (5.3), and let ¢; = diag(H,,;). For j =
1,...,7—1, define

(5.7)
V; = {(A;,B},...,Aﬁ,Bf,Cj) )| H [45, Bj] = Ty, ,¢;C; 6JCJ}
P _
= {(4}, B}, A, B, C)) € Ulny)** | H (45, BY] = 2V 0,05 )
i=1
~ 01

nj,fkj

where f/fjlf k; is the twisted representation variety defined in (4.7) of Section 4.6.
Vf _k, is nonempty if £ > 1. We have shown that f/,f’_lfk_ is connected if £ > 2
J 3 J J

(Proposition 4.13).

When k,. > 0, define V,. by (5.7). When k, = 0, define

(5.8) V, = {(Ai,B;,...,AﬁBf,c ) € SO(2n, + 1)2+1 | HA’ Bi :(EOT)Q}

i=1

where € = diag((—1)"""" I, I2,,),det(e) = (—1)" ™. Let Cl. = eC,. We see that

v, ~ {(Ai,Bi,.. AL BE Cl) € SO(2n, + 1)% x O(2n, +1) |
V4

H[Ai,Bﬂ = (C£)2,det(C’;) — (_1)nfn,.}

i=1

~ 2,1
- VO(27LT+1),(—1)”*"T

where VO’( )41 is the twisted representation variety defined in (4.11) of Section 4.7.
Vd(n) 4, is nonempty if £ > 2. We have shown that Vz’1 (n),+ 1 is disconnected with

two components Vé’(ln’) and Vo( ), il if¢>2andn>2 (Prop051t10n 4.14).
We have

Ve (80(2n +1 H V.

We define a U(n;)-action on V; = ijl_kj by (4.9) of Section 4.6; when k, = 0, we

define an SO(2n, + 1)-action on V,. = Vé’(l%r—&-l) (—1)n—nr by (4.13) of Section 4.7
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Then we have a homeomorphism

T

H(‘/J/U(n]))v ky >0,
VAL (SO(2n+1)),/S0@2n+1)x, = {I7]
[1V3/U(n)) x Vi/SO@n, + 1), k. =0,

and a homotopy equivalence

hSO(2n+1)x,, {H;_l VU ) k. >0,

VEL(SO@2n + 1

i = 2. Let ¢; = diag(Hy,;). Define

V; = {(A}, B},.... A}, B, D;,Cy) € O(U(n,)*+* |

4

[1145 Bj1= Tnj,kjejCij(EjCj)_le}
i=1
= {(A}L,B},.... A0, B}, D;.Cy) € ®(U(ny))**2 |
(5.9) SO 1 1 1.-1
H[A;,B;] :Tnj,ijjCjej 6ij€7 EjC; 6; DJ}
i=1
o
= {(A},B},..., A}, B}, D;.C;) € U(n;)**? |
¢
i Pt N —=1kj/n; A 1 O— ~ 17t
H[AjaBj] = *mV k! 705 D;C; 1Dj} = Vnﬁ—kj
i=1
where 1775]27 i, is the twisted representation variety defined in (4.8) of Section 4.6.

VfJ{k is nonempty if £ > 1. We have shown that Vrfj’ikj is connected if ¢ > 4

(Proposition 4.13).
When k,. > 0, define V,. by (5.9). When k, = 0, define

V. :{(A%,B,}, ... AL B!, D,,C,) € SO(2n, + 1)+ |

(5.10) e
[T B = ecrpr(ecr)*lpr},

i=1
where € = diag((—1)""""I1, In, ), det(€) = (=1)"7"". Let C} = €C,.. We sce that

v, = {(A}.,B}.,...,Af.,Bf.,DT.,C,’.) € SO@2n, + 1)+ x O(2n, + 1) |
0
[114:. Bl = CiD,C;7 Dy de(Cy) = (~1)" ™ }
1=1
o~ VZ,Q

Oo(2n,+1),(—1)»—nr
where Vé’fn) 4, is the twisted representation variety defined in (4.12) of Section 4.7.
Vé’fn)’ 4, is nonempty if £ > 4. We have shown that Vé’(Qn)’ 48 disconnected with

two components Véﬁ;;—il and Véfﬁ)—il if £> 4 and n > 2 (Proposition 4.14).
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We have
Ve (s0@n+1)), = [T v
j=1

We define a U(n;)-action on V; = Vfﬁ_k] by (4.10) of Section 4.6; when k, = 0,
we define an SO(2n, + 1)-action on V, = Vé’émH) (—1)yn—nr DY (4.14) of Section
4.7. Then we have a homeomorphism

H(‘/J/U(n]))’ k. >0,
Ve (S0(2n+1)),/SO@2n+1)x, = {17

[[Vi/U(n)) x V;/SO@n, + 1), k=0,

j=1

and a homotopy equivalence

hSO(2n+1)x,, {H;_l VU ) k. >0,

VE2(SO(2n + 1
YM( ( ))H H;’;i thU(n]‘) % VThSO(Q"TJFl)7 k. =0,

We have seen that for i = 1,2, V\é’l\i/[(SO(Qn + 1)), is connected when k, > 0.
In this case, to determine the topological type of the underlying SO(2n+ 1)-bundle
P over ¥¢, we can just look at a special point in Vf’l\i/[ (SO(2n+1)), where ¢, d are
the identity element I5, ;. Then

¢
[ Tlai, b:] = exp(X,./2),
i=1
S0 a1,b1,...,as, by can be viewed as the holonomies of a Yang-Mills connection on
an SO(2n + 1)-bundle Qg — X§. Also, ¢ = e = diag(H,, (—1)"1;) can be viewed
as the holonomy of a flat connection on an SO(2n 4 1)-bundle Q; over X9 = RP?,
and ¢ = €, d = Is,41 can be viewed as the holonomies of a flat connection on an
SO(2n + 1)-bundle Q4 over £ (a Klein bottle). Let ¥’ be obtained by gluing %§
and XY at a point, and let P’ — ¥ be the (topological) principal SO(2n + 1)-
bundle over ¥’ such that P'[5; = Qo and P'|zo = Q;. Then P = p*P’ where
p: Xl — ¥ = 3§ ux? is the collapsing map. Then wy(P’) = (w2(Qo), wa(Q;))
under the isomorphism
H*(X';7)27) = H*(S§; 7.)27) © H* (XY Z/27),

and wy(P) = p*wa(P") = wa(Qo)+wa(Q;), if we identify H?(X%¢; Z/27), H(X; Z/27),
and H?(X?;Z/27) with Z/2Z. So it remains to compute wa(Qo), w2(Q1), and
w2 (Q2). We have Qp = pro—(kittkr) Xy (n) SO(2n+1), s0 we(Qo) = k1 +---+k,
(mod 2). To compute wy(Q1) and we(Q2), we lift ¢ = € to é € Spin(2n + 1) and
lift d = I, 11 to d € Spin(2n + 1). Since 2m; (SO(2n 4 1)) is the trivial group, we
may choose any lifting for ¢ and d. We choose d = 1 € Spin(2n + 1) and

i— €2€4 * "+ €2n, n even,
€2€4 " €262, 41, N 0dd.

Then & = (=1)""*t1)/2 and édé—'d = 1. We conclude that

(n+1)

wa(Qr) = - (mod 2),  wx(Q2) =0 (mod 2),
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SO

(n+1)
2

wg(P):k1+--~+kr+in (mod 2).

When k, = 0, we have seen that V\é’l\i/l(SO@n + 1)), is disconnected with
two components. To determine the corresponding underlying topological types, we
consider two special cases.

Case 1. We consider special points

(a1,b1, ..., a5, bs,¢) € VEl(SO@2n+1)),, (a1,by, ..., a0, b, d,c) € VEZL(SO2n+1)),,
where

a; = diag(A%, ..., A" | Ip, 41), by =diag(Bi,... B' | Iz, 11),

c=¢, =diag(Hy—n,,(=1)"""" 11, I2,,), d=Iomi1.
Let €7 = diag((—1)"""r Iy, I2,,). Then

(AL, Bi,... AL BY) € Xg3(U(ny)) x,

J

ng T ong
£,1,(=1)" 7"
(I2nr+17 s 7I2nr+1; 61) € Vo(QnT+1)7(_1)n—nra
2,2,1
Lzn, 415+ Lon,1s Jon, 415 €1) € V(g (1), (C1yn—ne-

We have P = Py x P, where P; is an SO(2(n — n,) + 1)-bundle, and P, is an
SO(2n,)-bundle with trivial holonomies I5,, . We have
(n—=n.)(n—n,+1)

5 :

wo(P) =wo(P1) =k + -+ ko1 +1
Case 2. We consider special points
(a1,b1, ... a5, bs,¢) € VEl(SO@2n+1)),, (a1,by, ..., a0, b, d,c) € VEZL(SO2n+1)),,
where
a; = diag(AL,... AL Iy, 41), b; =diag(B!,..., B! |, Ion 11),
¢ = diag(Hp—n,, (-1) """, —Io, 1oy, —2), d = diag(Ian_n,)+1, — 12, Ton,—2).
Let €7 = diag((—1)"""r Iy, —1Is, Ion,—2), €2 = diag(l1, — 12, I2,,, —2). Then
(AL, Bi,... AL B € Xy (U(ng)) «,  »

3

j=1,...,r—1,

AERERR]

’VLJ ’VLJ‘
£,1,—(=1)"7"r
(IQnr+17 s 712nr+1; 61) € Vo(g,Lr+1)7(_1)n—nra
I I yh2-l
(I2n, 41, Ton, 11, €2,€1) € O(2n,+1),(—=1)n—nr -

We have P = P; X P, where P; is an SO(2(n — n,) + 1)-bundle, and P, is an
SO(2n,)-bundle with holonomies a; = b; = Is,,., ¢ = d = € = diag(—1Is, Iz, —2).
Similarly, we can choose the lifting of d and ¢ as d = ¢ = eqes. Then ¢ = éde'd =
—1. We have

(n—n;)(n—n,+1)
2

wa(P) =k +- -+ k1 +1 (mod 2), wy(P2) =1 (mod 2),

(n—n.)(n—n.+1)

’wg(P):wg(P1)+w2(P2):]{31+"'+k7«_1 +’L 5

+ 1 (mod 2).
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To summarize, when k,. = 0 we have

(n—np)(n=np—1)
B L e
(SO (2n + 1)) HV X Vg 3met) (—1yn—nr ,

where Vi (SO(2n + 1))E i is the ¢,-reduced version of X5 (SO@2n + 1)t
To simplify the notation, we write

2k, 2k, 2k, 2k,
u=(u17-~7un)=(f — )

T T
ny Np
instead of
2k 2k,
v — dlag( Ly Tngsenes fJnr,()Il).
Ny
Let
2 2k 2k1 2k, 2k,
I n = { :<77...,7,...7 Sy ) e 7 ,
SO(2n+1) 1% n n T T | n; >0
mn1 Mg
k k,
nq ny
+ 2 RTIY in(n+1) _
ISOl(QnJrl) = {u€Iso@nin) | pn >0, (=1 Tht =570 = 41}
Bo@niy = {1 € Iso@ntt) | in =0}

For ¢« = 1,2, define twisted moduli spaces

MY =V /U ), MGiste, = Vous i /S0(m).

PROPOSITION 5.9. Suppose that £ > 2i, where i = 1,2. Let
2k 2k 2k, 2k, .
(B )

(5.11)

€ Iso@n+1)-

geeey

sy Sy
ny ny Ny Ny

ni Uz

() If o € I35 0neny then X34 (SO(2n + 1)), = Xy (SO(2n + 1)E! is
nonempty and connected (coming from either the trivial bundle or the
nontrivial bundle). We have a homeomorphism

Xy (S0(@2n +1)),/50(2n + 1) = [T My .

nj,—
j=1

and a homotopy equivalence

, hSO Lt n
X(s0(n -+ 1), LTI ).

n;,—k;j
Jj=1

(i) If p € ng(2n+1)’ then Xf(’fv[ (SO(2n+1)),, has two connected components
(coming from both bundles)

Xy (SO@n+ 1)) and  X¢y,(SO(2n +1));;!
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We have homeomorphisms

Xy, (SO(2n + 1)) /SO(2n + 1)

r—1 (n—ng)(n—np—1)
~p P (— 1)kt bRy i R =2
= TIME < MGEC T
nj,—k; O(2n,+1),(=1)n—nr
=1
and homotopy equivalences
. hSO(2n+1)
0,1 +1
(X¢ic(50@n + 1)E)
—1 n—ng)(n—ngp—
T (6 \PUM) (gl (—nhrt ke gl hSO2nr 1)
~ (an7—kj) X (VO(2nT+1)7(_1)n—nr ) .
Jj=1

PROPOSITION 5.10. Suppose that £ > 2i, where i = 0,1. The connected com-
ponents of X1, (SO(2n +1))*! are

{XPu(SO@n+ 1)) | p € I35 5,1  ULXTM(SO@n + 1) | 1 € TEo0n 41}

Notice that, the set {u = /—1diag(p1J, ..., punJ,001) | (p1, .., 1) € fso(gnﬂ)}
is a proper subset of {p € (EL)7|I C A, 7(I) = I} as mentioned in Section 4.5.
The following is an immediate consequence of Proposition 5.9.

THEOREM 5.11. Suppose that £ > 2i, where i = 1,2, and let p be as in (5.11).
(i) Ifu € I§5(2n+1), then

SO (2n+1 2,0 - U(nj) crl,i
poen >(XYM<SO<2n+1>>u)—HlPt Vi)

(ii) If p e jgo(2n+1); then

SO (X(S0@n + 1))

|

r—1 . (n—ny)(n—np—1)
. U(nj) yrlyi SO(2n,+1) G G B L e e S
- HPt (V' x)- P, Vo et 1), (—1)nr .
Jj=1



CHAPTER 6

Yang-Mills SO(2n)-Connections

The maximal torus of SO(2n) consists of block diagonal matrices of the form
diag(A1,..., A,)

where Ay,..., A, € SO(2). The Lie algebra of the maximal torus consists of
matrices of the form
2rdiag(tiJ, ..., tnJ)

0 -1
(17
The fundamental Weyl chamber is
Co = {V—-1diag(t1J,...,tp,J) | t1 >ty > -+ >| t, |> 0}

As in Chapter 5, in this chapter we continue to assume

where

NiyenoesNp € Loy, N1+ -+ Np =0

6.1. SO(2n)-connections on orientable surfaces
There are four cases.
Case 1. t,,_1 > [tn], n, = 1.
p=—1diag(AJpys - oy A1y Ard),
where Ay > -+ > X\._1 > |\ > 0. Thus
SO(2n)x, = ®(U(ny)) x --- x ®(U(n,—1)) x &(U(ny)).
Suppose that (ai,by,...,a¢,bs, X)) € Xf;&(SO@n)). Then

14

exp(X,.) = [ Jlai, bi]

i=1
where ay,b1,...,a¢,bp € SO(2n)x,. Then we have
exp(X,) € (SO(2n)x, )ss = ®(SU(n1)) x --- x ®(SU(n,—1)) x {I2}.

Thus
k kr_
X, = 27rdiag(—1Jm,...,—lJnrfl,kTJ)
ni r—1
k k,_
u = M—ldiag(—l.]nl, LT Jm,fl,k,.J),
ni r—1
where % ]
ki ky€Z, —>..> LS k>0
ni Ny—1

49



50 6. YANG-MILLS SO(2n)-CONNECTIONS

Recall that for each u, the representation variety is

Vaa(S0(2n)), = {(a1,b1,...,as,be) € (SO(2n)x,)* | Haz, i) = exp(X,,)}.

Fori=1,...,¢, write
a; = diag(A%, ...  AY), b; = diag(B.,...,B’),
where A%, Bl € ®(U(ny)). Define V; as in (5.4). Then

r

(6.1) Vam(s0@2n), = [T v

j=1

We have a homeomorphism
(6.2) Ve (S0(2n)),/SO(2n) x, = H (V; /U (n;))
and a homotopy equivalence

(6.3) VEL (5O (2n)), 50 B H VU

Case 2. t,,_1 = —t, >0, n, > 1.
p==1diag(A1Jny, s A1 dnr s Aednnm1, = A ),
where \;y > --- > A\, > 0. Thus
SO(2n)x, = ®(U(ny)) x -+ x ®(U(ny—1)) x ®'(U(n,)),

where @' : U(m) — SO(2m) is the embedding defined as follows. Consider the
R-linear map L’ : R?™ — C™ given by

€
y.l z1+vV-1y

x . 1 =

ymi Tm—1+V—1Yym—1
mel T — V—1Ym
Tm
Ym

We have (L")t o\/=11,, 0 L' (v) = diag(Jy—1,—J)(v) for v € R?™. If Aisamxm
matrix, and let ®'(A) be the (2m) x (2m) matrix given by
(L) "o Ao L (v) = ¥'(A)(v).
Note that A(v/—11,) = (V—11,)A = @' (A)diag(Jm—1, —J) = diag(Jpm—1, —J) P’ (A).
Suppose that (ai,bq,...,a¢,bs, X,) € Xf;&(SO(Zn)). Then
¢

exp(X,,) = [ [lai, bi]

i=1
where ay,b1,...,a¢,bp € SO(2n)x,. Then we have
exp(X,) € (SO(2n)x,)ss = ®(SU(n1)) x --- x ®(SU(n,_1)) x ®'(SU(n,)).
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Thus
k ko k. —k,
X, = 27rdiag<—1Jn1, ce 71:177,,4_17 —Jn,.—1, 7J)7
Ny_—1 e Ny
ky— k. —k,
Hno= V— dlag( n17~-~771Jn,,.,177Jn7v71a7*])7
Ny—1 Ny Ny
where
k k.
ki,....k,€Z, “L>..>2>q.
ny Ny

Recall that for each u, the representation variety is

y4
Vo (SO(2n)), = {(a1,b1, ..., ag, be) € (SO(2n)x,)* | H[ai,bi} = exp(Xy)}-

Fori=1,...,¢, write
a; = diag(A},..., AL), b; =diag(Bi,...,B}),
where A%, B € ®(U(ny)) for j=1,...,r =1, and A}, B} € ®'(U(n,)).
For j=1,...,7 — 1, define V; as in (5.4). Recall that

Jo- ((nfey et ),

Define
Vi = {(ALBL... AL B) €@ U®,) |
[ . .
H[A:«anz»] = diag(‘]k,,v/nrv L) Jk,,w/n,n J—k,,«/n,«)}
i=1
2 {(Ai,Bi,.. AL BYY eU(n 24|H B}] e%ﬁkr/nrfn}

I

XU ) ke b

gt g

Then we have (6.1), (6.2), and (6.3).

Case 3. t,_1=t, >0, n,. > 1.
p=v—1diag(A1Jp,, ..., A\pJn, ),
where \;y > --- > A\, > 0. Thus
SO(2n)x, = ®(U(ny)) x --- x &(U(n,)).

Let X, = —2my/—1p. Suppose that (a1,b1,...,a¢,b0, X,,) € Xf(’g/[(SO(Qn)).
Then

¢
exp(X,,) = [ [las bi
i=1
where ay,b1,...,a¢,bp € SO(2n)x,. Then we have

exp(X,,) € (SO(2n)x,)ss = B(SU(n1)) x - x B(SU(n,)).
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Thus
k k.
X, = 27Tdiag(—1Jn1,...,n—Jnr),
— k.
noo= dlag( ’n17"'37Jnr>7
Ny
where L L
ki,....k,eZ, L>...>x>0.
ny Ny

Recall that for each u, the representation variety is

Vaa(S0(2n)), = {(a1, b, ..., ae,b) € (SO(2n)x 2€|Haz, i) = exp(X,,)}.

Fori=1,...,¢, write
a; = diag(A%, ..., AL), b; =diag(Bi,...,B.),

where A%, Bi e ®(U(ny)).

Define V; as in (5.4). Then we have (6.1), (6.2), and (6.3).

Case 4. t,_1=t, =0, n,. > 1.

p=—1diag(A1Jn,s - Ap—1Jn, 1, 0J0),
where \;y > --- > \._1 > 0. Thus
SO(2n)x, = ®(U(ny)) x --- x &(U(n,—1)) x SO(2n,.).

Let X, = —2my/—1p. Suppose that (ai,b1,...,ae, b, X,) € Xf(’l(\)/[(SO(Qn)).
Then

¢
exp(X,) = H[ai, b;]
i=1
where ay,b1,...,a¢, b € SO(2n)x,. Then we have

exp(X,) € (SO(2n)x,)ss = ®(SU(n1)) x -+ x ®(SU(n,—1)) x SO(2n;).
Thus

k k.
X, = 27rdiag(f1Jn1,..., 1Jn7,71,OJnT,)7
Nyp—1
kr—l
po= -1 d1ag< m,...,—J,M,OJM),
r—1
where L L
ki,....ky_1€Z, —L>...>2=Ls
ni Nyr—1

Recall that for each u, the representation variety is

VES(SO(2n)), = {(a1, by, . .., as,be) € (SO(2n)x,)*" | Haz, i = exp(X,)}.

Fori=1,...,¢, write
a; = diag(A%, ... AY), b; = diag(B:,...,B’),
where A%, Bl € ®(U(ny)) for j=1,...,7 —1, and A}, B} € SO(2n,).
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For j=1,...,7 — 1, define V; as in (5.4). Define
- {(A},,Bg,...,Aﬁ,Bfi) € S0(2n,)* | H i — Ignr} ~ X140 (S0(2n,)).
Then Vél\(/)[(SO(Qn)) H] 1 V;. We have a homeomorphism
VEL (SO(2n)),,/SO(2n) x, = f[ Vi JU(ny)) x Vo /SO(2n,)

and a homotopy equivalence

r—1
hSO(2n
VYe'l\(/)[(SO(Zn))/_L ( )X“ ~ H ‘/jhU(nJ) X VrhSO(2n1,).
j=1
We can decide the topological type of the underlying SO(2n) as in Section 5.1.

Then Case 1, Case 2, Case 3 and Case 4 give exactly the same Atiyah-Bott points

as in Section 3.4.3.
To simplify the notation, we write

k1 k1 k., k.
= (p1y..ylin) = (—,...,—,...,—7...,—>
ni1 ni n, Ny
instead of
— k.
dlag( n17 ) n,)a
and write
_( )_ (kl kl krfl krfl kr & _kr)
= (U1, i) = U e e
ny N1 ny—1
instead of
k’f— k'y k’f‘
\/—1diag< Tngseooy ==L T, Jm_l,—fJ)
Ny—1 T s
Let
ky k1 kr 1 kr_1
Iil :{ :(77 — ) ’ ) 7k7“) S/ 7k €Z
SO(2n) H ny ny Np—1 Np—1 i 20
ny MNpr—1
1 Ky (SRR
md At l=n, s s LS g >0, (—1)k 7—11}
n Np—1
k k ky_ kr_1 ki, k. k.
U{/F (;,.._7;,..., Lo, 17—,...,—,j:—)‘ n; € Zo,
Ua! ni Ny—1 Ny—1 Ny Ty Ty

ni N1 n,.—1

k k,
kj € Z,n, € Z>1,n1 + -+ Ny :n,—1 > > — > 0,(—1)’“1*"'*""‘"' = j:l}
ny n,y
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kil k’l krfl krfl
10 :{ :(7,...,7,..., oo)’ € Zso,
S0(2n) s ni ni Nyr—1 Np—1 ~—— i =0
e o Ny
k ky_
Ny € Zs1, ni+---+n. =n, kj €Z, - ~->nr1>0}.
ni r—1

From the above discussion, we conclude that

PRrROPOSITION 6.1. Suppose that £ > 1.

: kl kl krfl k‘T,1 41

I :(f,...,f,..., k) el
(1) If p n " - — sO(2n)’ O

1 Np_1
k1 ky kr_q r—1 kr kr |k 41
O SO B .S P
1 (nl niy Ny_1 Np_1 Ny Ny Ny SO(2n)’
n1 Np—1 ny—1

then Xﬁ,’&(SOQn))M = X@&(SO(?I”L + 1))ff1 is nonempty and connected.
We have a homeomorphism

52.(50(2n)),./SO(2n) HM (56, pra-—hi)

Jj=1
and a homotopy equivalence
hSO(2 hU(n;)
Ru(50(2n))," 7" H( m) e m) -
. k1 k1 kr—1 kr_1 0
i) I :(—,...,—,..., ey ,0,...,0)6] n)s
(ii) If p e ™ — 1 SO(2n)
i o~ Ny
then Xf,’l(\)/[(SO(Qn))u has two connected components (from both bundles
over X§)

Xym(SO@n))+! and Xy (SO(2n));*

We have a homeomorphism
£,0 +1 o ¢ pnj,—k; ¢ pE(-DFTE
X (S0@n))E /50(2n) = [T MG, P ) x M(S6, PiS ) )
j=1
and a homotopy equivalence

~ ﬁ(Xéﬁq(U(nj)m .

pETERR -
g g

41hSO(2n)

hU (n;)
X (S0@n)); )

X
Jj=1

ik hSO(2n,)
(Xﬂat(SO(2nr))i(71)kl+ k. 1) '

PROPOSITION 6.2. Suppose that £ > 1. The connected components of the rep-
resentation variety Xf(’g,[ (SO(2n))*! are

{XyM(SO@n))u | 1 € Tgh g} U{XSN(SO@R))E | 1 € TE0(2m)}-

The following is an immediate consequence of Proposition 6.1.
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THEOREM 6.3. Suppose that £ > 1.

kq k1 kr_1 kr_1 +1
If —(f...,f,..., k)el or
(W) I u ny n Ny_1 Ny—1 50(2n)’
ny np_1
kl kl ]{:7‘—1 r—1 kr kr kr +1
et N ,—,...,—,i—) el th

(m n1 Np_1 Ne_1’ Ny n.' " n, s0(2n)7 MM

ni Np—1 —1

yeen

Jj=1 J
kl kl k’r'—l k’r'—l
I _(—...,—,..., U o)el ., then
(ii) If p " " — — 50(2n)
ni Np—1 "

POEY (X3y(s0(n);)

r—1

U(n; (, SO(2n.. _1)kit ke
[T (X000 sy s ) - PEOE™ (XSSO ) =0 )
j=1

e T s
71] ‘n,]

6.2. Equivariant Poincaré series

Recall from Section 3.4.3:

A:{ai:0i—9i+1 \iz1,...,n—1}U{an:9n,1+0n}
AV ={a) =¢ '761+1|i:1 sn—1}U{e) =en_1 +en}

@Ze“ A= @Z —eit1) D Z(en—1+en),
1(50(2n)) = (en) = Z/2Z

We now apply Theorem 4.4 to the case Gg = SO(2n).

wm:91+~~+9¢, Z':].,...,Tl72

1 1
Wey_, = 5(01 + ... +0n71 — en)a Wea,, = 5(01 + - +0n71 +9n)

0 1 <n—2
Wa, (kep) =< —k/2 i=n-—1
k/2 i=n

We have the following four cases:
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Case 1. ap_1,ap, €I: n. =1

I= {anlaan1+n2; sy Oy, oy An—1, an}
L' = GL(n;,C) x --- x GL(n,_1,C) x GL(1,C), ny+---4n,_1+1=n
. . . n(n—1
dime 3zr — dime 3soency =7, dimg U’ = Z ning + %
1<i<j<r
" 1 T i n; n—1
p= 52 n=2) ny+ni | (D Oniin s ) + 5 (014 +0n)
i=1 j=1 =1
<p170‘:1/1+'~+ni> = 7{’“ +2ni+17 for ¢ = 1,...,7‘*2’
Np—1+ 1
<p170‘x-1> - <Pla04x> - T
Case 2. ap_1€l,a,¢1:n.>1
I= {O‘nlaan1+n2v cey an1+---+nr—1van—1}
L' =GL(ny,C) x --- x GL(n,;,C), ny+---4+n,=n
. . . n(n—1
dlm(c 3 — dlm([j 550(2,”7@) =7, dlm(c UI = Z n;n; + %

1<i<j<r

pI — ;Z(n — 22:17%' +n1> <le 0n1+"'+ni_1+j> —+ nT_l(Z 0]) _ (nr _ 1)971
Jj= j= j=1

i=1

i + N1

<p17aX1+...+ni> = B

fori=1,...,r—1, {(pf,a’ )=mn,—1

Case 3. ap_1 ¢, a,€l:n. > 1

I= {anlvanl-i-nzv cee ’an1+n2+'“+nr—1van}
L' =GL(n,,C) x --- x GL(n,,C), ni+---+n.=n

. . . n(n—1
dlm(c 3 — dlm(caso(zn,c) =7, dlm(c UI = Z nin; + ( D) )
1<i<j<r
Pl ' o n—1
P = 52 anan+ni 29n1+~~+ni_1+j + 5 01+ +6)
i=1 j=1 j=1
(pI,aXI+___+ni> = % fori=1,...,7r—1, (pf,aY)=mn, -1
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Case 4. ap_1 ¢, a,¢1:n.>1

I= {()énl,Oén1+n2, RN an1+n2+"‘+n7‘—l}
L' = GL(n1,C) x --- x GL(n,_1,C) x SO(2n,), ni+ - +n.=n
dimc 37 — dimc 3so@n,c) =7 — 1,

1) - 1
dim(c UI _ Z nin; + TL(TL ) 2"7"( )
1<i<y<r

pI — ;Z(n — 227%‘ + ni) (Z 9n1+---+’ﬂz‘1+j>
i=1 j=1 i=1

n—1 n—ng,
2 (01 + -+ Ony g, ) + T(0n1+~--+nr71+1 ot bn)

+

ni + N1

2 )

Np—1 + 2n, — 1
2

We have the following closed formula for the SO(2n)-equivariant Poincaré series
of the representation variety of flat SO(2n)-connections over X§:

I v _ L
(0" Oy tomy) = fori=1,...,7—2,

T
(p vo‘xl+~~+nr4> =

THEOREM 6.4. n > 2

PP (X (50@) ™) =

r (14 212
Z Z (71)7"]:[( H]— ( +"t )

n;—1 ;
ey 1— t2n1) Hj:l (1 _ t27)2

HE-D@Y, ninstn(n-1)

. [H::_ll(l . t2(m+m+1))} (1 _ tQ("T—lJrl))

r i g g2i-1)2¢
+Z > (2(—1)7{H( L hiadh.

i1 -
S (=) [T (1 —127)2

122 (i) +4(ne—1+1)(k/2)

t(f—l)(?Z,Kj ninj+n(n—1))
f:l 1 — 2(ni+nig1))| (1 — ¢4(nr-—1)
1 ( )
(1+t2g 1)213 (1+t2”7‘_1)2€H?’,71(1+t4] 1)2@

r 1
n,—l ’ " n 2n,—2
H 142" [ (1 —129)2 (1 — 20 =2)(1 — 20 [T, (1 — t%)

2 Sl (itnign)+4(ne—1)(k/2)

D2, ninj+n(n—1)—n,(n,—1))

L2701 = ovmeen)| (1= e(r)ezte-se2ne—0)

e(r):{(l) r=1

r>1

22 Tl (nitnig)F2e(r) (nr—14+2n,—1)

where

REMARK 6.5. Forn > 2, we have

PSO(2n)(X§;)t(SO( )) ) Pszn(Qn)(XZO(szn(Qn)))
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so Theorem 6.4 also gives a formula for Xéft(Spin(Zn)).

EXAMPLE 6.6.
PO (XG0 (SOM) ) = PP (g (Spin(4))

B (1+t)4zt4z+4 (1+t)2£(1+t3)2£t2£+2 (1—|—t3)4[
T =221 —h)2 T (1 -2)2(1 —t4)? (1 —2)2(1 — t4)2
1

— 1 t3 44 —2t2£+2 1 t 20 1 t3 20 t4l+4 1 t4€
(1—t2)2(1—t4)2((+ ) (1+O)"Q+)" + (1+1)*)

POW (X0 (50(4)7)

7 (1+t)42t42+2 (1+t)2€(1+t3)24t2£ (1—|—t3)4l
I N G N A § W) Y (T R W) PRy
(1+1)*

— (1 — t2)2(1 — t4)2 ((1 + t3)4l o 2t2l(1 + t)%(l + t3)2€ + t4€(1 + t)u)

Note that Spin(4) = SU(2) x SU(2), so
. 2
PO ({8 (Spin(4)) = (PP (XG5 (sU(2))))

as expected, where PtSU(Q) (Xéft

(SU(2))) is calculated in Example 4.7.

EXAMPLE 6.7.
PO (X (SO(6) ) = PO (XgS (Spin(6)))
(1 _|_t)4£(1 +t3)2lt102+2 (1 +t)66t12£
(1—2)3(1 —t4) (1 —16)2 (1 —2)3(1 — t4)3
(1 +t)2£(1 +t3)2€(1 +t5)2€t6£+2 (1 +t)4£(1 +t3)25t10£
(L= 2P =PI —O) (1= T (1= 2P = 21— 1)
(14 3)26(1 4 %)% (1 4 7)* (14 1)%(1 4 23)443
(1—2)1—tH2(1 —5)2(1 —¢8) (1 —¢t2)3(1 —tH)2(1 —¢8)
PO (X (50(6)) )
(1 + t)M(l + t3)2£t10Z74 (1 +t)65t12574
(1=2)301-tH)(1—-1%)2 (1 —-12)3(1 —t4)3
(1 —&-t)%(l —l—t?’)%(l +t5)28t6272 (1 +t)4l(1 —|—t3 2€t10Z72

AR — )1 =) TP — )1
(1+t3)2€(1+t5>2€(1+t7)2€ (1+t)2€(1+t3)4€t8€
(= @) - 021~ 0P - ) (- 2P - )21~ )

Note that Spin(6) = SU(4), so
Spin(6) [ y-L, ‘ SU4) /3-8,
PO (X (Spin(6)) = PP (X (SU(4))
as expected, where PtSU(4) (Xflft(SU(él))) is calculated in Example 4.8.
6.3. SO(4m + 2)-connections on nonorientable surfaces

In this section, we consider SO(2n) where n = 2m + 1 is odd, so that

Cy = {vV—=1Idiag(t1J, ..., tamJ,0J) | t1 > -+ > to, > 0}.
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Any p € Cj is of the form
p==1diag(A1Jn,, s Av1dn,_,, 00,),
where A\ > --- > \._1 > 0 and n, > 0. We have
SO(2n)x, = ®(U(ny)) x --- x &(U(n,—1)) x SO(2n,.),

where X, = —2mv/—1p.
Given p € ég, let

¢, = diag(Hy—p,, (—1) """ Iy, 1),

Then Ad(e,)X, = —X,. Note that n, > 1.
Suppose that

(a1,b1, ... ae,be €, X, /2) € Xy (SO(2n)).

Then
¢

exp(X,/2)e e d = H[ai,bi]
i=1
where a;, b;, ¢ € ®(U(ny)) x -+ x ®(U(n,—1)) x SO(2n,).
Let L : R2(n=nr) _, C"="r be defined as in Section 5.1, and let

X, = Lo (2rdiag(\1Jn,,. .-, Ar—1Jn,_,)) o L7
= 27y _1diag()‘1[n1 P 7)\7'71[7”,1) € u(nl) X X u(nr71>-
Then the condition on XL is
¢
exp(X],/2)c'c = H[ai,bi] € SU(ny) x -+ x SU(np_1)
i=1

where a;, b;, ¢ € U(ny) x --- x U(n,_1), and ¢ is the complex conjugate of ¢’. In
order that this is nonempty, we need 1 = det(e”‘/jl’\f I,;), ie.,

2k,
(6.4) N="L kjeZ, j=1,...,r—1.
n;

Similarly, suppose that (ai,b1,...,a¢,be,d,€,¢, X, /2) € Xf(’f/[(SO(Qn). Then
4
exp(X,,/2) (e, )d(e,c) rd = H[ai, b;]
i=1
where a;, b;, d, ¢ € ®(U(ny1)) x --- X ®(U(n,—1)) X SO(2n,.). The condition on
X, is
exp(X;/Q)cf’ch’ild € SU(ny) x -+ x SU(np_1).
Again, we need
2k; .
)\j:77 k‘jEZ, j=1...,r—1
nj

We conclude that for nonorientable surfaces,

2k 2%k, _ ki ki
= M—ldiag( Ly 1J,M,()Jm,),where ki €Z, L > 5L S 0, > 0.

ni Nyr—1 n; Ni41
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For each pi, the €,-reduced representation varieties are

Vo (SO@n)), = {(a1,b1,..,ar,by,d) € SOEn)FEF! |
ﬁ[ai, b = exp(%)euc'euc’},
i=1
Vo (S0(2n)), = {(a1,b1,.. -, a,bi,d, ) € SO(2n)¥ |
ﬁ[ai, b = exp(%)euc'd(euc’)_ld}.
i=1
Fori=1,--- £, write

a; = diag(A%, ..., AL), b; =diag(Bi,...,B.),
¢ =diag(Cy,...,C,), d=diag(Ds,...,D,),
where A%, Bj, Cj, D;j € ®(U(ny)) for j =1,...,r =1, and A}, Bi, C,, D, €
SO(2n,).
i = 1. Define Vj as in (5.7), and define

65) V= {(A},,BL...,A,‘i,Bf,C ) € SO(2n,)2+! | H (AL, B (GC,«)2}7

i=1
where € = diag((—1)"""", Iz, 1), det(e) = (—1)"~"r. Let C|. = eC,. We see that

v, {(A1,337...,A£,B£7c;) € S0(2n,)% x 0(2n,) |

14

[T, Bl = (€))% det(Cp) = (1)~ |

i=1

~ 2,1
= Volan,),(—1yn-nr

where V )41 is the twisted representation variety deﬁned in (4.11) of Section 4.7.
Vo(n) 4y s nonempty if £ > 2. We have shown that V ( )1 is disconnected with
two components VO’( ’)“Lil and VO’( ’) il if £>2 and n > 2 (Proposition 4.14).

We have

W (SO(2n)) Hv

We define a U(n;)-action on V; = ij’}_kj by (4.9) of Section 4.6, and an SO(2n,)-

action on V; = VO(QnT) (- by (4.13) of Section 4.7. Then we have a homeo-

morphism

1)n—nr

Vi (S0(2n)),./SO(2n) x, = H (V;/U(ny)) x V,/SO(2n,.)
and a homotopy equivalence

Vé’l\l/[(SO(2 ) hSO(2n)x,, H V U(nj) % VrhSO(an)'
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i = 2. Define Vj as in (5.9), and define
(6.6)

- {(A;Bg, ... AL B! D,,C,) € SO(2n,)2+2 | H [A%, B!] = €C,D,(C,) "
=1

where e = diag((—1)"""r I, Ian,—1), det(e) = (=1)"""r. Let C/ = eC,. We see
that

v, {(Ai,B}, .. AL B D, C") € SO@2n,)* ! x O(2n,) |
4
[114:, Bi] = C1D,C;7 Dy det(Ch) = (—1)" ™ }
=1

2,2
Vo(2n,),(~1ynnr

1%

where VO( )1
yh2

O(n),+1 is nonempty if £ > 4. We have shown that Vé’fn)’ 4, is disconnected with
two components V“’Jrl 4, and VO 1 if £> 4 and n > 2 (Proposition 4.14).
We have

is the twisted representation variety defined in (4.12) of Section 4.7.

Ve (SO(2n)) HV

We define a U(n;)-action on V; = Ve’2 1, DY (4.10) of Section 4.6, and an SO(2n,.)-

action on V, = Vé’ém) (~1yn=nr by (4 14) of Section 4.7. Then we have a homeo-

morphism
Vi (S0(2n)),./SO(2n) x, = H V,/U(n;)) x Vi /SO(2n,)

and a homotopy equivalence

r—1
VE2(S0(2n))," S0P e~ T V0 ) x v, s0Gnn),
j=1

Note that, Véé)
4.7. 4

We have seen that Vf’l\l/[(SO(Zn))M is disconnected with two connected com-
ponents if £ > 2i and n, > 1 (notice that when n, = 1, n — n, = 2m is even).
To determine the underlying topological SO(2n)-bundle P for each component, we
consider four special cases.

Case 1. Assuming that n, > 1, we consider special points

~ bt ~ P - . . .
=~ V{y = U(1)>* is connected as mentioned in Section

(a1,b1, ... a0,bs,¢) € Vari(SO(2n)),, (a1, by, ... a4, be,d, ¢) € Vg (SO(2n)) 4,
where

a; = diag(A%, ..., A" |, I5,), b;=diag(Bi,...,B\_ |, I,,),
C=¢€, = diag(Hn—nTa (*1)717””.]17 IQnT—l)a d= IQn~
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Let €1 = diag((—l)ninrll,lgnr_l). Then
(AL, Bi,..., AL BY) € Xoy(U(ny)) x,

nj" o n

£,1,(=1)" " 02,1
(IQTLT, ) IQnM 61) € Vo(27(LT),%_1)n—nr7 (IQHTa ce ,IQ’nra IQT‘LT, 61) S VO(QTL¢),(—1)’"7”"‘ .
We have P = P; x P2, where P is an SO(2(n — n,) + 1)-bundle, and P, is an
SO(2n, — 1)-bundle with trivial holonomies I, 1. We have
(n—n;)(n—n,+1) (
2
where the second equality follows from the argument in Section 5.3.
Case 2. Assuming that n, > 1, as in Case 1, we consider special points

(a1,b1,...,ap,bg,c) € V\?’I\Z}I(SO(Qn))M, (a1,b1,...,ap,b,d,c) € Vfﬁ(SO@n))
where
a; = diag(AL, ... AL |, I2,,), b =diag(Bi,..., B\ 1, 1Ia,,),
c=diag(Hy_n,, (-1, ~I, Lo, —3), d=diag(Iom_n,)+1, — 2, Ton,—3)-

Let ¢4 = diag((—l)n_nTll,—IQ,IQnT_g), €y = diag([17—12,12nr_3), and € =
diag(flg,lgnr_g). Then

[ i [ 7 2,0 .
(Aj,Bj,...,Aj,Bj)EXYM(U(nj))_kj ki, J=1,...,7r—1,

’wQ(P):U}Q(Pl):kl—f—"'-l-kr,lﬂ-i mod 2),

e T
j g

01,— (=1 02,-1
(IQnT» ceey Ignr, 61) S VO(27LT(),(—)1)"*"T7 (I2nra RN Ignr, €2, 61) € VO(2"L7‘)7(_1)”7”T .

We have P = Py X P,, where P; is an SO(2(n — n,) + 1)-bundle, and P, is an
SO(2n, — 1)-bundle with holonomies a; = b; = Is,, 1, ¢ = d = e. We can choose
the lifting of d and c as d = & = ejez and & = édé'd = —1. Thus we have

(n—n;)(n—n,+1)

wa(P)=ki+- -+ kr—1+1 5

SO

(mod 2), wy(P2) =1 (mod 2),

(n—n.)(n—n,.+1)
2
Case 3. Assuming that n,. = 1 so that n —n,. = 2m is even, we consider special
points
(a1,b1, ... a0,bs,¢) € Vo (SO(2n))u,  (an, by, .., ag,be,d, c) € VEL(SO(2n)),4,

where

’wg(P):wQ(P1)+w2(P2):]{714—'--—"—/{7«,1 +1 +1 (mod 2)

a; = diag(A},... A, I,), b;=diag(Bi,...,B'_|,I5),

sy Lir—1o s Hr—1»

c= diag(H2m7 _I2)7 d= diag(—[4m, _—[2)
Then
(A, Bi,..., AL Bl € Xg3(U(ng))

&5 _ 55
AEEERE] -
n; n;j

£,1,—1 . 0,2,—1
(127 e ,127 —IQ) S VO(2)7+1’ (123 s 712? _127 _IQ> € VO(Z),+1'

We have P = Py x Py, where Pj is an SO(4m)-bundle with holonomies d = I, and
¢ = Hy,, with lifting ¢ = egey -+ - €4, and Py is an SO(2)-bundle with holonomies
a; = b; = I and ¢ = d = —I with lifting d = ¢ = eje3. Then we have

wo(P1) =ki+- -+ kr—1+im (mod 2), wy(Ps) =1 (mod 2),
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SO
wo(P)=ki+ -+ kr—1+im+ 1.
Case 4. Assuming that n,. = 1 as in Case 3, we consider special points
(a1,b1,...,a0,by,¢) € Ve (SO(2n)),  (a1,b1,... a0, by, d,c) € Vg (SO(2n)),,

where

a; = diag(A%,... A |, I,), b;=diag(Bi,..., B\ |, I,),

¢ = diag(Ham, I2), d= Ia,.
Then

(AL, Bi,..., AL, B € X¢3,(U(ny)) », ks G=Ler—l

PERREE)
J

01, ‘,
(I To, 1) € VG oy (Ioye Io I To) € VRS
We have P = Py X P, where P; is an SO(4m)-bundle with holonomies d = Iy,

and ¢ = Hy,, with lifting ¢ = egey - - - €4, and Ps is an SO(2)-bundle with trivial
holonomies I>. Then we have

wQ(P) = wg(Pl) = kl + 4 k‘T,1 +1m (mod 2)
To summarize, when n = 2m + 1, we have

. (n—npr)(n—my—1)
2

£,i,(—1)F1 R 1t
Wi(SO(2n)) Hv X Vo ome) (- 1yn—nr )

where Véf/[(SO(Qn))ff is the €,-reduced version of Xf;fv[(SO(Qn))fl. Note that

ne(n, — 1)

(n—n,)(n—n, —1) i(m + f) (mod 2), n—n,=n, —1 (mod 2).

2
To simplify the notation, we write

2k 2k 2k, _ 2k, _
ki M 1 1 .0,..., 0)

,LL:(N17~~~,M2m;O):<

sy s sy
1 ni Nyr—1 Npy—1
Ny,
ni O
instead of
— 2k,._
dlag( n17"'a - 1J7lr—170‘]77w~)'
Npr—1
Let
7 2]€1 2]{)1 2k -1 2k —1
ISO(4m+2) - {M:<77“.77"“7 . rrty - 707""0)‘nj€Z>07
ni ni Np—1 Np_1  S———r’
ny N1 e

k kr_
n+-An.=n=2m+1, kj€Z —>-..> 1>0}
ni Nyr—1

Recall that the twisted moduli spaces for U(n) are defined by ./\;lffk = f/rf;c JU(n),
where i = 1,2. Also we define the twisted moduli spaces for SO(n) by

./\/l“ni)lil Vé{nﬂil/SO( ), wherei=1,2.
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PROPOSITION 6.8. Suppose that £ > 2i, where i = 1,2. Let

2k 2k 2k, _1 2k, _1
e (B 20

Sy yeees sy ,0,...,0)6]50(4m+2).
ni ni Ny—1 Np—1 N—~—

(6.7)

N
ni MNp—1

Then Xf(’ﬁ/[(SO(élm +2)),, has two connected components (from both bundles over
=)
Xgp(SO(Am +2))f1,  and Xy (SO(dm +2)); .
We have a homeomorphism
Xy (SO(dm +2))E /SO (4m + 2)

g () (e —1)
T O DL e e S e R

r—1

~ ~ 0

= JIML i % MGy Ly
J=1

and a homotopy equivalence

1 1hSO(4m+2)

Xy (SO(dm +2))f

r—1

o T )0 s (it ey SO
ng,—k; o@2ny),(=1)nr=1 ’

j=1
PROPOSITION 6.9. Suppose that { > 2i, where i = 1,2. The connected compo-
nents of X¢i (SO(4m + 2))*! are

{ X (SO(m + 2)E | 1 € Iso(maa }-

Notice that, the set {u = /—1diag(uiJ, ..., pomJ,0J) | (u1,..., t2m,0) €
f50(4m+2)} is a proper subset of {u € (E1)” | I C A,7(I) = I} as mentioned in
Section 4.5.

The following is an immediate consequence of Proposition 6.8.

THEOREM 6.10. Suppose that £ > 2i, where i = 1,2, and let p be as in (6.7).
Then

PEOUm ) (X34, (SO(m +2))5")

= kb q +imeps (e =1)
— HPU(nj)(f/e,i ).PSO(QnT) pliE(=1)" e R
o t nj,—k; t o(2n,),(—1)nr—1 .
j=1

6.4. SO(4m)-connections on nonorientable surfaces

In this section, we consider SO(2n) where n = 2m is even, so that ég =C).
There are four cases.

Case 1. t,,_1 > [tn], n, = 1.
p=—1diag(A1Jnys - s A1 dn s Ard),
where Ay > -+ > A\_1 > || > 0. Thus
SO(4m)x, = ®(U(n1)) x --- x &(U(ny—1)) x ®(U(n,)).
where X,, = —2mv/—1p.
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Let € = Hy,,. Suppose that (aq,b1,...,a0,be,ec’, X, /2) € X€;§4(SO(4m)).

Then
¢

exp(X,/2)ec’ed’ = H[ai, b;]

i=1
where a;, b;, ¢ € ®(U(ny)) x -+ x &(U(n,)).
Let L : R?® — C" be defined as in Section 5.1, and let

X; = LoX, oL7!
= 2nv—-1ldiag(A1ln,, -, A Ipn,) € u(ng) X -+ xu(n,).

Then the condition on XL is

4
exp(X},/2)c/c = []lai, bi] € SU(ny) x -+ x SU(n,_1) x {I}
i=1
where a;, b;, ¢ € U(ny) x --- x U(n,), and ¢ is the complex conjugate of ¢/. In
order that this is nonempty, we need 1 = det(e’r‘/jl)‘j I,;), ie.,
2k;
/\j:737 kjEZ, i7=1...,r
nj

Similarly, suppose that (a1,b1,...,a¢,be,d,ec’, X, /2) € Xf(’I%/I(SO(ALm)). Then

14
exp(X,,/2)(ec)d(ec') " d = [ [ las, bi]

i=1
where a;, b;, d, ¢ € ®(U(ny)) x --- x ®(U(n,)). The condition on X}, is

4
exp(X},/2)cde ™ d = [ [lai,bi] € SU(ny) x -+ x SU(n,—1) x {2},

i=1
where a;, b;, d, ¢ € U(ny) x --- x U(n,.), and ¢ is the complex conjugate of c’.
Again, we need
2k;
/\j:7]7 ijZ, j=1...,r
nj
We conclude that for nonorientable surfaces
2k 2k, _ k ky_
= \/—1diag(—1,]m,...,;J,Lm,zm) ki €Z, L > > =L S k] > 0.
ny Np—1 ni Nyr—1

For each p, define e-reduced representation varieties
Varr (SO(4m)), ={(ax, by, ..., ap, by, ') € SO(4m)3E |
(6.8) ¢ X
H[ai, b;] = eXp(TH)ec’ec’},
i=1
Ve (SO(4m)), ={(a1,b1,...,ar, by, d, ) € SO(4m)3+ |
(6.9) ‘ X
H[ai, b;] = exp(%)ec’d(ec’)_ld}.

i=1
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Fori=1,...,¢, write
a; = diag(A%, ... AY), b; = diag(Bi,...,B),
' =diag(Cy,...,C,), d=diag(Ds,...,D,),
where A%, Bi, Cj, D;j € ®(U(ny)).
DeﬁneV asin (5.7) when ¢ = 1, and as in (5.9) when ¢ = 2. Then V; = Vb

nj,—k;
is connected, and

Vil (SO(4m)) H V.

Thus Vi (SO(4m)),, is connected, and it corresponds to connections on a fixed
topological SO(4m)-bundle P. By the argument in Section 5.3,

2m(2m +1)
2
Let U(n;) acts on V; = ‘Zf]ii_kj by (4.9) and (4.10) in Section 4.6 when i = 1
and when ¢ = 2, respectively. Then we have a homeomorphism

we(P)=ki+ -+ k- + =k +-+k-+im (mod 2).

(6.10) Vi (SO(4m)),/SO(4m) x, = [ (Vi/U (ny))
j=1
and a homotopy equivalence

1

i hSO(4m)x,, r
(6.11) Vi (SO(4m)),, [1v:"

Case 2. t,_1 = —t, >0, n,. > 1.
1= v/ —Idiag(M s o s A1 s A1, — M),
where A\; > --- > A\, > 0, Thus SO(4m)x, = ®(U(ny)) x - x ®(U(ny_1)) x
@' (U(n,)), where @ : U(k) — SO(2k) is the standard embedding, and &' : U (k) —
SO(2k) is defined as in Section 6.1.
Let € = Hy,,. Suppose that (ai,bi,...,aebe,ec’, X, /2) € Xé’i/[(SO(élm)).

Then
V4

exp(X,/2)ec’ed’ = H[ai, b;
i=1
where a;, b;, ¢ € ®(U(ny)) x -+ x ®(U(ny—1) x ®'(U(n,)).
Let L @ L' : R2(»—nr) gy R27r — C*—"r @ C", and let
X/’L = (LoL)oX,o(LL) ! =2rnv—1diag( A1 1, - - s Mlp,) € u(ng) X - - xu(n,.).
Then the condition on X, is

¢
exp(X],/2)c¢ = H[ai,bi] € SU(nqy) x --- x SU(n,)

i=1
where a;, b;, ¢ € U(ny) x --- x U(n,.), and ¢ is the complex conjugate of ¢’. In
order that this is nonempty, we need 1 = det(e’“/jl)‘f I,;), ie
2k;

=" kieZ, j=1,...,
J n; j J r
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Similarly, suppose that (ai,b1,...,a¢,be,d,ec’, X, /2) € X{;KA(SO(Alm)). Then

¢
exp(X,./2)(ec’)d(ec ) rd = H[ai, bi],
i=1
where a;, b;, d, ¢ € ®(U(ny1)) x -+ x ®(U(n,—1)) x ®(U(n,)). The condition on
X! is
m

4
exp(X},/2)¢de ™ d = [[la:, bi] € SU(n1) x -+ x SU(n,),
i=1

where a;, b;, d, ¢ € U(ny) x --- x U(n,) and d is the complex conjugate of d.
Again, we need
2k
)\jzij, kjEZ, j=1,...,nr
j

We conclude that for nonorientable surfaces

2k e, 2k, 2k, k ey
= v—=1diag(= T, .., =L T 1, =), Ky € Z, 771 >.0> LS.
1

Tl Nyr—1 Ny ny Ny
For each p, define e-reduced representation varieties as in (6.8) and (6.9). For
i1=1,...,¢, write
a; = diag(A%,... AY), b; = diag(B:,...,BY),
c = diag(Cy,...,C,), d=diag(Dy,...,D,),
where A;-, B;, C;, D;j € ®(U(n;)) for j =1,---,r —1, and A%, B!, C,, D, €

' (U(n,)).
i=1 Forj=1,...,r—1, define V; as in (5.7). Define

’ J4
® o Tk _
Ve = {(A}”v Biv S 7Ava£’ Cr) € U(n7')2£+1 | H[A:_, B = 62 Tk IanTCT}
=1
o~ 1
= Vnm—k,,f

Then Vyiy (SO(4m)), = [Tj—; Vi
i=2 Forj=1,...,r —1, define V} as in (5.9). Define

14
27/ —1ky - - =
2V - r 71
[1145. Bl = % 1,,C.D,C' D, §
i=1
~ 02
- Ny, —ky*

Then Vi (SO(dm), =TT, V-
Thus Véi\z/I(SO(élm)) u 1s also connected, so it corresponds to a fixed topological
SO(4m)-bundle P. As in Case 1,

wa(P)=ki+ -+ k- +im (mod 2).

We also have a homeomorphism (6.10) and a homotopy equivalence (6.11).
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Case 3. t,_1 =t, >0, n,. > 1.
p=v—1diag(A1Jn,, -, Ardn, ),
where Ay > -+ > A, > 0. Let X, = 727r\/j1/¢ as before. Then
SO(2n), = SO(2n)x, = ®(U(n1)) x --- x &(U(n,)).

Let € = Hy,, as in Example 4.11. Suppose that (a1,b1,...,ap,be,ec’, X, /2) €

X41,(SO(4m)). Then
l

exp(X,/2)ec’ed’ = H[au bi]

i=1
where a;, b;, ¢ € ®(U(ny)) x -+ x ®(U(n,)).
Let L : R?® — C™ be defined as in Section 5.1, and let

X;L = LoX,o Lt
= 2nv—1ldiag(Ailn,,. .- Arln,.) € u(ng) X -+ X u(n,).
Then the condition on X ;/L is

¢
exp(X),/2)c/c/ = H[ai,bi] € SU(ny) x --- x SU(n,),

i=1
where a;, b;, ¢ € U(ny) x --- x U(n,.), and ¢ is the complex conjugate of ¢’. In
order that this is nonempty, we need 1 = det(e™ 1% I,;), ie
2k
/\j:7]7 kjEZ, j7=1...r
nj

Similarly, suppose that (a1,b1,...,a¢,be,d,ec’, X, /2) € Xf{’f/[(SO(Zlm)). Then
¢
exp(X,,/2)(ec')d(ec') " d = [ [lai, bi]

i=1
where a;, b;, d, ¢’ € ®(U(n1)) x --- x ®(U(n;)). The condition on X, is

exp(X),/2)cdd ™ d € SU(ny) x - x SU(n,),

where d, ¢ € U(ny) x --- x U(n,), and d is the complex conjugate of d. Again, we

need
2k ;
Aj = - ki€Z, j=1,...,r
nj
We conclude that for nonorientable surfaces,

2k 2k, k k.
w=v- dlag( 1n1,...,—Jnr>, k; € Z, LN )

Ny ni zs

For each p, we define the e-reduced representation varieties as in (6.8) and (6.9)
when ¢ = 1 and when ¢ = 2, respectively; we define V; as in (5.7) and (5.9) when
i = 1 and when ¢ = 2, respectively. Then

Vi (SO(4m)) H V.
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Again, Vé’l\a(SO(llm)) 1 1s connected, so it corresponds to a fixed topological SO(4m)-
bundle P, and

we(P) =ki+---+k.+im (mod 2).
We also have a homeomorphism (6.10) and a homotopy equivalence (6.11).
Case 4. t,_ 1 =t, =0, n,. > 1.
p=—1diag(A1Jnys s Ae—1dn, 150, ),

where A\; > -+ > \,_1 > 0. Let X,, = —2mv/—1p as before. Then

SO(2n), = SO(2n)x, = ®(U(ny)) x --- x ®(U(n,—1)) x SO(2n,.).
Let €, = diag(Ham—n,, (—1)""I1, Io,,—1). Consider (ai,b1,...,as, b, euc’, X, /2) €
Xf(’I%/I(SO(ZLm)). Then

¢
exp(X,/2)e, e, d = H[ai, b;]

i=1
where a;, b;, ¢ € ®(U(ny)) x -+ x ®(U(n,—1)) x SO(2n,.).
Let L : R2("—nr) — C"~" be defined as in Section 5.1, and let
X! = Lo (2rdiag(MJuys-- s A1, ,)) 0 L7
= 2nv—-1ldiag(Ailn,, - s Are1ln,_,) €Eu(ng) X -+ X u(ny_1).
Then the condition on XL is

¢
exp(X},/2)c'c’ = [ [lai,bi] € SU(m) x -+ x SU(ny_1),
i=1
where a;, b;, ¢ € U(ny) x --- x U(n,_1), and ¢ is the complex conjugate of ¢’. In
order that this is nonempty, we need 1 = det(e™ 1% I,,;), ie.,

2k ;
N="2 kijeZ j=1,...,r—1.
nj
Similarly, suppose that (a1, b1, ..., ar,be, d, €, X, /2) € Xf(’f/[(SO(élm)). Then
¢
exp(X,./2)(eud)d(eud') " d = s, bi],

i=1
where a;, b;, d, ¢ € ®(U(ny1)) x --- X ®(U(n,—1)) x SO(2n,). The condition on
X, is
exp(X,,/2)¢de ™ d € SU(ny) X -+ x SU(n,—1),

where d, ¢’ € U(ny) x --- x U(n,_1), and d is the complex conjugate of d. Again,
we need

Nj="2 kje€Z j=1,...,r—1.
We conclude that for nonorientable surfaces,

2% %, _ k ey
M:M—ldiag( LA 1J,M,()Jm), ez, L.l

ni Nyr—1 ni Ny—1

> 0.
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For each pi, define ¢,-reduced representation varieties

Ve (SO(m)), = {(ar,br, ..., a0, be, ') € SO(Am)ET |
lﬁl[ai7 b;] = exp(X,./2)eu e},
=1

Vem(SO(Am)), = {(ar,br, ..., a0, be,d, ') € SO(Am)¥F? |
lﬁl[ai7 bi] = exp(X,,/2)e,c d(e, ) d}.
i=1

i=1 Forj=1,...,r—1, define V; as in (5.7). Define

14
(6.12) V, = {(ALB]..... AL BL,C,) € SO@2n,)* ! | [[[AL B] = (e1)?

i=1

where e = diag((—=1)"" I, Iapn, —1), det(e) = (=1)"". Let C} = eCy. We see that

Vo = {(ALBL... AL BLC)) € SO@2n,)* x O(2n,) |

14

[T, Bl = (€)%, det(C)) = (~1)™ |
i=1
~ bl
= V0(2n,,),(71)nr
where Vé’(ln) 4, is the twisted representation variety defined in (4.11) of Section 4.7.
Vé’(ln),j:l is nonempty if £ > 2. We have shown that Vé’(ln), 4 is disconnected with

two components VOZ’(172)+:1|:1 and Vé’(lrz; il if ¢ > 2 and n > 2 (Proposition 4.14). Then

Vi (SO(am)),, = T vi-

j=1
i=2.Forj=1,...,r —1, define V; as in (5.9). Define
(6.13)

¢
V. = {(A;Bg, .., AL B! D,,C,) € SO(2n,)* 2 | [[IAL B] = ecrpr(ecr)*lpr},

i=1
where € = diag((—1)"" I, Iopn, —1), det(e) = (=1)"". Let C/ = eC,.. We see that
Vo = {(ALBL..., AL B D, Cl) € SO(2n,)2 ! % O(2n,) |

L

[114:. Bi) = €/ D,Cl ' D, det(Cy) = (~1)" |
i=1
~ 0,2
- VO(Qn,,.),(fl)"r
where V- 1s the twisted representation variety defined in (4. of Section 4.7.
here V552, . is the twisted i iety defined in (4.12) of Section 4.7

Vé’fn), 4, is nonempty if £ > 4. We have shown that Vé’(zn), 4, is disconnected with
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two components VO(n) 1, and V, O( D, il if ¢ > 4 and n > 2 (Proposition 4.14). Then
Ve (SO(4m)) H V.

Thus Vf’l\i/[(SO(élm)) 1 1s disconnected with two connected components if £ > 2i
and n, > 1 (because V. is). By the argument in Section 6.3,

(n—np)(n=—ny—1)
2

L E(—1)Frt Rt

Vi (SO(4m)) £ HV X Voom ()

- lr - —1 . 1
Note that i(n ny)(n = ny )Ez(m+ W).

Let U(n;) act on V; = f/fjl_kj by (4.9) and (4.10) of Section 4.6 when ¢ = 1
and when ¢ = 2, respectively; let SO(2n,) act on V, = VO(2n )~y PY (4.13)

and (4.14) in Section 4.7 when ¢ = 1 and ¢ = 2, respectively. Then we have a
homeomorphism

(SO(4m))#/SO (dm)x, = 1:[ (V;/U(nj)) x V,./SO(2n,),

and a homotopy equivalence

r—1
; hSO(4m
V\f’l\z,[(SO(Zlm))u m)x, H VRV (M) 7, hSO(@2ny)
Jj=1

To simplify the notation, we write

%, 2k 2% 2k,
.u“:(:u‘la'”a/'LQm):(i o )

U T e
n1 Uz
instead of
2k 2k,
V- dlag( L S Jnr).
Ny
Let
- 2k 2k 2k,._ 2k,._
+1 _ ([ “h “hl r—1 r—1 ) .
B = {u— <TL1 e e e 721%) n; € Zso, k;j € Z,
ni MNpr—1
k1 kr_1 k14 +kp+im
At l=n, s> > [ky|, (—1)Frtthe :il}
n Npr—1
2k 2k 2k,._ 2k,._1 2k, 2k, 2k,
o= (B, 20 S By Zhe e Oy g
ni ni Ny—1 Nyp—1 Uzs Uzs Ty
ni N1 ny,—1
kl ky kit +kq+im
ne>1, ni+ - +n.=n, k; €7, s DS g, (kR :jzl},
ni s
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. 2k 2k 2k, 1 2k, _1
IgO(Zlm):{M:(i ey T —

=L S ,0,...,0)‘njez>o,
ni ni Nyr—1 Np—1 ==~
Ny
ni Np—1
k1 kr_1
np>1, ny+---+n.=n, k; €%, > >O}
ny Nyr—1

PROPOSITION 6.11. Suppose that £ > 2i, where i = 1,2
) 2k 2k 2k, 1 2k, 1
(i) Ifp= (7 —

T e ,2kr) €I§5(4m), or
n1 ne_1
= (27k:1 2ky 2k, 1 2k,_1 2k, 2k, i%) I
T e e e e 50(4m)’
ny Pt np—1

then

Xy (SO(4m)), = X4a (SO (4m))E!

18 nonempty and connected. We have a homeomorphism
0y
X4 (80(4m)),./SO(4m) HM%,,C
and a homotopy equivalence

i hSO(Am) 11 1ot .
X4 (S0(4m)),, ~ TLVE ),

nj,—k;j
j=1
.. le 2k'1 2]€7-_1 2]{},«_1 ~0
W) I :(7— ,o,...,o)el o
(ii) If p " " — — 50(am)

n,
n1 Np—1

then Xf(fv[(SO(élm))u has two connected components (from both bundles
over 2f)

Xer(SO(m))f,

and  Xyy,(SO(4m)); !
We have homeomorphisms

. Z (-1 kgt kg +imepi R tl)
X4i,(SO(4m))E! /SO(4m) HMHJ ey X MG Ly ’

and homotopy equwalences
, hSO(4m)
yx3
(X5 (s0wm))E)
r—1

: np(npt1)
~ (‘7(’7’ )hU(nj) X ‘7£7i1:t(71)k1+.”+k7‘71+”n+Lf hSO(znT)
nj,—k;j O(2n,),(=1)nr

Jj=1

PROPOSITION 6.12. Suppose that ¢ > 2i, where i1 = 1,2. The connected com-
ponents of X5l (SO(4m))*! are

(X (SO@m)) i | 1 € TS 4y} U{XGM(SO@Am))E | 1€ I§0 4y }
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Notice that, the set {u = —1diag(p1J, ..., pomd) | (t1, .-, piom) € ISO(4m) U
IOO(4m)} is a proper subset of {u € (E4)™ | I C A,7(I) = I} as mentioned in
Section 4.5.

The following is an immediate consequence of Proposition 6.11.

PROPOSITION 6.13. Suppose that £ > 2i, where i = 1, 2.

2% 2% 2%ke1 2k .
Q) If u ( e e e T k) 2L e o
ni MNpr—1
_ (27161 27161 2k, _1 2k, 1 2k, 2k, :I:%> 1
nl,...,nl,...,nT—l,...,nr—l,nr,...,nT, 50(4m)
ni N1 n,—1
then
SO(4m E 4 U (n,
Py ( )< Xym(SO(4m)) ) HP(J nJ,—k)
.. le 2k'1 2]€7-_1 2]{},,._1 ~0
(ll) Ifu:(Tl’...’Tl,...’nr717...7nr71’07...’0)61‘90(4m)} then
ni MNp—1 "

PO (Xa(SO(m))E")

r—1 . onp(nptl)
U(ny) (76,0 SO(2n,.) 0,0,k (—1)k1 Tt thp_ytimd RS
17"V ) < P Votzn,) (-1 :
j=1



CHAPTER 7

Yang-Mills Sp(n)-Connections

Sp(n) = {( p ‘AB > cU@n) | ABe GL(n,(C)}

The maximal torus of Sp(n) consists of diagonal matrices of the form

diag(ur, .-, Un,uy .oy uy b,
where uq,...,u, € U(1). The Lie algebra of the maximal torus consists of diagonal
matrices of the form
—2my/—1diag(t1, ..., ty, —t1,...,—tn), t; €R.
The fundamental Weyl chamber is
Co = {diag(t1,... tn,—t1,. ., —tn) | t1 >ty > -+ >t, >0}

In this chapter, we assume
NiyenesNp € Lsgy, N1+ +np =n.
7.1. Sp(n)-connections on orientable surfaces
Any 4 € Cy is of the form
p=diag(Mln,, ..., A\In,, =AMl ooy =N 1n),
where A\; > --- >\, > 0. When A, >0, Sp(n)x, consists of matrices of the form
diag(Mi, ..., M, M,. .., ,),

where M; € U(nj). When A\, =0, Sp(n)x, consists of matrices of the form

M, 0
Mrf 1
M, 0 -N,
0 M,
Mr—l
0 N, M,

where M; € U(n;) for j=1,...,r—1, and

M, —N,
S = < N. T, > € Sp(n,) C U(2n,).

T

So

1

Uny) x---xU(n,.), Ar >0,
Sp(n)x,t {U(ni)x ( )

( ) e X U(n’f‘*l) X Sp(nr)a A= 0.

74
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Suppose that (ai,bq,...,a¢,bs, X)) € X%&(Sp(n)). Then

¢
exp(X,) = H[ai,bi],
i=1
where a1, by, ...,a¢,b; € Sp(n)x,. Then we have

~ | SU(np) x---x8SU(n,), Ar >0,
exp(Xp) € (Sp(n)x,)ss :{ SU(ny) x -+ x SU(ny1) % Sp(ny), An =0,

Thus

k. k k
X, = —2mv-— dlag( Loy —1I,,, ——llnl, ceey ——TIM),
Ny ny ny
ky kr k kr
p o= diag(—[nl,...,—Im_,——llnl,...,——lm,),
1 Ty ni Ty
where N L
kj€Z, —>...>=L>0.
ni Ny

This agrees with Section 3.4.4.
Recall for each p, the representation variety is

VYM(Sp( )) = {(a17b17"'7a€7b£) 22 ‘ Hala i _eXp )}
Let i =1,...,¢. When k. > 0, write
a; = diag (Aﬁ,...,Ai,fﬁ,...,fﬁ), b; = diag (B%,...,Bi,é{,...,éﬁ),
where A%, Bf € U(n;). When k, = 0, write

Al 0 B 0
_ AL B _ B -F
a; = AZ B 9 bZ - B»L B bl
0 E: Al 0 F! Bi

where
A’ =diag (A},...,AL_y), B'=diag(Bj,...,B,_,),
A;,B;eU( i) J=1,...,r—1,
i __ A?» _El i B7i' _Fv}
P = ( B A ) Q' = ( o pi ) € Sp(n,) CU(2n,).

T s

For j=1,...,r —1, define

‘/]:{(A},le, A[ Bz EUnJ 2Z|HA1 Bz o QW\/TMI”j}
(7.1)

= Xél?/I(U(nJ))i kj -

.3

PR

When k, > 0, define V,. by (7.1). When k, = 0, define

V. ={(PLQL ... PL,Q}) € Sp(n,)* | H Qi = I, } = X{8(Sp(n,).

=1
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Then Vi, ..., V, are connected, and Véﬁ(Sp(n)) W= H§:1 V;. We have homeomor-
phisms

H;:l(vj/U(n]))v k. > 0,

2 ~
Vaar(Sp(n),/Sp(n)x, = {H;;%(VJ-/U(nj)) < Vi/Sp(ny). Ky = 0.

and homotopy equivalences

hSp(n Ty hU(ny) .

[T}V s e, <o,

Recall that Sp(n) is simply connected, so any principal Sp(n)-bundle over an
orientable or nonorientable surface is trivial. For ¢ = 0,1, 2, let
i
M(X], Sp(n)) = X, (Sp(n))/Sp(n)
be the moduli space of gauge equivalence classes of flat Sp(n)-connections on %¢.
To simplify the notation, we write

u:(ul,.-.,un):(ﬁ b k’”)

ey
ni ny Ny Ny
ni Ny
instead of
k k k k
diag(—llm,...,—’"Im,——llm,...,—ilm).
ny Ny ni Ny
Let
k1 k1 ky k.
Tspm) = {,uz <n71""’n717.."n7r7.“7nir)|nj € Z>o,
ni Ny
ny+--+n. =mn, ijZ,—l >—r>0}
ny r

From the discussion above, we conclude:

PropPOSITION 7.1. Suppose that £ > 1. Let

(7.2) M:(%...7%,...7:—:,...,§—:)eISp(n).
niy Ny
Then
H;Zl M(Eg,P”J’]’”), k. >0,

4, ~
(Sl Spln) = {H::f MG, PPo45) 5 M(Th, Sp(n), by =0

In particular, Xf(’&(Sp(n))H 18 nonempty and connected. We have homotopy equiv-
alences

e, hSp(n)
XU (Sp(n))u
r 2,
[[im (XYI(\)/I(U(nj))ﬁV”,Q) ) k. >0,
~ " " hU (nj)
r— 4, J £, n
I (XD w) X (Spm)57en), gy =0
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PROPOSITION 7.2. Suppose that £ > 1. The connected components of the rep-
. . 2,0
resentation variety X\;(Sp(n)) are

£,0
{ Xy (Sp(n)u | 1 € Ispen)}-
The following is an immediate consequence of Proposition 7.1.

THEOREM 7.3. Suppose that £ > 1, and let u be as in (7.2). Then

P (XG0 (Sp(n)),)

T U(n; R

Ty PV (XU m) e, w ), k>0,
= ngltng
- r— U(n Sp(n.,

ot P (X)) PP (XE5Sp00) s e =0,

J J

7.2. Equivariant Poincaré series
Recall from Chapter 3.4.4:
A={a;=6;—0,11]i=1,....,n—1}U{a, = 260,}
A ={a) =¢ »—ei+1|i:1 Sn—=1}U{a) = e}

EBZ@Z, A @Z - ez+1 S Z€7u ﬂ-l(Sp(n)) = 0

We will apply Theorem 4.4 to the case Gg = Sp(n).
Wo; =01+ +0;
Case 1. a,, € I:
I ={an,, Cnytngs - Qnydotng,_1sQn }
L' =GL(n,,C) x --- x GL(n,,C), ni+---+n.=n

n+1)

dimc 371 — dimg 3spn,c) =7, dimc Ul = Z nin; + 5

1<i<j<r

1 : o n+1
pI = 221(712217’1,] +ni) <Zlen1+“'+ni—1+j) + 2 (01++0n)
i= j= j=

N + Mgl , ny +1
<p17a7\i1+m+ni> = % fori=1,...,r—1, <pI7a;l/> = rT
Case 2. ay, ¢ I
I= {anl’anl+n2’ R an1+"'+"r71}

L' =GL(ny,C) x --- x GL(n,_1,C) x Sp(n,,C), ni+---+n.=n

dim@ 3 — dim(c 3Sp(n c) = r— 1

1 1
dim([j UI _ Z nzn] n + ) (nr + )

2
1<i<j<r
1 Uz
pI Z(n - 2277‘] + > <Z 9n1+"'+ni—1+j>
i=1 j=1
n+1 n—n,

+

(91 +ot 9n1+~~-+nr_1) + (0n1+~~+nr_1+1 +oe Tt on)

2 2
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n; + Nit1 . Ny_1+1
<pI7aX1+m+ni> == 2 : for i = 1’ o ’T_Q’ <p1aax1+“'+nr—1> =— 2 +n7‘

Then we have the closed formula for the equivariant poinaré series for the
moduli space of flat Sp(n)-connections:

THEOREM 7.4.

PP (XS (Sp(n)) =
. r H”Lz (1+t2] 1)2[
Z Z <(_1) g (1 _tan)szl (1 _t2])2

t(e_l)(2zi<j nin;+n(n+1))

. {Hf;l(l — t2(ni+m+1))} (1-— tz("'r'+1))

.12 Yoy (it i) +2(ne+1)

. 1H e R VA R
tQ" Lo 0= 50—

=1)(2% o ninjtn(nt1)—n,(np+1
HE=DE T nanytn(nt1) —ne (n,+1) e YU RVNPU

[IZ20 - tmen)] (1= efr)gatne—sanes1)

where

EXAMPLE 7.5.

(1 +t)2£t2€+2 (1 +t3)2£
1= -ty  (A—-2)(1 -1t

Note that Sp(1) = SU(2) = Spin(3), so

PPV (X5 (Sp(1) = —

PP (xko

flat

(Sp(1))) = PPV (XES(SU(2))) = PP (X5 (Spin(3)))

as expected, where PtSU(Q)(XéaOt(SU( 2))) is calculated in Ezample 4.7, and that
PSpm(S)(XZO(Spin( 3))) is calculated in Example 5.7.

flat

EXAMPLE 7.6.

@ (X{0.(5p(2)))
- ( +t) (1+t3)22t6€ (1+t)4€t8l
=22t =15 (1 2)2(1 - )2

( +t3)2€(1+t7)2€ (1+t)2€(1+t3)2€t6€+2

T M o)1 —#) (- 221 )15
Note that Sp(2) = Spin(5), so
PP (X5 (Sp(2)) = PO (XS (Spin(5)))

as expected, where PtSpm(S) (Xéft(Spin(S))) is calculated in Example 5.8.
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EXAMPLE 7.7.

PP (XS (Sp(3)))

(1 4 t)%(l + t?’)%(l + t5)2ét12£—4 (1 + t)u(l + t3)2€t16€—4
(L= 2P0 — )P~ )1~ %) ' (I— 21— )1 — f6)2
(1 +t>4€(1 +t3>2€t16€ 6 (1 +t)61t18€—6

R e (O R (RO (R
(1+t3)2£(1+t7)22(1+t11)26
(1= 2)(1— (1 — t5)(1 — 5)(1 — t10)(1 — £12)
(1+t)2£(1+t3)22(1+t7)22t102+2
(1= 2)2(1 — t4) (1 —15)(1 — 8)(1 — 112)
(1_’_t)2£(1+t3)4£t14274 (1+t)4é(1+t3)2€t16€74
(1= 231 —t4)2(1—+19) " (1—2)3(1 — t9)2(1 — t3)

_|_

7.3. Sp(n)-connections on nonorientable surfaces
We have Cpy = Co. Any p € Cj is of the form
p=diag(Mlpn,, ..., A\In,, —MIny, ..., =N 1y),
where Ay > - > \. > 0. We have

~ | Un) x--xU(n,), A >0,
Sp(n)x, = { Ulny) x -« x Ulne1) x Sp(ns), Aw =0,

Suppose that (a1, by, ..., az, b, ec, X, /2) € X (Sp(n)), where

= ( [S I > € Sp(n)

is defined as in Example 4.12. Notice that here €2 # 1. Then

L

exp(X,/2)ec’ed’ = H[au bi]

i=1

79

where a;, b;, ¢ € Sp(n)x,. Note that ec’ec’ = —c'c’ where ¢ is the complex

u
conjugate of ¢/, so

exp(X,/2)(~¢) € (Sp(n)x, )os = { S s, X

In order that this is nonempty, we need 1 = det(—e”\/jl’\f I,;), i

€.,

2k;
/\j 7—1 k’jEZ, j=1...r
nj
Similarly, suppose that (ai,b1,...,a¢,be,d,ec’, X, /2) € Xf(’f/[(Sp(n)). Then

14

exp(X,./2)(ec’)d(ec ) td = H[au bil,

i=1
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or equivalently,

exp(X,/2)(—dd ™ d) € (Sp(n)x,)ss =
SU(ny) x --- x SU(n;), Ar >0,
SU(ny) x -+ x SU(nq—1) x Sp(n;), A\ =0.
Again, we need
_ 2k

n;j

)‘j —]., ]ijZ, jzl,...,’f’.

We conclude that for nonorientable surfaces, either

o 2k 2k, 2k 2k,
= dlag((n—l s (8 = D = (= D= (3 Din,),
where
1 k. 1
k; € Z, - > > - >3
or
. B kl 2k7‘—1
n= dlag((nil - 1)In1> ) ( N1 - 1)In,,-7170[n7a
2k 2k,._
_(711 - I)Inu- 7_( nT711 - I)In,\ﬂ:OInr)a
where
k1 k1 1
k; € Z, R Y

Recall the for each p, the e-reduced representation varieties are

V\ﬁi\l/[(sp(n))p, = {(al,bl,...,ae,be’c’) c Sp(n)?xéjl |
¢
H[ai, b;] = exp(X,./2)ec’ec’},
i=1
Vfﬁ(Sp(n))u = {(a1,b1,...,as,bp,d,c) € Sp(n)%f:ﬂ |
¢
H[aiv bi] = eXP(XM/Q)GC/d(ec')_ld},
i=1

Leti=1,---,£. When A\, > 0, write
ai:diag(Aﬁ,...,Ai,/_l’i,...,/_li), bi:diag(Bi...,Bi,B@...,Bf;),
d =diag (Cy,...,C,Cy,...,Cy), d=diag(Dy,...,D,Dy,...,D,),
where A},B},Cj,Bj € U(n;). When A, = 0, write

Al 0 B 0
_ A5 -E; - B; —F;
a; = At , b= At )
0 E! Al 0 F B:
C 0 D 0
/o T 4 _ Dr *Gr
Cc = c s d = D ;
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where
A’ =diag (43,...,Al_)), B'=diag(Bi,...,B._;),
C:diag(C’l,...,Cr,l), D:diag(Dl,...,Dr,l),
Al B, C;,DjeU(n;), j=1,....,r—1,

(A -BY g (B R
P —<E; _i )7@ _(Fﬁ _,iw >€Sp(nr)CU(2nT),
7 Cr —Efr i Dr —Gr
S <Hr c. ),R (Gr D, >€Sp(nr)CU(2nr).
0 -1, .
Letez(I OT)eSp(nr).Fory:l,...,r—l,deﬁne
(7.3) '
¢ .
i i —2nyV/—132 =
V= {(AL Bl ... AL BLCy) € Ul | T] 143 BY) = F©0)
i=1
~ 01
- TLj,k‘j’

where ‘N/f;lkj is the twisted representation variety defined in (4.7) of Section 4.6.

Vrfﬁkj is nonempty if £ > 1. We have shown that Vfﬁkj is connected if ¢ > 2
(Proposition 4.13). When A, > 0, define V,. by (7.3). When A, = 0, define
¢
Vo = {(PLal. . PLQLS,) € Spin 2 T]IPL Q1) = (e50) )
i=1
(S!.=€S.)

4
=" {(PLQL- . PLQLLS) € Spln)* | TTIPEL Q1 = (577}
i=1

= X (Sp(no))-
Then Vi (Sp(n)), = [Tj_, Vj-
Similarly, for j =1,...,r — 1, define
Vj = {(A}, le7 . ,Aﬁ,Bf,Dj7 Cj) c (U(nj))2z+2 ‘
(7.4) e N - )
H[A;’ B;] = expizﬂ—\/jl# Inj C]chj_le} = ‘/l’2

n; ,k?j ?
=1

where ijzkj is the twisted representation variety defined in (4.8) of Section 4.6.
fokj is nonempty if ¢/ > 1. We have shown that fokj is connected if ¢ > 4
(Proposition 4.13). When A, > 0, define V;. by (7.4). When A, = 0, define

4
Vi = {(Prl’ 71-7 s 7Pfa f-aRmST) € Sp(nT.)ZHQ ‘ H[szvQ:] = €ST'R7'(€S7')71RT}

i=1

(S.=¢S,) Lo
o {(P,.l, L., P fi,R,«,S;.)eSp(nr)Q”z\H[P;,Qi]:Sj,Rr(S;)*lR,«}
1=1
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Let U(n;) act on V; = f/fj’fkj by (4.9) and (4.10) in Section 4.6 when ¢ = 1 and
when ¢ = 2, respectively. Then we have homeomorphisms

) G (V/U(n))7 Ar >0,
Vi (p(n)),/ Sp(n)x, = { 1= (VUL
e T LS (V/U () x Ve /Splns), Ay =0,
and homotopy equivalences
H;:1 ijhU(nJ), /\T > 07

; Sp(n)x
V& (Sp(n "o :
YM( p( ))# {H;:} ‘/jhU(nj) > VvThSp(nr)’ Ar = 0.

To simplify the notation, we write

2k 2k 2k, 2k,
(T5) = (1. i) = (—1—1,...,—1—1,..., 1, —1)
ny ny Ny Ny
ni Ny
instead of
. 2k 2k, 2k 2k,
d (—-11,,,..., O, (O, (g In),
g (2 = )t (B 1) = () - (2 ),
and write
(7.6)
2k 2k 2k, _ 2k, _
M:(ul,...,un):(—1—1,...,—1—1,..., L, 1—1,0,...,0)
ny ny MNyr_—1 Np_1 ——
ni MNpr—1 "
instead of
2 1 Zkr—l
d (——11,“ : 1)1, ,,0L,.,
1ag ( n ) 1 ( N1 ) r—1 T
2k1 ri—l
(g, - — 1)1, 1,01)
( ni ) ni ( Np_q )) r Ny
Let
- 2k 2k 2k, 2k,
ISp(n) = {,u = (71 - 1a 771 ) ) - la ) - 1>| n; € Z>07
n1 n1 Ny N,
ny za
k k. 1
nm+-4n.=n, kj €L, —~ > >—>f}
’ 1 s 2
2k 2k 2k, _ 2k, _
U {p=(22-1. 20 20y 2 g0
ni ni Nyp—1 Nyr—1
st MNpr—1 "
k kp_ 1
nj € Lsg, My +--+n,=n, kj €%, — > > 1>f}
n1 Np_1 2

PROPOSITION 7.8. Suppose that ¢ > 2i, where i = 1,2, and let u € fSp(n)~
(i) If u is of the form (7.5), then

X (Sp())u/Sp(n) = T M, .
j=1
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We have a homotopy equivalence

hSp(n H é i hU("J

nj,k J

X¢r(Sp(n)

(ii) If pu is of the form (7.6), then
r—1

X4 (Sp(n),/Sp(n) = [] M5, x M(EL, Sp(n,)).

Jj=1
We have a homotopy equivalence
r—1
X hSp(n) 00 \hU(ny) £y N
Xym(Sp(n)) ~ H(an,kg) ’ Xﬂat(Sp(nr))hSp( 2
j=1
In particular, X@&(Sp(n))# is nonempty and connected.

PROPOSITION 7.9. Suppose that £ > 2i, where i = 1,2. The connected compo-
nents ofX v (Sp(n)) are

{Xé’f\/[(Sp(n))# | we jSp(n)}

Notice that, the set {u = diag(p1, -« -ty =1y« s — ) [ (11, -« s pin) € fsp(n)}
is a proper subset of {u € (E1)7|I C A, 7(I) = I} as mentioned in Section 4.5.
The following is an immediate consequence of Proposition 7.8.

THEOREM 7.10. Suppose that £ > 2i, where i = 1,2, and let i € fgp(n).
(i) If p is of the form (7.5), then

Ptsp(n) ( Y (Sp(n ) HP nJ) nj, J)-
(ii) If p is of the form (7.6), then

RO (xfhsnon,) - TT 7058 270 (s



APPENDIX A

Remarks on Laumon-Rapoport Formula

In this appendix, we explain how to use the argument in [LR] to obtain The-
orem 4.4, which is a slightly modified version of [LR, Theorem 3.4]. We work over

C.

A.1. Notation

The following is a correspondence between the notation in [FM] (which we
followed closely in Chapter 3) and that in [LR].

LR) FM]
minimal parabolic P
subgroup (Borel) 0
Cartan of G My H
parabolic subgroup P =MpNp P=LU
Levi subgroup Mp L
unipotent radical Np U
center of the
Levi subgroup Zp 2(L)
conne;fjcejz\c/l{ ;enter Ap Z(L)
AIP C Mpap L/[La L} - Z(L)O/Z(L)O N [Lv L]
X.(Ap) m1(Z(L)o)
X. (A7) m(H)/AL = m(L/ L. L)
X, (A},) ()
ap = ap, hr
ap =R® X,(Ap)
:R®X*(A’P) (3r)r
aG: ggé*((jfls)) (3G)R = bR/V*
af =af Cao VF=ARQRC bhg
root system Dy =Pp, Cay R C by
set of positive roots of = of C P RTCR
set of simple roots Ag=Ap, C dF ACRT
coroot lattice of G Doca, 2o A=, cnZa’ Cmi(H)

In this appendix, we will closely follow the notation in [LR]. We will not repeat

most of the definitions in [LR].
Following [LR], if P C @ C R are three parabolic subgroups of G, there are

canonical splittings ap = ug @®af ®ag and ap = aF" @ af* © af. Given H € ap,

84
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we denote by [H]?, [H]§, and [H]r the canonical projections of H onto a¥, ag,

and ag, respectively. The components of 3 € a} in aIQ;*, ag*, and a}, are 3 a2

ﬂ|ug, and B|q,, respectively. Given a € Ap = AG C a§*, let & denote the unique

element in Ag C a* such that dlqg = a. Then &” € af and a¥ = [@']p € af.

The subset IT of the set of simple roots in [FM] corresponds to Ap = A% in the
following way:

F = {d|aeAP}cAocag:
Ap = {Blap | BEI”} Caf

Ap, = {Blap 1B€8\IT} Capy
A = {BlqlBel"\I9Ca

We continue the table of correspondence between notations in [LR] and [FM]:

[LM] [FM]
X, (Ap) m(H)/AL
AG = X.(Ap)/ Bucag Za” | mi(H)/(AL & @oe;r ZaY)
Topological type c B
of G-bundle AR, m(H)/A =m(G)
Topological type P _
of Mp-bundle Ap, mi(H)/Ap = mi (L)

Given a parabolic subgroup P of G, the topological type of an Mp-bundle is
given by vp € Afzo & 71(Mp). The slope of an Mp-bundle is given by v, € X, (Ap).
The commutative diagram in Section 3.3 can be rewritten as follows:

0 0

@GEAIGD wa

0 —— KP/AP LN K/A _ @aeAgQ/Z

b e |

P [la G Baeag@s
APo APo @aeAg Q/Z

B |re

X, (Ap) s x,(ay)

l l

0 0

Here Ap = Baeal, Za¥ C X.(A,), and Ap is the saturation of A p in X (AR, )
Let vj and vy, denote the projections pp(vp) and pg(va), respectively.

Recall that {w, | @ € Ag} is a basis of the real vector space ag: which is
dual to the basis {a" | o € Ag} of af}. Given a € Ay, we extend @, : aF — R
to wy : ag = aIGDO @ ag — R by zero on ag. Then w, takes integral values on
Baen,Za” C af C ag, and takes rational values on X, (A, ) C ag. So it induces
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a map

o 1 AR = X.(4%) / P za¥ —Q/Z

Q
a€A} Py

where @ is any parabolic subgroup of G. More explicitly, given vg € Ago, let
X € X.(Ap,) be a representative of vg. Then w,(vq) = wa(X) + Z.

A.2. Inversion formulas

Let A be a fixed topological abelian group. In [LR], Laumon and Rapoport

introduced the notion of I'-converging functions and I'-converging functions from
P to A, where

B = {(Pvp) | PePvp € X, (Ap)}.
We will introduce similar notion for functions from ¥ to A, where

T={(P,vp) | PEP,vp € A }.
DEFINITION A.1. Let € = {(P,vp) | P € P,vp € AR}, and let A be a fized

topological abelian group. A functiona : ¥ — A is ffconverging if for each standard
parabolic subgroup P C Q of G and each vg € Ago, the finite sum

Yo TE(p? Da(P,ve)
VPGAEO
[vrlo=vq

admits a limit as T € a * goes to infinity. If this is the case, we shall denote this
limit by
> B whla(Pre) .
l/pEAgO
[vrle=vq
A function b : T — A is I'—converging if for each standard parabolic subgroup P C Q
of G and each vg € Fgo, the finite sum

ST T2, T)b(P,vp)
vp GAIF;O

[vrlo=vq

admits a limit as T € a * goes to infinity. If this is the case, we shall denote this
limit by

> B (R b(P,vp) .
VpEA;O
[vrle=rq

The following inversion formula is an analogue of [LR, Theorem 2.1].

THEOREM A.2. For each ffconverging function a : ¥ — A, there exists a
unique I'—converging function b: T — A such that, for each (Q,vq) € T, we have

a(@Q, Q) = Y Z 8 ([Wp]9)b(P,vp) .
FE prenh
[vplo=vq
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The function b is given by the following formula : for each (Q,vg) € %, we

have
im Q P
b(Q,vg) = Y (1)) N 2R([wp]?)a(P,vp) .
el
[vrle=vq

Theorem A.2 is an easy consequence of the following two lemmas:

LeEMMA A.3 (Langlands). For any standard parabolic subgroups P C R of G
and any H € af, we have

(A.1) 3 (—)ImE 8 (HIQ)7E(H]g) = oF
PCQCR

and

(A.2) 3 (~1)dmCRRE((H))E([H]g) = 8.
PCQCR

LEMMA A4 (Arthur). If T € ait C *ak, the function H — TR(H,T) (resp.
H — TE(H,T)) is the characteristic function of the bounded subset

{Hcall|(a,H) >0, (wa, H) < (wa,T),Ya € AR} C aBF

(resp.
{H e af | (wB H)>0,(a,H) < (a,T),Va € AR} ¢ Talt)

of a.

PROOF OF THEOREM A.2.

Yo > Bel™MbQ o)

eP Q
SCR VQEAPO

[vQlr=vRr
im(a% ~
= > D el Y (e 3w (p)9a(Pve)
ng VQGAgo }iﬁg vpEAR,
[vQlr=vr [vrlo=vrq

= Y ()RR (W) (W E)a(P,vp)
PCQCR yper

lvplr=vr
For fixed vp, we have

S (~D)ERERFR () (vpIE) =

PCQCR
>° ()RR (p) M) (el o) = 0F
PCQCR
where the last equality follows from (A.2) in Lemma A.3. So
Z Z 75([ ] QayQ Z Z §1§a(P7VP):a(R7VR)

Qe 1enf, PEP ypenf,

vQlr=vr [vpPlr=VR
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Now we consider a special case of Theorem A.2. For any P € P, fix np € Z>g
and €&’ € al’* C af such that for any standard parabolic subgroups P C Q of G,

np > ng, (eoQ—e(l)D)|a(})p:07 <eg,av>€Z>0 VaEAg,

where eg = (682 - e{f)|aQ. (Here we use eg instead of 58, which is used in [LR], to
P

avoid confusion with the (55 in Lemma A.3.)
We have the following analogue of [LR, Lemma 2.3]:

LEMMA A.5. For each (Q,vq) € T and each standard parabolic subgroup P C Q
of G, we have

; 1 EQ,QV wa (Vv
P 1 e ) L A
_ lep,a
VPEA?Q QEA}QD 1 t\cp
[vrle=ve

where, for each p € R/Z, {u) € R is the unique representative of the class p such
that 0 < (u) < 1.

Notice that < -,- > denotes the pairing between dual spaces, while < - >
denotes the unique representative in (0, 1] of the class - € R/Z.

ProOOF. Given
vo € AR = X.( ;,0)/ P za",
aEAgO
we choose a representative Xo € X, (Ap,) C ag of vq. Let
S = {X0+ Z mad” ’ma € Z} C X.(Ap,).
aGAIQD
Then the natural projection
P
X.(Ap) = A =X (Ap) | P za¥
aEAﬁO
restricts to a bijection

j:8—=8={vreAp |[vrle =va)

Let
f0) = 3 (R,
vpEAR
[vrlo=vq
Then
F(t) = Z 7L ()R 1p1Y) = Z #eRolvp1?)
vpeS vpESY
where

S, ={vp eS| (@, [Vp]?) >0 Vae AL}
Let S, = j'(S;). Then
§+: {X0+ Z madv

aEA}QD

M € Z,w45(Xo) +ma >0 Va € AL}
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So
) = 3 RN = ST R NR = S T R =R N0
vpESY XeS, XeSy aenl
- 11 Y R @aXotma)
aeAf ma €L

P ws(Xo)+ma>0

Note that (ws,vg) = wa(vg) = wa(Xo) +Z € Q/Z for all a € Ag. As in the
proof of [LR, Lemma 2.3], for p € Z~o and z € R, we have

ST platm) = s
= T ol—tr
zjrnm>0

Thus,
HePa¥ ) (wa(vq))
10=11 =@
aeAg -
O

Set m(P,vp) = np + (¢%,v}). We have now concluded with the following
inversion formula, which is a slightly modified version of [LR, Theorem 2.4].

THEOREM A.6. Given ag : P — A, there exists a unique function by : ¥ — A
which satisfies the relation

- Z Z Tg([”}a]Q)bo(P, yp)tm(Pyv;a)fm(Q,l,fQ)’

PeP P
pcq rEim
[vplo=vaq

for each (Q,vg) € . This function is given by

bO(QayQ) =
Q .V _
Z (_1)dim(ag)a0(P)tnpan( H <1Q v>>.tzaeﬁg(ep,a NHwa(rqQ)) cA,
Fer acag L= HF

for each (Q,vg) € .
A.3. Inversion of the Atiyah-Bott recursion relation

Let C(G,vg) be the space of complex structures on a C* principal G-bundle
over a Riemann surface of genus g > 2 with topological type vg € Ago >~ (G). Let
C**(G,vg) C C(G,vg) be the semi-stable stratum. Let P(G,vg) and PF*(G,vg)
be the G-equivariant Poincaré series of C(G,vg) and C**(G, v¢), respectively. Let
C(G, P,vp) C C(G,vg) be the stratum which corresponds to (P,vp) € T, where
[vple¢ = vg. Then the real codimension m(P,v}) of the stratum C(G, P,vp) is
equal to

2dim(Np)(g — 1) + 4(p%, vp),
where Np is the unipotent radical of P and

pg—f Z aea * C ap.

oz€<I>'GJr

Clearly m(G,vg,) = 0.
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With the above notation, the Atiyah-Bott recursion relation can be stated as
follows:

THEOREM A.7 (Atiyah-Bott). The stratification of M(G,vg) by the M(G, P,vp)
is perfect modulo torsion, so that for the Poincaré series, we have

(A3)  PGuwe)=) Y TE(p T P (Mp,vp).

PcP VPGAED

[vple=va
Note that Theorem A.7 and [LR, Theorem 3.2] are slightly different when G
is not simply connected.
THEOREM A.8 ([LR, Theorem 3.3] ). For any vg € Agﬂ, we have
dim(ag) (1 _|_t2d7:(G)—1)29

1+ t)29\ dim(ag)
PiGve) = ()

In particular, P,(G,vg) does not depend on vg.

Note that in both Theorem A.7 and Theorem A.8, we may replace G by the
Levi component Mp of a parabolic subgroup P.
To invert the recursion relation (A.3), we apply Theorem A.6, with

ao(P) = P,(Mp,vp), bo(P,vp) = PS*(Mp,vp), np = 2dim(Np)(g—1), €& = 4p%.
We obtain

THEOREM A.9. For any vg € AG, , we have

PtSS(G,VG) -
: P

dim(a$) (1 + t)29 dim(ap) dim(ag ) (1 i t2di(MP)*1)29

Pz;(—l) (ﬁ) ( 1_[1 (1 — 2di(Mr)—2)(1 — tgdi(MP)))
€ i
i 1 G oV (v
.t2d1m(NP)(g—1)( H W){l aeAg<pP’ ) (va)) c Q(t)
aEAG o

This is exactly Theorem 4.4.
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