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The Radial Potential Problem and Newton’s Method

Here we treat a problem more general than Kepler’s problem, defined instead
by the system

ẍ = −ϕ(I)x, ÿ = −ϕ(I)y, (6)

where I = x2 + y2 and ϕ is an arbitrary real function. The Kepler problem
corresponds to the particular case ϕ(I) = I−3/2.

We shall reduce this problem to quadrature. The specific features of Kepler’s
problem will appear only in the process of quadrature.

In order to justify our use of the term “radial potential problem,” we note that
the “force field” which defines the system (6) may be characterized by any two
of the following three properties, which in turn imply the third property:

i) The force field is invariant under rotations of the plane that fix the origin

ii) The force is central

iii) The force field is derived from a potential

Property (ii) signifies that the force is directed toward (or away from) the origin.
Property (iii) signifies that there exists a function whose field of gradient vectors
is the force field. When the force field is that of system (6), this function
may be written − 1

2Φ(I), where Φ denotes a primitive of the function ϕ. In
the Kepler problem, we choose the homogeneous primitive Φ(I) = −2I−1/2 of
ϕ(I) = I−3/2.

In order to solve (6), we note the following three properties.

i) The isometries of the plane fixing (0, 0) form a symmetry group of (6). That
is, the transformation

(
x ẋ
y ẏ

)
�−→

(
a b
a′ b′

) (
x ẋ
y ẏ

)

sends any solution of (6) onto a solution of (6) provided a2 + b2 = a′2 + b′2 = 1
and aa′ + bb′ = 0.

ii) The quantity C = xẏ − yẋ is a first integral of system (6).

iii) The quantity H = 1
2

(
ẋ2 + ẏ2 +Φ(I)

)
, the energy, is a first integral of system

(6).

We also note that the first integrals H and C2 are invariant under the isometries
(i), and are functionally independent. We can already foresee that the reduction
process we are about to use will lead us to an autonomous system of order one.
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The reduction takes place in three stages, one for each of the ingredients (i), (ii),
and (iii). We may choose the order of the stages. We begin by using (i) to reduce
the order by one. We choose three independent functions of (x, y, ẋ, ẏ) ∈ IR4

invariant under the action of the group. The most natural choices are I =
x2 + y2, J = xẋ + yẏ and K = ẋ2 + ẏ2. Upon calculating the derivative and
replacing ẍ and ÿ by the right-hand sides of (6), we obtain:

İ = 2J, J̇ = K − Iϕ(I), K̇ = −2Jϕ(I). (7)

This is the system of order three that we sought. Some remarks will serve to
clarify its status.

The classical treatises on Lagrangian mechanics describe the preceding reduction
in terms of ignorable variables. Consider the angle θ such that x =

√
I cos θ

and y =
√

I sin θ. On suitable open sets, the transformation (x, y, ẋ, ẏ) �→
(I, J, K, θ) is a smooth change of variables. System (6) is transformed into the
three equations (7) and the equation

θ̇ =
C

I
. (8)

The angle θ is “ignorable” because it does not appear in the right-hand sides
above; we may study system (7) while ignoring θ. Once an explicit solution of
(7) is found, we may deduce a family of solutions of (6) from it by integrating
dθ = Cdt/I, thereby introducing a constant of integration.

To this classical presentation, we prefer an explanation in terms of the quotient
space, which has the advantage of not introducing an angle θ which is subse-
quently ignored. In (x, y, ẋ, ẏ)-space, let us visualize the orbits of the action of
the group of isometries (i), not to be confused with the orbits of the system
which we ultimately seek to describe. Except for degeneracies, these are topo-
logically pairs of circles in the space IR4, because the group of plane isometries
is topologically a pair of circles. We may check that C is positive on one circle
and negative on the other, and that the degeneracies are characterized precisely
by the equation C = 0. To give meaning to system (7), it is enough to note that
a triple (I, J, K) characterizes one of these orbits. The system thus describes
motion in a new, three-dimensional space whose “points” are the pairs of circles
above. This is the quotient space.

We continue to reduce the order. The quantities H and C2 are first integrals of
system (7). We have

2H = K + Φ(I) and C2 = IK − J2. (9)

From the geometric standpoint, this remark achieves the reduction to order
one: these two equations define curves in (I, J, K)-space which are invariant
under system (7) and on which this system induces an autonomous differential
equation of order one.
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In preparation for quadrature, one ordinarily writes this differential equation
explicitly by eliminating J and K. By eliminating K from (9), we obtain

C2 + J2 = −IΦ(I) + 2HI , (10)

which may be solved for J . Then system (7) becomes the autonomous differen-
tial equation

İ = ±2
√
−IΦ(I) + 2HI − C2. (11)

This is the form of the equation we expected. However, we shall put (11) aside
to avoid entering into considerations of the appropriate sign in front of the
square root. We prefer to work with (10), since it more faithfully represents
the geometry and topology of curves in (I, J, K)-space: a closed curve does not
lend itself to parametrization by one of the three coordinates. Having made this
remark, we are ready to present a good algorithm for integrating system (6).

i) Choose a quadruple (x0, y0, ẋ0, ẏ0) of initial conditions and an initial time t0.
Calculate H and C. Calculate the initial values I0, J0, and θ0 of the variables
I, J , and the angle θ.

ii) Consider the curve (10) in the (I, J)-plane. It contains the initial point
(I0, J0). Now move along this curve, in other words choose a parameter w and
a path (Iw, Jw) which describes the curve. We take w = 0 at the initial point.

iii) Integrate along this path the following two differential forms (which are
smooth on the curves (10) thanks to the symmetry J �→ −J of the curves):

dt =
dr

ṙ
=

rdr

rṙ
=

dI

2J
and dθ = θ̇dt =

Cdt

r2
=

CdI

2IJ
. (12)

In this way we obtain the functions tw and θw of the parameter w.

iv) Now return to the original variables. The quintuple (xw , yw, ẋw, ẏw, tw) is
a function of the parameter w. We may consider w as a function of t since dt
does not vanish.

Bernoulli’s Method for the Particular Case of 1/r2-Attraction

When ϕ(I) = I−3/2, equation (10) becomes

C2 + J2 = 2
√

I + 2HI (13)

We arrive to a rational equation by setting r =
√

I or ρ = 1/
√

I.

i) The variable r and the eccentric anomaly u. We call the curve described by
J2 = 2Hr2 + 2r − C2 the first auxiliary conic. We set

k2 = 1 + 2HC2. (14)

The condition k2 ≥ 0 is equivalent to the existence of a real point on this conic
section, or to the existence of a real point in the intersection of the conic section
and the half-plane r > 0. We distinguish three possibilities: H < 0, H = 0,
or H > 0. The particular case C = 0 is notable only for the following reason:
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the conic section contains a point such that r = 0. We restrict ourselves to
the case H < 0, where the auxiliary conic is an ellipse entirely contained in the
half-plane r ≥ 0. We set

a = − 1
2H

(15)

and we introduce the trigonometric parametrization of the auxiliary ellipse by
the angle u, called the eccentric anomaly:

r = a(1 − k cosu), J = k
√

a sin u. (16)

We obtain

dt = r
√

a du = a3/2(1 − k cosu)du and dθ =
C du√

a(1 − k cosu)
. (17)

The first equation immediately gives Kepler’s equation

a−3/2(t − t0) = u − k sin u. (18)

To integrate the second equation, it is enough to use a rational parametrization
of the ellipse, in other words, to take as the new variable tan(u/2), which leads
us to introduce a new angle v, depending on u through the formula

tan
u

2
=

√
1 − k

1 + k
tan

v

2
.

We shall be led to this angle in the following section (ii), where we will prefer
the variable ρ = 1/r to the variable r at the outset. The hypothesis H < 0 will
not be necessary.

ii) The variable ρ and the true anomaly v. We multiply both sides of (13) by
ρ2 and we note that it is convenient to use the variable ṙ as the ordinate rather
than J = rṙ. There remains ṙ2 = 2H + 2ρ− C2ρ2. This second auxiliary conic
possesses a real point if and only if k2 = 1+2HC2 ≥ 0. It is an ellipse provided
C is nonzero, with trigonometric parametrization:

ρ =
1 + k cos v

C2
, ṙ =

k sin v

C
. (19)

We obtain

dt =
C3

(1 + k cos v)2
dv and dθ = dv.

The first quadrature is difficult this time, but the second is miraculously simple:

θ − θ0 = v. (20)

iii) Synthesis. Equation (20) makes v into a polar angle. The first equation
(19) is thus the equation of a conic section with eccentricity k. The angle θ0

indicates the direction of the pericenter: r is minimal for θ = θ0.
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Classically, one introduces three anomalies, defined as angles starting from the
pericenter, and distinguished from the longitudes, which are angles starting from
a fixed direction. Thus v is the true anomaly and θ the true longitude. The
angle l = a−3/2(t−t0), appearing on the left-hand side of Kepler’s equation (18),
is called the mean anomaly. Lastly, we have introduced the eccentric anomaly
u, the trigonometric parametrization of the first auxiliary ellipse. It remains to
see that it is also a trigonometric parametrization of the trajectory ellipse. This
is easily deduced from the following proposition.

9. Proposition. Suppose the eccentricity k is nonzero. Let ξ = r cos v and
η = r sin v be the coordinates of the body in a frame having the fixed center as
its origin and the direction of the pericenter as the ξ-axis. The affine transfor-
mation (r, J) �→ (ξ, η) = k−1(C2− r, CJ) takes the first auxiliary conic onto the
trajectory while preserving the time parametrization.

Figure. An elliptic trajectory and its first auxiliary conic

Proof. We multiply by r both equations (19). The first gives r = −kξ +C2, the
second J = kη/C.

To give the trigonometric parametrization explicitly in the case of an ellipse
of semi-major axis a, we use the system (16), taking into account the relation
C2 = a(1 − k2) which we deduce from (14) and (15). We obtain

ξ = a(cosu − k), η = a
√

1 − k2 sinu. (21)

Choosing the pericenter as the origin, rather than the apocenter, is justified—
for example in Gauss’s Theoria Motus—by the absence of an apocenter in the
case of hyperbolic motion. The choice of the pericenter is thus required for the
true anomaly, and is extended to the other anomalies. The eccentric anomaly
is specific to the ellipse, and does not continue through H = 0. However it has
an exact analog for H > 0. In the formulas it suffices to replace the sin and cos
by sinh and cosh, the

√
a by

√−a, and finally the a3/2 by a
√−a.
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