
CHAPTER 8

Introduction to Banach Spaces and Lp Space

1. Uniform and Absolute Convergence

As a preparation we begin by reviewing some familiar properties of Cauchy sequences and
uniform limits in the setting of metric spaces.

Definition 1.1. A metric space is a pair (X, ⇢), where X is a set and ⇢ is a real-valued function
on X ⇥X which satisfies that, for any x, y, z 2 X,

(a) ⇢(x, y) � 0 and ⇢(x, y) = 0 if and only if x = y,
(b) ⇢(x, y) = ⇢(y, x),
(c) ⇢(x, z)  ⇢(x, y) + ⇢(y, z). (Triangle inequality)

The function ⇢ is called the metric on X.

Any metric space has a natural topology induced from its metric. A subset U of X is said to
be open if for any x 2 U there exists some r > 0 such that Br(x) ⇢ U . Here Br(x) = {y 2 X :
⇢(x, y) < r} is the open ball of radius r centered at x. It is an easy exercise to show that open balls
are indeed open and the collection of open sets is indeed a topology, called the metric topology.

Definition 1.2. A sequence {xn} in a metric space (X, ⇢) is said to be a Cauchy Sequence if

8" > 0, 9N 2 N such that ⇢(xn, xm) < " whenever n,m � N .

The metric space (X, ⇢) is said to be complete if every Cauchy sequence is convergent.

Definition 1.3. Let (X, ⇢) be a metric space. For any nonempty set A ⇢ X, the diameter of
the set A is defined by

diam(A) = sup{⇢(x, y) : x, y 2 A}.
The set A is said to be bounded if its diameter is finite. Otherwise, we say it is unbounded.

Let S be a nonempty set. We say a function f : S ! X is bounded if its image f(S) is a bounded
set. Equivalently, it is bounded if for any x 2 X, there exists M > 0 such that ⇢(f(s), x)  M for
any s 2 S. We say f is unbounded if it is not bounded.

Definition 1.4. Given a sequence {fn} of functions from nonempty set S to metric space
(X, ⇢). We say {fn} converges pointwise to a function f : S ! X if limn!1 fn(s) = f(s) for any
s 2 S; that is,

8 s 2 S, 8 " > 0, 9 Ns 2 N such that ⇢(fn(s), f(s)) < ", 8 n � Ns.

In this case, the function f is called the pointwise limit.
We say {fn} converges uniformly to a function f : S ! X if the above Ns is independent of s;

that is,
8 " > 0, 9 N 2 N such that ⇢(fn(s), f(s)) < ", 8 n � N, 8 s 2 S.

The function f is called the uniform limit of {fn}.
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The next two theorems highlight some important features of Cauchy sequences and uniform
convergence.

Theorem 1.1. (Cauchy Sequences) Consider sequences in a metric space (X, ⇢).

(a) Any convergent sequence is a Cauchy sequence.

(b) Any Cauchy sequence is bounded.

(c) If a subsequence of a Cauchy sequence converges, then the Cauchy sequence converges to

the same limit.

Proof. (a) Suppose {xn} converges to x. Given " > 0, there is an N 2 N such that ⇢(xn, x) <
"/2 for any n � N . The sequence {xn} is Cauchy because

⇢(xn, xm) < ⇢(xn, x) + ⇢(x, xm) < " for any n,m � N.

(b) Let {xn} be a Cauchy sequence. Choose N 2 N such that ⇢(xn, xm) < 1 for all n,m � N .
Then for any x 2 X,

⇢(xn, x)  ⇢(xn, xN ) + ⇢(xN , x)

< max{⇢(x1, xN ), ⇢(x2, xN ), · · · , ⇢(xN�1, xN ), 1}+ ⇢(xN , x),

where the last equation is a finite bound independent of n.
(c) Let {xn} be a Cauchy sequence with a subsequence {xnk} converging to x. Given " > 0,

choose K, N 2 N such that

⇢(xnk , x) <
"

2
for any k � K,

⇢(xn, xm) <
"

2
for any n,m � N.

Taking nk such that k � K and nk � N , then

⇢(xn, x)  ⇢(xn, xnk) + ⇢(xnk , x) < " for any n � N.

This shows that {xn} converges to x. ⇤
Theorem 1.2. (Uniform Convergence) Given a sequence of functions {fn} from a nonempty

set S to a metric space (X, ⇢). Suppose {fn} converges uniformly to a function f : S ! X.

(a) If each fn is bounded, then so is f .
(b) Assume S is a topological space, E ⇢ S. If each fn is continuous on E, then so is f .

Proof. (a) Choose N 2 N such that ⇢(f(s), fn(s)) < 1 for any n � N and s 2 S. Given x 2 X,
choose M > 0 such that ⇢(fN (s), x) < M for any s 2 S. Then f is bounded since

⇢(f(s), x)  ⇢(f(s), fN (s)) + ⇢(fN (s), x)  1 +M for any s 2 S.

(b) Given " > 0, e 2 E. Choose N 2 N such that ⇢(f(s), fn(s)) < "/3 for any n � N and
s 2 S. For this particular N , fN is continuous at e, and so there is a neighborhood U of e such that
⇢(fN (e), fN (u)) < "/3 whenever u 2 U . Then

⇢(f(e), f(u))  ⇢(f(e), fN (e)) + ⇢(fN (e), fN (u)) + ⇢(fN (u), f(u)) < " 8u 2 U.

Therefore f is continuous at e, and is continuous on E since e 2 E is arbitrary. ⇤
Definition 1.5. A vector space V over field F is called a normed vector space (or normed space)

if there is a real-valued function k · k on V , called the norm, such that for any x, y 2 V and any
↵ 2 F,
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(a) kxk � 0 and kxk = 0 if and only if x = 0.
(b) k↵xk = |↵|kxk.
(c) kx+ yk  kxk+ kyk. (Triangle inequality)

A norm k · k of V defines a metric ⇢ on V via ⇢(x, y) = kx� yk. All concepts from metric and
topological spaces are applicable to normed spaces.

There are multiple ways of choosing norms once a norm is selected. A trivial one is to multiply
the original norm by a positive constant. Concepts like neighborhood, convergence, boundedness,
and completeness are independent of the choice of these two norms, and so we shall consider them
equivalent norms. A more precise characterization of equivalent norms is as follows.

Definition 1.6. Let V be a vector space with two norms k · k, k · k0. We say these two norms
are equivalent if there exists some constant c > 0 such that

1

c
kxk0  kxk  ckxk0 for any x 2 V .

Example 1.1. The Euclidean space Fd, F = R or C, with the standard norm k · k defined by

kxk = (|x1|2 + · · ·+ |xd|2)
1
2

is a normed space. Now consider two other norms of Fd defined by

kxk1 = max{|x1|, · · · , |xd|}, called the sup norm;

kxk1 = |x1|+ · · ·+ |xd|, called the 1-norm.

Verifications for axioms of norms are easy exercises.
In the case of sup norm, “balls” in Rd are actually cubes in Rd with faces parallel to coordinate

axes. In the case of 1-norm, “balls” in Rd are cubes in Rd with vertices on coordinate axes. These
norms are equivalent since

kxk1  kxk  kxk1  dkxk1.

Definition 1.7. A complete normed vector space is called a Banach space.

Example 1.2. Consider the Euclidean space Fd, F = R or C, with the standard norm k ·k. The
normed space (Rd, k · k) is complete since every Cauchy sequence is bounded and every bounded
sequence has a convergent subsequence with limit in Rd (the Bolzano-Weierstrass theorem). The
spaces (Rd, k · k1) and (Rd, k · k1) are also Banach spaces since these norms are equivalent.

Example 1.3. Given a nonempty set X and a normed space (Y, k · k) over field F. The space
of functions from X to Y form a vector space over F, where addition and scalar multiplication are
defined in a trivial manner: Given two functions f , g, and two scalars ↵, � 2 F, define ↵f + �g by

(↵f + �g)(x) = ↵f(x) + �g(x), x 2 X.

Let b(X,Y ) be the subspace consisting of bounded functions from X to Y . Define a real-valued
function k · k1 on b(X,Y ) by

kfk1 = sup
x2X

kf(x)k.

It is clearly a norm on b(X,Y ), also called the sup norm. Convergence with respect to the sup norm
means uniform convergence.

If (Y, k · k) is a Banach space, then any Cauchy sequence {fn} in b(X,Y ) converges pointwise
to some function f : X ! Y , since {fn(x)} is a Cauchy sequence in Y for any fixed x 2 X. In
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fact, the convergence fn ! f is uniform. To see this, let " > 0 be arbitrary. Choose N 2 N such
that kfn � fmk1 < "/2 whenever n,m � N . For any x 2 X, there exists some mx � N such that
kfmx(x)� f(x)k < "/2. Then for any n � N ,

kfn(x)� f(x)k  kfn(x)� fmx(x)k+ kfmx(x)� f(x)k < ".

This proves that the convergence fn ! f is uniform. By Theorem 1.2(a), f 2 b(X,Y ), and so the
space b(X,Y ) with the sup norm is a Banach space.

Example 1.4. Let (X, T ) be a topological space and let (Y, k · k) be a Banach space over
F = R or C. Denote by C(X,Y ) the space of continuous functions from X to Y . Let Cb(X,Y ) =
C(X,Y ) \ b(X,Y ), the space of bounded continuous functions from X to Y . Given any sequence
{fn} in Cb(X,Y ) which converges uniformly to f 2 b(X,Y ). By Theorem 1.2(b), f 2 Cb(X,Y ).
This shows that Cb(X,Y ) is a closed subspace of b(X,Y ). Note that a subspace of a Banach space
is complete if and only if it is closed (see Exercise 1.1), so Cb(X,Y ) is Banach space.

Definition 1.8. A series
P

1

k=1 ak in a normed space X is said to be convergent (or summable)
if its partial sum

P
n

k=1 ak converges to some s 2 X as n ! 1. We say
P

1

k=1 ak is absolutely

convergent (or absolutely summable) if
P

1

k=1 kakk < 1.

In the following we prove some useful criteria for completeness and uniform convergence of series.

Theorem 1.3. A normed space X is complete if and only if every absolutely convergent series

is convergent.

Proof. Suppose X is complete,
P

1

k=1 ak is absolutely convergent. We need to show the conver-
gence of sn =

P
n

k=1 ak. Given " > 0, choose N 2 N such that
P

1

k=N
kakk < ", then ksn � smk < "

whenever n,m � N . Thus {sn}1n=1 is a Cauchy sequence, and so it converges.
Conversely, suppose every absolutely convergent series in X converges. Let {sn}1n=1 be a Cauchy

sequence in X. By Theorem 1.1 it su�ces to show that {sn}1n=1 has a convergent subsequence
{snk}1k=1. Now choose nk such that

nk < nk+1,
��snk � snk+1

�� <
1

2k
for any k 2 N.

Then the series sn1 +
P

1

k=1

�
snk+1 � snk

�
converges absolutely, so that it converges to some s 2 X.

This implies that snk = sn1+
P

k�1
j=1

�
snj+1 � snj

�
converges to s as k ! 1, completing the proof. ⇤

Corollary 1.4. (Weierstrass M-test)

Let b(X,Y ) be the space bounded functions from a nonempty set X to a Banach space (Y, k · k).
Given a sequence of functions {fn}1n=1 in b(X,Y ). If kfnk1  Mn for any n 2 N and

P
1

n=1Mn

converges, then
P

1

n=1 fn converges uniformly.

Proof. The assumption says that
P

1

n=1 fn is absolutely convergent. By Theorem 1.3 (and
Example 1.3), the series converges in b(X,Y ), implying that the convergence is uniform. ⇤

Exercises.

1.1. Show that a subset of a complete metric space is complete if and only if it is closed.

1.2. Let ⌃2 = {0, 1}N, the space of infinite sequences of {0, 1}; that is,
⌃2 = {(a1, a2, ...) : ak = 0 or 1 for each k}.
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Given � > 1, a, b 2 ⌃2, let

⇢�(a, b) =
1X

k=1

|ak � bk|
�k

.

Show that (⌃2, ⇢�) is a complete metric space.

1.3. Consider the space of real sequences s. Let

⇢(a, b) =
1X

k=1

|ak � bk|
2k(1 + |ak � bk|)

.

Show that (s, ⇢) is a complete metric space.

1.4. Show that all norms in Fd, F = R or C, are equivalent. Consequently, Fd with any norm is
complete.

1.5. Consider the space C0[a, b] \ Ck(a, b), k 2 N, and let

kfkCk = kfk1 + kf 0k1 + kf 00k1 + · · ·+ kf (k)k1.

Show that (C0[a, b] \ Ck(a, b), k · kCk) is a Banach space.

1.6. Consider the space BV [a, b] of functions on [a, b] with bounded variations. Let

kfkBV = |f(a)|+ V b

a (f).

Show that (BV [a, b], k · kBV ) is a Banach space.

2. The `p Space

Definition 2.1. Let F = R or C. Given 0 < p < 1, define

`p = {a = (a1, a2, · · · ) : ak 2 F for any k,
X

k

|ak|p < 1}, kakp =
 
X

k

|ak|p
! 1

p

,

`1 = {a = (a1, a2, · · · ) : ak 2 F for any k, sup
k

|ak| < 1}, kak1 = sup
k

|ak|.

The space `1 consists of bounded sequences in F. Addition and multiplication of sequences are
defined componentwise:

(a1, a2, · · · ) + (b1, b2, · · · ) = (a1 + b1, a2 + b2, · · · )
(a1, a2, · · · ) · (b1, b2, · · · ) = (a1b1, a2b2, · · · ).

Clearly `p with any 0 < p  1 is a vector space, since k↵akp = |↵|kakp for any ↵ 2 F and

a, b 2 `p )
X

k

|ak + bk|p 
X

k

(2max{|ak|, |bk|})p  2p
X

k

(|ak|p + |bk|p) < 1,

a, b 2 `1 ) sup
k

|ak + bk|  sup
k

|ak|+ sup
k

|bk| < 1.

.

Theorem 2.1. (Young’s inequality) Given u, v � 0, 1 < p, q < 1 with
1
p
+ 1

q
= 1. Then

uv  up

p
+

vq

q
.
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Proof. It is convenient to write q = p

p�1 (q = 1 if p = 1, q = 1 if p = 1). The curve y = xp�1

can be alternatively written x = yq�1. The desired inequality follows easily by observing

U =

Z
u

0
xp�1dx =

up

p
, V =

Z
v

0
yq�1dy =

vq

q
, U + V � uv.

⇤
Theorem 2.2. Given 1  p, q  1 with

1
p
+ 1

q
= 1. Let a, b be sequences of complex numbers.

(a) (Hölder’s Inequality for `p) If a 2 `p, b 2 `q, then ab 2 `1 and

kabk1  kakpkbkq.

(b) (Minkowski’s Inequality for `p)

ka+ bkp  kakp + kbkp.

Proof. In (a), the cases p = 1, q = 1 and p = 1, q = 1 are obvious. Consider 1 < p, q < 1.
The cases kakp = 0 or kbkq = 0 are also obvious, so we assume 0 < kakp, kbkq < 1.

Let A = a/kakp, B = b/kbkq. By Young’s inequality,

X

k

|AkBk| 
X

k

✓
|Ak|p
p

+
|Bk|q
q

◆
=

kAkpp
p

+
kBkqq
q

=
1

p
+

1

q
= 1,

kabk1 =
X

k

|akbk| = kakpkbkq
X

k

|AkBk|  kakpkbkq.

The cases p = 1 and p = 1 for (b) are obvious. For 1 < p < 1, (c) follows easily from (b):

ka+ bkpp =
X

k

|ak + bk|p


X

k

|ak + bk|p�1|ak|+
X

k

|ak + bk|p�1|bk|


 
X

k

|ak + bk|p
! p�1

p
 
X

k

|ak|p
! 1

p

+

 
X

k

|ak + bk|p
! p�1

p
 
X

k

|bk|p
! 1

p

= ka+ bkp�1
p (kakp + kbkp).

Thus ka+ bkp  kakp + kbkp. ⇤

When 1  p, q  1, 1
p
+ 1

q
= 1, we say p, q are conjugate exponents. It follows from Hölder’s

inequality that (`p, k · kp) is a normed space when 1  p  1.

Theorem 2.3. For any 1  p  1, (`p, k · kp) is a Banach space.

Proof. Completeness of `1 is a special case of Example 1.3. Consider 1  p < 1. Let

{a(n)}1
i=1 be a Cauchy sequence in `p. For each k, {a(n)

k
}1
n=1 is a Cauchy sequence in F since

���a(n)
k

� a(m)
k

��� 

0

@
1X

j=1

|a(n)
j

� a(m)
j

|p
1

A

1
p

=
���a(n) � a(m)

���
p

.
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Then there is a sequence a = (a1, a2, · · · ) such that, for each k,

a(n)
k

! ak 2 R as n ! 1.

Fix arbitrary M 2 N. Given " > 0, there exists some N 2 N such that

 
MX

k=1

���a(n)
k

� a(m)
k

���
p

! 1
p


 

1X

k=1

���a(n)
k

� a(m)
k

���
p

! 1
p

< " 8 n > m � N.

Let m ! 1, then let M ! 1, we find

ka(n) � akp =
 

1X

k=1

���a(n)
k

� ak
���
p

! 1
p

 " for any n � N.

Thus ka(n) � akp ! 0 as n ! 1, and so kakp  ka � a(n)kp + ka(n)kp < 1, a 2 `p. This verifies
completeness of `p. ⇤

Theorem 2.4. The space `p is separable if 1  p < 1, and the space `1 is not separable.

Proof. The space `1 is not separable because it has an uncountable subset

s = {a = (a1, a2, . . .) 2 `1 : an = 0 or 1 8 n}

with ka� bk1 = 1 for any a 6= b 2 s.
Consider 1  p < 1. Let D be the set of finite sequences with rational coordinates. Clearly D

is countable. Given a 2 `p and any " > 0, we can choose N 2 N such that
P

1

k=N+1 |ak|p < "p/2.

Now choose b1, · · · , bN 2 Q such that
P

N

k=1 |ak � bk|p < "p/2. Let b = (b1, · · · , bN , 0, 0, · · · ) 2 D.
Then

ka� bkpp =
1X

k=1

|ak � bk|p =
NX

k=1

|ak � bk|p +
1X

k=N+1

|ak|p < "p.

Thus ka� bkp < ". This shows that D is dense since " > 0 is arbitrary. ⇤

Exercises.

2.1. Consider the `p space with 0 < p < 1. Verify that ⇢p(a, b) =
P

1

k=1 |ak � bk|p is a metric on
`p. Prove that (`p, ⇢p) is a complete separable metric space.

2.2. Show that

xp � 1 + p(x� 1) for any x � 0, p � 1.

Then use it to give an alternative proof for Young’s inequality.

2.3. Prove the following generalization of Young’s inequality: Given 1 < p1, · · · , pn < 1 withP
n

k=1
1
pk

= 1. If u1, · · · , un � 0, then

u1 · · ·un  up11
p1

+ · · ·+ upnn
pn

.

Use it to formulate a generalization of Hölder’s inequality for `p.
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2.4. Consider sequences of real numbers. Show that the space c0 of sequences converging to
zero with sup norm is a Banach space, and for any 1  p < q  1, a 2 `p,

`p ( `q ( c0, kak1  kakq  kakp.
Are these norms on `p equivalent?

2.5. Explain why the set s in the proof of Theorem 2.4 is uncountable.

3. The Lp Space

In this section we consider a space Lp(E) which resembles `p on many aspects. After general
concepts of measure and integral were introduced, we will see that these two spaces can be viewed
as special cases of a more general Lp space.

Definition 3.1. Given a measurable set E ⇢ Rd. For 0 < p < 1, define the space Lp(E) and
the real-valued function k · kp on Lp(E) by

Lp(E) = {f : f is measurable on E and

Z

E

|f |p < 1}, kfkp =
✓Z

E

|f |p
◆ 1

p

.

The essential supremum of a measurable function f on E is defined by

ess sup
E

f = inf{↵ 2 (�1,1] : m({f > ↵}) = 0}.

The space L1(E) and the real-valued function k · k1 on L1(E) are given by

L1(E) = {f : f is measurable on E and ess sup
E

|f | < 1}, kfk1 = ess sup |f |.

Functions in L1(E) are said to be essentially bounded.

The measurable function f in the definition of Lp(E) for 0 < p < 1 can be complex-valued,
but functions in L1(E) are assumed to be real-valued. We leave it to the readers to check that
m({f > ess supE f}) = 0 for any f 2 L1(E) (Exercise 3.1). In other words, f  ess supE f and
|f |  kfk1 almost everywhere.

Being “essentially bounded” is di↵erent from being “bounded” in that the former is regardless
of measure zero sets. For instance, the function

f(x) =

⇢
x3 x 2 Q
sinx x 2 R \Q

is unbounded but essential bounded with ess sup f = 1.
For any 0 < p  1, two functions f1, f2 in Lp(E) are considered equivalent if f1 = f2 almost

everywhere on E. The space of equivalence classes, still denoted by Lp(E), are called Lp(E) classes
or Lp(E) spaces.

Similar to `p, the space Lp(E) is a vector space for any 0 < p  1. Indeed, k↵fkp = |↵|kfkp
for any scalar ↵, k↵fkp = |↵|kfkp and

f, g 2 Lp(E) ) |f + g|p  (2max{|f |, |g|})p  2p(|f |p + |g|p),
f, g 2 L1(E) ) kf + gk1  kfk1 + kgk1.

The second line follows by observing that

|f |  kfk1 a.e.
|g|  kgk1 a.e.

�
) |f + g|  kfk1 + kgk1 a.e.
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When 1  p  1, the function k · kp is a norm on Lp(E). This follows from the theorem below,
the proof for which is similar to that of `p.

Theorem 3.1. Given 1  p, q  1 with
1
p
+ 1

q
= 1. Let f, g be measurable functions on E ⇢ Rd

.

(a) (Hölder’s Inequality for Lp
) If f 2 Lp(E), g 2 Lq(E), then fg 2 L1(E) and

kfgk1  kfkpkgkq.

(b) (Minkowski’s Inequality for Lp
)

kf + gkp  kfkp + kgkp.

Proof. (a) The cases p = 1, q = 1 and p = 1, q = 1 are obvious. Consider 1 < p, q < 1. If
kfkp = 0 or kgkq = 0, then fg = 0 almost everywhere on E, and the asserted inequality is obvious.
We may now assume 0 < kfkp, kgkq < 1.

Let F = f/kfkp, G = g/kgkq. By Young’s inequality,
Z

E

|FG| 
Z

E

|F |p
p

+
|G|q
q

=
kFkpp
p

+
kGkqq
q

=
1

p
+

1

q
= 1,

kfgk1 =

Z

E

|fg| = kfkpkgkq
Z

E

|FG|  kfkpkgkq.

(b) The case p = 1 is obvious, and the case p = 1 has been proved. Now we consider 1 < p < 1.
Note that q = p

p�1 . Minkowski’s inequality follows easily from (a):

kf + gkpp =

Z

E

|f + g|p


Z

E

|f + g|p�1|f |+
Z

E

|f + g|p�1|g|

=

✓Z

E

|f + g|p
◆ p�1

p
✓Z

E

|f |p
◆ 1

p

+

✓Z

E

|f + g|p
◆ p�1

p
✓Z

E

|g|p
◆ 1

p

= kf + gkp�1
p (kfkp + kgkp).

Thus kf + gkp  kfkp + kgkp. ⇤

The special case p = q = 2 of the Hölder inequality is also known as the Cauchy-Schwarz

inequality. The assumption 1  p  1 is necessary. For example, let E = [0, 1], f = �[0, 12 ]
,

g = �[ 12 ,1]
. Then for 0 < p < 1,

kfkp + kgkp =

✓
1

2

◆ 1
p

+

✓
1

2

◆ 1
p

= 21�
1
p < 1 = kf + gkp.

Corollary 3.2. Suppose 0 < p < q < 1, m(E) < 1. Then

✓
1

m(E)

Z

E

|f |p
◆ 1

p


✓

1

m(E)

Z

E

|f |q
◆ 1

q

.

In particular, Lq(E) ⇢ Lp(E).
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Proof. Let r = q

q�p
, then 1

q/p
+ 1

r
= 1. Therefore,

Z

E

|f |p 
✓Z

E

(|f |p)
q
p

◆ p
q
✓Z

E

1r
◆ 1

r

=

✓Z

E

|f |q
◆ p

q

m(E)
q�p
q .

Then the corollary follows from

kfkp =

✓Z

E

|f |p
◆ 1

p

 kfkq m(E)
q�p
qp = kfkq m(E)

1
p�

1
q .

⇤
Corollary 3.3. Suppose 0 < p < r < q < 1. Then Lp(E) \ Lq(E) ⇢ Lr(E).

Proof. Given f 2 Lp(E) \ Lq(E). Let r = ✓p+ (1� ✓)q, ✓ 2 (0, 1). Then

|f |✓p 2 L1/✓(E), |f |(1�✓)q 2 L1/(1�✓)(E).

Apply Hölder’s inequality with conjugate exponents 1/✓, 1/(1� ✓), we find
Z

E

|f |r =

Z

E

|f |✓p |f |(1�✓)q


✓Z

E

|f |p
◆

✓
✓Z

E

|f |q
◆1�✓

Thus f 2 Lr(E). ⇤
Example 3.1. Consider f(x) = xr, r 6= 0, defined on [0,1).

r < 0 ) f 2 Lp[1,1) if and only if p > �1/r,

f 2 Lp(0, 1) if and only if 0 < p < �1/r.

r > 0 ) f /2 Lp[1,1) for any p > 0,

f 2 Lp(0, 1) for any p > 0.

This example shows that the assumption m(E) < 1 is necessary in the above corollary, and
Lq(E) ( Lp(E) if 0 < p < q < 1 and E = (0, 1).

Obviously, L1(E) ⇢ Lp(E) when m(E) < 1. The inclusion is generally proper. To see this,
consider the function g(x) = log x, it belongs to Lp(0, 1) for any 0 < p < 1 but it is not in L1(0, 1).

Theorem 3.4. (Riesz-Fisher) For any 1  p  1, the space (Lp(E), k ·kp) is a Banach space.

Proof. Consider p = 1 first. Note that convergence in L1(E) means uniform convergence
outside a set of measure zero.

Let {fn} be a Cauchy sequence in L1(E). For each n,m 2 N, |fn � fm|  kfn � fmk1 except
on a set Zn,m of measure zero. Let Z =

S
n,m2N

Zn,m, then Z has measure zero and

|fn � fm|  kfn � fmk1 on E \ Z
In particular, for any x 2 E \ Z, {fn(x)} converges. Let f(x) = limn!1 fn(x) for x 2 E \ Z and
set f(x) = 0 on Z. Then (similar to arguments in Example 1.3)

fn ! f uniformly on E \ Z.
This implies that fn converges to f in L1(E), and so L1(E) is complete.
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Now we consider 1  p < 1. By Theorem 1.3, we only have to show that every absolutely
convergent series converges to some element in Lp(E).

Let
P

1

k=1 fk be an absolutely convergent series. Then
P

1

k=1 kfkkp = M is finite. Let

gn =
nX

k=1

|fk|, sn =
nX

k=1

fk.

By Minkowski’s inequality, kgnkp 
nP

k=1
kfkkp  M . Thus

R
E
gpn  Mp for any n. For any x 2 E,

the function gn(x) is increasing in n, and so gn converges pointwise to some function g : E ! [0,1].
The function g is measurable and, by Fatou’s lemma,

Z

E

gp  lim inf
n!1

Z

E

gpn  Mp.

Therefore g is finite almost everywhere and g 2 Lp(E). When g(x) is finite,
P

1

k=1 fk(x) is absolutely
convergent. Let s(x) be its value, and set s(x) = 0 elsewhere. Then the function s is defined
everywhere, measurable on E, and

nX

k=1

fk = sn ! s almost everywhere on E.

Since |sn(x)|  g(x) for all n, we have |s(x)|  g(x), where hence s 2 Lp(E) and |sn(x) � s(x)| 
2g(x) 2 Lp(E). By the Lebesgue dominated convergence theorem,

Z

E

|sn � s|p ! 0 as n ! 1.

This proves that
P

1

k=1 fk converges to s 2 Lp(E), and thus proves completeness of Lp(E). ⇤

Theorem 3.5. If 1  p < 1, then Lp(E) is separable.

Proof. Consider E = Rd. Consider the collection of dyadic cubes; namely, consider cubes of
the form [k1, k1 + 1]⇥ . . .⇥ [kd, kd + 1], k1 . . . , kd 2 Z, bisect each of these cubes into 2d congruent
subcubes, and repeat this process. Let D be the set of finite linear combinations of characteristic
functions on these dyadic cubes with rational coe�cients. Clearly D is countable. We need to show
that its closure D is exactly Lp(Rd).

It follows easily from Minkowski’s inequality that D is a linear subspace of Lp(Rd). Any char-
acteristic function �O on bounded open set O belongs to D since it can be expressed

P
1

k=1 �ck a.e.
for some dyadic cubes ck.

Given bounded measurable set E, choose bounded open sets Ok � E such that m(On\E) < 1/n
for each n, then by the Lebesgue dominated convergence theorem

Z

Rd
|�Ok � �E |p ! 0 as k ! 1.

Therefore �E 2 D, then so are simple functions
P

N

k=1 ak�Ek with bounded measurable Ek’s. This
includes all nonnegative simple functions with compact supports.

For any nonnegative f 2 Lp(Rd), choose an increasing sequence {fn} of nonnegative simple
functions with compact supports such that fn % f as n ! 1. By the monotone convergence
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theorem, Z

Rd
|fn � f |p ! 0 as n ! 1.

Therefore f 2 D. This implies D = Lp(Rd) since any function in Lp(Rd) is the di↵erence of two
nonnegative functions in Lp(Rd).

Now consider arbitrary measurable set E ⇢ Rd. Let D0 = {g · �E : g 2 D}. Then D0 is a
countable set consisting of finite linear combinations of characteristic functions on dyadic cubes
which intersect with E and with rational coe�cients.

Given f 2 Lp(E). Let f̃ = f on E, f̃ = 0 on Rd\E. Choose {fk} ⇢ D such that
R
Rd |fk�f̃ |p ! 0

as k ! 1. Then Z

E

|fk · �E � f |p 
Z

Rd
|fk � f̃ |p �! 0 as k ! 1.

This proves that D0 is dense in Lp(E). ⇤

Given h 2 Rd. Let ⌧hf(x) = f(x + h) be the translation operator. Similar to the case L1(Rd),
we have continuity of variable translations with respect to k · kp:

Theorem 3.6. If 1  p < 1 and f 2 Lp(Rd), then

lim
h!1

k⌧hf � fkp = 0.

Proof. Let C be the collection of Lp(Rd) functions satisfying this property. It follows easily
from the Minkowski inequality that it is a linear subspace of Lp(Rd). Note that C is closed. To see
this, take any sequence {fn} in C which converges to f in Lp(Rd), we have

k⌧hf � fkp  k⌧hf � ⌧hfnkp + k⌧hfn � fnkp + kfn � fkp
 k⌧hfn � fnkp + 2kf � fnkp.

Let h ! 0, then let n ! 1, we find that lim suph!0 k⌧hf � fkp = 0, so f 2 C.
We proceed as the proof of the previous theorem. Clearly characteristic functions on cubes are

in C, so characteristic functions on bounded measurable sets are also in C, then it follows that simple
functions with compact supports are in C as well.

Suppose f 2 Lp(Rd) is nonnegative. Choose nonnegative simple functions fn with compact
supports such that fn % f as n ! 1. Then fn 2 Lp(Rd) and, by the monotone convergence
theorem, kfn�fkp ! 0 as n ! 1. Therefore f 2 C. This implies C = Lp(Rd) since any f 2 Lp(Rd)
is the di↵erence of two nonnegative measurable functions in Lp(Rd). ⇤

Remark 3.1. Theorem 3.6 is false for p = 1. This can be easily seen by considering, for
example, the characteristic function on the unit ball.

Exercises.

3.1. Given any f 2 L1(E). Show that m({f > ess supE f}) = 0.

3.2. Use the generalized Young’s inequality in Exercise 2.3 to formulate a generalization of
Hölder’s inequality for Lp(E).

3.3. Suppose m(E) < 1. Show that kfk1 = limp!1 kfkp. How about if m(E) = 1?
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3.4. Let f be a real-valued measurable function on E, m(E) > 0. Define the essential infimum

on E by
ess inf

E

f = sup{↵ 2 (�1,1] : m({f < ↵}) = 0}.

Show that, if f � 0, then ess infE f = 1/ ess supE(1/f).

3.5. Consider Lp(E) with 0 < p < 1. Verify that ⇢p(f, g) =
R
E
|f � g|p is a metric on Lp(E).

Prove that (Lp(E), ⇢p) is a complete separable metric space.

3.6. Given 1  p < 1, fn, f 2 Lp(E). Suppose fn converges to f almost everywhere. Prove
that each of the following conditions implies kfn � fkp ! 0 as n ! 1.

(a) There exists some g 2 Lp(E) such that |fn|  g for any n.
(b) kfnkp ! kfkp as n ! 1.

3.7. For what kind of f 2 Lp(E) and g 2 Lq(E), 1
p
+ 1

q
= 1, do we have equality for the Hölder

inequality? For what kind of f, g 2 Lp(E) do we have equality for the Minkowski inequality?

3.8. Given 0 < p < q < 1, f 2 Lp(E)\Lq(E). From Corollary 3.3 we know f 2 Lr(E) for any
r 2 (p, q). Show that kfkr as function of r is absolutely continuous on any compact subinterval of
(p, q). This implies, in particular, that this function is di↵erentiable a.e. on (p, q).

3.9. Consider 1 < p < 1. Give a proof for the Minkowski inequality using convexity of xp, and
without using Hölder’s inequality.

3.10. Show that L1(E) is not separable whenever m(E) > 0.

4. Dense Subspaces of Lp

In the proof of Theorem 3.5 we constructed a countable collection of step functions which is
dense in Lp(E). These step functions are linear combinations of characteristic functions on some
dyadic cubes. This implies that the space of simple functions is also dense in Lp(Rd). In this section
we prove that the space of smooth functions with compact supports, and the space of functions with
rapidly decreasing derivatives are also dense in Lp(Rd).

Let us begin by recalling that (L1(Rd), ⇤) is a commutative algebra without identity, but there
are “good kernels” {K�} which approximate the identity in the sense that, for any f 2 L1(Rd),

f ⇤K� ! f a.e. and kf ⇤K� � fk1 ! 0 as � & 0.

For example, kernels satisfying the following conditions are approximations to the identity:

(1)
R
K� = 1 for any � > 0.

(2) There exist some C > 0 such that |K�|  C

�d
for any � > 0.

(3) There exist some C 0 > 0 such that |K�(x)|  C
0
�

|x|d+1 for any � > 0, x 2 Rd \ {0}.
Conditions (2) and (3) imply

(4) There exist some C > 0 such that
R
K� = 1 and

R
|K�| < C for any � > 0.

(5) For any ⌘ > 0,
R
|x|�⌘

|K�(x)|dx ! 0 as � & 0.

Recall also that, for any f, g 2 L1(Rd), f ⇤ g 2 L1(Rd) and

kf ⇤ gk1  kfk1kgk1.
We may extend these results to Lp(Rd) for 1  p < 1, based on two auxiliary inequalities:
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Lemma 4.1. Given 1  p  1.

(a) If f 2 Lp(Rd), g 2 L1(Rd), then f ⇤ g 2 Lp(Rd) and

kf ⇤ gkp  kfkpkgk1.
(b) (Minkowski’s integral inequality)

If 1  p < 1, f 2 Lp(Rd ⇥ Rd), then
Z

Rd

����
Z

Rd
f(x, y)dx

����
p

dy

� 1
p


Z

Rd

Z

Rd
|f(x, y)|pdy

� 1
p

dx.

Both inequalities are simple applications of Hölder’s inequality. The first one is a special case
of Young’s convolution inequality (see exercise 4.1). We leave details and proofs as exercises.

Lemma 4.2. Given 1  p  1. If f 2 Lp(Rd), g 2 Cm

0 (Rd), 0  m  1, then f ⇤ g 2 Cm(Rd)
and D↵(f ⇤ g) = f ⇤D↵g for any multi-index ↵ with |↵|  m.

Proof. Consider 1 < p  1. Let q = p

p�1 be the conjugate exponent of p, then 1  q < 1.

Consider m = 0. Given h 2 Rd,

|(f ⇤ g)(x+ h)� (f ⇤ g)(x)| =

����
Z

Rd
f(x+ h� y)g(y)dy �

Z

Rd
f(x� y)g(y)dy

����

=

����
Z

Rd
f(x� y)g(y + h)dy �

Z

Rd
f(x� y)g(y)dy

����

=

����
Z

Rd
f(x� y) (g(y + h)� g(y)) dy

����

 kfkpk⌧hg � gkq (by Hölder’s inequality).

By Theorem 3.6, the last term converges to zero as h ! 0. Note that when p = 1, the term
k⌧hg � gkq converges to zero as h ! 0 since g is uniformly continuous. This proves f ⇤ g 2 C0(Rd).

Consider m = 1. Given t > 0 and i 2 {1, · · · , d}. By the mean-value theorem, there exist
s 2 [0, t] such that

(f ⇤ g)(x+ tei)� (f ⇤ g)(x) =

Z

Rd
f(y) (g(x+ tei � y)� g(x� y)) dy

=

Z

Rd
f(y)

@

@xi
g(x+ sei � y)t dy

= f ⇤ @

@xi
g(x+ sei)t.

Since @

@xi
g 2 C0

0 (Rd), f ⇤ @

@xi
g 2 C0(Rd), we see that @

@xi
(f ⇤ g) exists and equals f ⇤ @

@xi
g. This

implies f ⇤ g 2 C1(Rd) since i is arbitrary. The proof for general m follows by induction. ⇤
Theorem 4.3. Given 1  p < 1. Let {K�} be kernels satisfying (1),(2),(3). Then for any

f 2 Lp(Rd),
kf ⇤K� � fkp ! 0 as � & 0.

Proof. Observe that

|f ⇤K�(x)� f(x)| 
Z

Rd
|f(x� y)� f(x)||K�(y)|dy.
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By Minkowski’s integral inequality,

kf ⇤K� � fkp 
Z

Rd

Z

Rd
|f(x� y)� f(x)||K�(y)|dy

�
p

dx

� 1
p


Z

Rd

Z

Rd
|f(x� y)� f(x)|p|K�(y)|pdx

� 1
p

dy

=

Z

Rd

Z

Rd
|f(x� y)� f(x)|pdx

� 1
p

|K�(y)|dy

=

Z

Rd
k⌧�yf � fkp|K�(y)|dy.

Given " > 0, choose ⌘ > 0 such that k⌧�yf � fkp < " whenever |y| < ⌘. Then

kf ⇤K� � fkp  "

Z

|y|<⌘

|K�(y)|dy +
Z

|y|�⌘

2kfkp|K�(y)|dy.

The theorem follows by letting � ! 0 and then "! 0. ⇤

Recall that the support supp(f) of a measurable function f is the largest closed subset for
which every open neighborhood of every point from it has positive measure. Alternatively, it can
be expressed as the intersection of sets in

{K ⇢ Rd : K is closed and f = 0 a.e. on Kc}.

Lemma 4.4. Given measurable functions f and g. We have f ⇤ g = 0 on (supp(f) + supp(g))c.
In particular, supp(f ⇤ g) ⇢ supp(f) + supp(g).

Proof. Observe that

(f ⇤ g)(x) =
Z

Rd
f(x� y)g(y)dy =

Z

supp(g)
f(x� y)g(y)dy = 0

if x� y /2 supp(f) for every y 2 supp(g). That is, f ⇤ g = 0 on (supp(f) + supp(g))c. ⇤
Theorem 4.5. C1

0 (Rd) is dense in Lp(Rd), 1  p < 1.

Proof. Given f 2 Lp(Rd). For any N 2 N, let

fN =

⇢
f(x) if |f(x)|, kxk < N
0 otherwise.

Clearly fN converges almost everywhere to f as N ! 1, and |f(x)� fN (x)|p  2p|f(x)|p. By the
Lebesgue dominated convergence theorem, kf � fNkp ! 0 as N ! 1. From this observation, it is
su�cient to consider the case of bounded f with compact support.

Choose a nonnegative function K 2 C1
0 (Rd) with

R
Rd K = 1. Let

K�(x) =
1

�n
K
⇣x1
�
, · · · , xd

�

⌘
for � > 0.

Then the family {K�} satisfies conditions (1), (2), (3) stated at the beginning of this section (check
it!). By Lemma 4.2 and Lemma 4.4, f ⇤ K� 2 C1

0 (Rd). By Theorem 4.3, kf ⇤ K� � fkp ! 0 as
� & 0. This completes the proof. ⇤
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Definition 4.1. The Schwartz class S(Rd) is defined by

S(Rd) = {f 2 C1(Rd) | sup
x2Rd

|x↵D�f(x)| < 1 for any multi-indices ↵, �}.

Roughly speaking, the Schwartz class consists of smooth functions whose derivatives decrease
to zero faster than the inverse of any polynomial. This function space is of special importance in
Fourier analysis and distribution theory.

Corollary 4.6. For any 1  p < 1, the Schwartz class S(Rd) is a dense subspace of Lp(Rd).

Proof. It follows easily from Theorem 4.5, C1
0 (Rd) ⇢ S(Rd), and the observation that S(Rd)

is a subspace of Lp(Rd). ⇤
Exercises.

4.1. Prove the Lemma 4.1(a). More generally, given 1  p, q, r  1 such that 1
p
+ 1

q
= 1 + 1

r
,

and given f 2 Lp(Rd), g 2 Lq(Rd), prove the following Young’s convolution inequality:

kf ⇤ gkr  kfkpkgkq.
Hint: Find suitable p0, q0 such that 1

p0 +
1
q
+ 1

r
= 1, then apply generalized Hölder’s inequality.

4.2. Use Hölder’s inequality to prove Minkowski’s integral inequality.

4.3. Verify that kernels {K�} in the proof of Theorem 4.5 satisfies (1), (2), (3) stated at the
beginning of this section.

4.4. Suppose 1  p, q  1 and 1
p
+ 1

q
= 1. Show that if f 2 Lp(Rd), g 2 Lq(Rd), then

f ⇤ g 2 C0(Rd).

4.5. Show that f(x) = e�
1
x2

�x
2

�(0,1) belongs to S(R), and g(x) = f(x� a)f(b� x) 2 C1
0 (R),

where a < b are fixed.

4.6. Given bounded open sets G1 ⇢ G2 such that G1 ⇢ G2. Construct a function f 2 C1
0 such

that f = 1 on G1 and f = 0 on Gc

2.

5. Linear Transformations

This section is brief introduction to the concepts of bounded linear operators and dual spaces.
Those who unacquainted with undefined concepts here are referred to any standard textbook on lin-
ear algebra. Those who discontented with brevity of discussions herein are referred to any standard
textbook on functional analysis. For concepts intimately related to our discussions for Lp spaces,
we prove them here.

In this section we consider only normed spaces, even though many concepts can be extended
to more general topological vector spaces. For convenience, we shall use the same notation k · k for
norms of various spaces, and we shall simply write X for (X, k · k), for instance. It is often evident
which norm we are referring to. When it is necessary to avoid confusion, we denote the norm of the
space X by k · kX .

Definition 5.1. Given two normed spaces X and Y , a linear transformation (operator) T :
X ! Y is said to be bounded if there exists some M > 0 such that

kTxk  Mkxk for any x 2 X.

Denote the space of bounded linear operators from X to Y by B(X,Y ).
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Theorem 5.1. A linear operator T : X ! Y is bounded if and only if it is continuous.

Proof. Clearly any bounded linear operator is Lipschitz continuous. If T is continuous, then
T�1(B1(0)) � B�(0) for some � > 0. Then, whenever kxk  1, we have

kTxk =
2

�

����T
✓
�

2
x

◆����  2

�
.

For general x, we have

kTxk =

����T
✓

x

kxk

◆���� kxk  2

�
kxk.

Thus T is bounded. ⇤
It is a simple exercise to show that

sup
kxk=1

kTxk = sup
x 6=0

kTxk
kxk = sup

kxk1
kTxk = inf{M : kTxk  Mkxk 8x 2 X}.

Their common value is denoted by kTk. This notation is justified in the following theorem.

Theorem 5.2. B(X,Y ) with the function T 7! kTk is a normed space. If Y is a Banach space,

then so is B(X,Y ).

Proof. We only verify the triangle inequality for k · k, for the other two axioms of norm are
obvious. Given S, T 2 B(X,Y ), and x 2 X.

k(S + T )xk = kSx+ Txk  kSxk+ kTxk  kSk kxk+ kTk kxk.
This implies the triangle inequality kS + Tk  kSk+ kTk.

Given a Cauchy sequence {Tn} in B(X,Y ). For any x 2 X, the sequence {Tnx} is a Cauchy
sequence in Y , and so it converges. Let T : X ! Y be defined by Tx = limn!1 Tnx. Clearly T is
linear. Given " > 0, choose N such that kTn � Tmk < " for all n,m � N . Fix n � N and x 2 X,

kTnx� Txk = lim
m!1

kTnx� Tmxk  "kxk.

Therefore,
kTxk  kTx� TNxk+ kTNxk  ("+ kTNk)kxk.

This shows that T is bounded. Furthermore,

kTn � Tk = sup
kxk=1

kTnx� Txk  " for any n � N.

This implies that kTn � Tk ! 0 as n ! 1, since " > 0 is arbitrary. ⇤
Definition 5.2. A linear functional f on a normed space X over F (= R or C) is a linear

transformation from X to F. The space B(X,F) of bounded linear functionals on X is called the
dual space of X. It is usually denoted by X⇤.

Corollary 5.3. The dual space X⇤
of any normed space X over R or C is a Banach space.

Observe that any composition of bounded linear operators is a bounded linear operator. Indeed,
if S 2 B(X,Y ), T 2 B(Y, Z), then TS 2 B(X,Z) and kTSk  kTk kSk since

kTSxk  kTk kSxk  kTk kSk kxk for any x 2 X.

In particular, the space B(X,X) of bounded linear operators on X (often denoted by B(X) for
simplicity) with composition is an algebra with identity.
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Example 5.1. Given 1  q  1 and let p be its conjugate exponent. Given g 2 Lq(Rd). By
Hölder’s inequality, the linear map G : Lp(Rd) ! R defined by G(f) =

R
Rd fg is bounded and

kGk  kgkq.

Example 5.2. Given g 2 L1(Rd), 1  p  1. Define the convolution operator G : Lp(Rd) !
Lp(Rd) by G(f) = f ⇤ g. Lemma 4.1 tells us that G is a bounded linear operator and kGk  kgk1.
More generally, if 1

p
+ 1

q
= 1 + 1

r
, g 2 Lq(Rd), then Young’s convolution inequality (exercise 4.1)

tells us that G : Lp(Rd) ! Lr(Rd) is a bounded linear operator and kGk  kgkq.

Definition 5.3. Given T 2 B(X,Y ). The adjoint of T , denoted by T ⇤, is a linear operator
from Y ⇤ to X⇤ defined by

(T ⇤y⇤)(x) = y⇤(Tx),

where y⇤ 2 Y ⇤, x 2 X. In other words, T ⇤y⇤ = y⇤ � T .

It is straightforward to verify that T ⇤ is linear. T ⇤y⇤ is indeed a bounded linear functional on
X since it is simply composition of y⇤ and T . Moreover, T ⇤ 2 B(Y ⇤, X⇤) since

kT ⇤y⇤k = ky⇤ � Tk = sup
kxk=1

ky⇤(Tx)k  sup
kxk=1

ky⇤k kTxk  kTkky⇤k for any y⇤ 2 Y ⇤.

A commonly used notation for x⇤(x) is hx⇤, xi, where x⇤ 2 X⇤ and x 2 X.

Remark 5.1. If S 2 B(X,Y ), T 2 B(Y, Z), then (TS)⇤ = S⇤T ⇤. This follows trivially from the
definition of adjoint:

(TS)⇤z⇤ = z⇤ � (TS) = (z⇤ � T ) � S = S⇤(T ⇤z⇤) = (S⇤T ⇤)z⇤ for any z⇤ 2 Z⇤.

Definition 5.4. Two normed spaces X, Y are said to be isomorphic if there exists a bijective
T 2 B(X,Y ) with inverse T�1 2 B(Y,X). In this case we say T is invertible. Such an operator T
is called an isomorphism. We say X, Y are isometrically isomorphic if there exists an isomorphism
T : X ! Y which is also an isometry.

Two normed spaces are considered equivalent if they are isometrically isomorphic. This clearly
defines an equivalence relation on the class of Banach spaces.

Remark 5.2. We remark here that T is invertible implies T ⇤ is invertible, and (T ⇤)�1 = (T�1)⇤.
Indeed, given any x⇤ 2 X⇤,

T ⇤(T�1)⇤(x⇤) = T ⇤(x⇤ � T�1) = x⇤(T � T�1) = x⇤.

Thus (T�1)⇤ is a right inverse of T ⇤. The proof for being a left inverse is similar.

Definition 5.5. Given any normed space X, there exists a canonical isometric isomorphism ⌧
from X to a subspace of X⇤⇤. It is defined by ⌧(x)(x⇤) = x⇤(x). The mapping ⌧ is often called
the canonical embedding from X to X⇤⇤. For convenience, the term ⌧(x) is often written x, thereby
treating elements in X as elements in X⇤⇤.

We say a normed spaceX is reflexive if the canonical embedding ⌧ : X ! X⇤⇤ is an isomorphism.

Note that, by Corollary 5.3, any reflexive normed space is a Banach space. The following theorem
can be served as incentives to consider isometric isomorphisms and separable Banach spaces.

Theorem 5.4. (Banach-Mazur Theorem)

Every separable Banach is isometrically isomorphic to a closed subspace of C0[0, 1].
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We omit the proof of the theorem. Note that the space Q[t] of polynomials with rational
coe�cients is a countable dense subset of C0[0, 1], according to either the Weierstrass approximation
theorem or the Stone-Weierstrass theorem. The Banach-Mazur theorem tells us that C0[0, 1] is the
“largest” separable Banach space.

Exercises.

5.1. Verify identities above Theorem 5.2.

5.2. Determine the operator norm kGk in Examples 5.1 (without using any theorem in the next
section), and Example 5.2 for the case q = 1.1

5.3. Given 1 < p < 1, 1
p
+ 1

q
= 1. Suppose K 2 Lq(Rd ⇥Rd). Consider the integral operator T

defined by

T (f)(x) =

Z

Rd
K(x, y)f(y) dy, f 2 Lp(Rd).

(a) Given f 2 Lp(Rd). Show that for almost every x, the function K(x, y)f(y) is integrable
with respect to y.

(b) Show that T is a bounded operator from Lp(Rd) to Lq(Rd), and kTk  kKkq.

5.4. Assume the following axiom2:

For any linear subspace X0 of X, ` 2 X⇤
0 , there exists ˜̀2 X⇤

such that ˜̀ |X0= ` and k˜̀k = k`k.
Now prove the following statements under this assumption.

(a) For any x 2 X, kxk = sup{|x⇤(x)| : x⇤ 2 X⇤, kx⇤k  1}.
(Hint: Consider a function which sends ↵x to ↵kxk, where ↵ is a scalar.)

(b) For any T 2 B(X,Y ), kTk = sup{|y⇤(Tx)| : y⇤ 2 Y ⇤, ky⇤k  1, x 2 X, kxk  1}.
(c) kTk = kT ⇤k for any T 2 B(X,Y ).

6. Dual Space of Lp

In this section we characterize the dual space of Lp(I), where I is an interval. A more general
theorem will be proved after general measures and integrals were introduced.

The key ingredients of the proof are the following two lemmas. The first one says that, roughly
speaking, any bounded linear functional on Lp(I) induces a canonical indefinite integral. Gener-
alization of this lemma to higher dimensional spaces requires further knowledge about indefinite
integrals.

Lemma 6.1. Let I be a bounded interval, Ī = [a, b], 1  p < 1. For any G 2 Lp(I)⇤, there
exists g 2 L1(I) such that G(�A) =

R
A
g for any measurable set A ⇢ I.

Proof. Without loss of generality, assume I = [a, b]. First note that G(�A) = G(�B) if A�B
has measure zero. Let �(s) = G(�[a,s]), s 2 I. Then for any subinterval [s, t] ⇢ I,

�(t)� �(s) = G(�[a,t])�G(�[a,s]) = G(�[a,t] � �[a,s]) = G(�[s,t]).

1
Determination of the operator norm for Example 5.2 amounts to finding sharp form of Young’s convolution

inequality. The case q = 1 is elementary, but the case q 6= 1 is challenging and requires further tools. See:

W. Beckner, Inequalities in Fourier Analysis, Ann. Math. (1975).

2
It is a special and simple version of a more general proposition known as the Hahn-Banach theorem, which is a

consequence of the axiom of choice.
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Given almost disjoint subintervals {[ai, bi] : i = 1, · · · , n} of I with total length �.

nX

i=1

|�(bi)� �(ai)| =
nX

i=1

(�(bi)� �(ai)) sgn (�(bi)� �(ai))

=
nX

i=1

G(�[ai,bi]) sgn (�(bi)� �(ai))

= G

 
nX

i=1

sgn (�(bi)� �(ai))�[ai,bi]

!

 kGk

�����

nX

i=1

sgn (�(bi)� �(ai))�[ai,bi]

�����
p

 kGk�1/p.

This implies that � 2 AC[a, b]. By the fundamental theorem of calculus, g = �0 2 L1(I) and

G(�[s,t]) = �(t)� �(s) =

Z
t

s

g(u) du for any subinterval [s, t] ⇢ I.

It follows that G(�A) =
R
A
g for any measurable set A in I (exercise 6.1). ⇤

Lemma 6.2. Let 1  p < 1,
1
p
+ 1

q
= 1. Let E ⇢ R be measurable. Suppose g 2 L1(E) and for

some M > 0, ����
Z

E

'g

����  Mk'kp

for any simple function '. Then g 2 Lq(E) and kgkq  M .

Proof. Assume 1 < p < 1. Let  n be a sequence of nonnegative simple functions with

compact support such that  n % |g|q. Let 'n =  
1
p
n sgn(g). Then 'n is a simple function and

'ng =  
1
p
n |g| �  

1
p+

1
q

n =  n.

Then,
Z

E

 n 
Z

E

'ng  Mk'nkp = M

✓Z

E

 n

◆ 1
p

,

implying that
R
E
 n  M q. By the monotone convergence theorem,

R
E
|g|q  M q. The case p = 1

is left to the reader (exercise 6.2). ⇤
Theorem 6.3. (Riesz Representation Theorem for Lp(I), I ⇢ R)

Suppose 1  p < 1,
1
p
+ 1

q
= 1, I ⇢ R is an interval. For any G 2 Lp(I)⇤, there exists unique

g 2 Lq(I) such that

G(f) =

Z

E

fg for any f 2 Lp(I).

Moreover, kGk = kgkq. The map G 7! g is an isometric isomorphism from Lp(I)⇤ to Lq(I).

Proof. Denote the �-algebra of measurable sets in I by B. Consider the case Ī = [a, b]. By
Lemma 6.1, there exists g 2 L1(I) such that G(�A) =

R
A
g for any A 2 B. Given any simple
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function ' =
P

n

i=1 ai�Ei , where {Ei} ⇢ B are disjoint.

G(') =
nX

i=1

aiG(�Ei) =
nX

i=1

ai

Z

Ei

g =
nX

i=1

ai

Z

E

�Eig =

Z

I

'g.

Therefore, ����
Z

I

'g

���� = |G(')|  kGk k'kp.

By Lemma 6.2, g 2 Lq(I) and kgkq  kGk. Consider the linear functional G̃ on Lp(I) defined by
G̃(f) =

R
I
fg. It is continuous, by Hölder’s inequality. Since simple functions are dense in Lp(I),

we see that G = G̃. Hölder’s inequality also tells us that kGk  kgkq, and so kgkq = kGk. The
function g 2 Lq(I) is unique, for if G(f) =

R
E
fg̃ for all f 2 Lp(I), we would have

Z

I

f(g � g̃) = 0 for all f 2 Lp(I).

Then g � g̃ gives the zero functional on Lp(I), so that kg � g̃kq = 0. That is, g = g̃ in Lq(I).
Now we consider unbounded interval I. Let {In} be an increasing sequence of bounded intervals

such that
S

1

n=1 In = I. Then for any n, there exists unique gn 2 Lq(I) such that gn = 0 on Icn and

G(f) =

Z

I

fgn for any f 2 Lp(I) with f = 0 on Icn.

Moreover, kgnkq  kGk. By uniqueness, gn+1 = gn a.e. on In for each n. We may assume without
loss of generality that gn+1 = gn on In. Then the function

g(x) := gn(x), x 2 In

is well-defined on I. Furthermore, |gn(x)| % |g(x)| as n ! 1. By the monotone convergence
theorem, Z

I

|g|q = lim
n!1

Z

I

|gn|q  kGkq.

In particular, g 2 Lq(I), kgkq  kGk. For any f 2 Lp(I), let fn = f �In . Then |fn|  |f |, fn ! f
pointwise on I as n ! 1. It follows that kgn�gkq ! 0, kfn�fkp ! 0 (see exercise 3.6), and hence

kfngn � fgk1  k(fn � f)gnk1 + kf(gn � g)k1
 kfn � fkp kgnkq + kfkp kgn � gkq ! 0 as n ! 1.

Then, by continuity of G on Lp(I),
Z

I

fg = lim
n!1

Z

I

fngn = lim
n!1

G(fn) = G(f).

Moreover, kGk  kgkq, and so kg|q = kGk. Uniqueness of such g follows as in the case of bounded
I. This completes the proof. ⇤

Corollary 6.4. If 1 < p < 1, then Lp(I) is reflexive.

Proof. Let q be the conjugate exponent of p. Consider ip : Lp ! (Lq)⇤ defined by ip(f)(g) =R
fg. The Riesz representation theorem tells us that ip is an isometric isomorphism. Likewise,

iq(g)(f) =
R
gf defines an isometric isomorphism iq from Lq to (Lp)⇤. By Remark 5.2, its adjoint

i⇤q : (Lp)⇤⇤ ! (Lq)⇤ is invertible and (i⇤q)
�1 = (i�1

q )⇤. The corollary follows by observing that
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the canonical embedding ⌧ : Lp ! (Lp)⇤⇤ is equal to (i⇤q)
�1 � ip. Verification for this relation is

straightforward: given f 2 Lp, G 2 (Lp)⇤,

⌧(f)(G) = G(f) = (iq � i�1
q �G)(f) =

Z
i�1
q (G)f

= ip(f)(i
�1
q (G)) = (i�1

q )⇤(ip(f))(G) = (i⇤q)
�1 � ip(f)(G).

⇤
Exercises.

6.1. Let I ⇢ R be a bounded interval. Given 1  p < 1, G 2 Lp(I)⇤, g 2 L1(I). Suppose
G(�J) =

R
J
g on any subinterval J ⇢ I. Show that G(�A) =

R
A
g for any measurable set A ⇢ I.

6.2. Prove Lemma 6.2 for the case p = 1.

6.3. Let I ⇢ R be an interval. Suppose g 2 L1(I). Show that for any " > 0 there exists
f 2 L1(I), kfk1 6= 0, such that Z

I

fg � kfk1(kgk1 � ").

6.4. Let I = [0, 1]. Consider the linear functional G on C(I) defined by G(f) = f(1). Use
this linear functional and the assumption in Exercise 5.4 to show that L1(I) is not isometrically
isomorphic to L1(I)⇤.

6.5. Determine a representation for (`p)⇤, 1  p < 1.

7. Maximal Functions on Lp

We have seen that the Hardy-Littlewood maximal function plays a critical role in the theory
of di↵erentiation. It is defined for functions in L1

loc(Rd), and that certainly includes Lp(Rd) for
1  p < 1. Here we denote the Hardy-Littlewood maximal function of f by f⇤:

f⇤(x) = sup
0<r<1

1

m(Br(x))

Z

Br(x)
|f |.

Recall that for any f 2 L1(Rd), its maximal function f⇤ is not in L1(Rd) unless f = 0 a.e.. In
sharp contrast, for any f 2 Lp(Rd) with 1 < p < 1, we always have f⇤ 2 Lp(Rd). Furthermore, the
mapping M : Lp(Rd) ! Lp(Rd) defined by M(f) = f⇤ is bounded (but nonlinear). This result, to
which this section is devoted, has important applications in harmonic analysis and ergodic theory.

Definition 7.1. Let f be a measurable function on E ⇢ Rd. The distribution function of f on
E is defined by

wf,E(↵) := m({x 2 E : f(x) > ↵}).

Clearly w is monotone decreasing. If m(E) < 1, then w is bounded, so it has bounded variation
and its total variation is m(E). We begin with an observation which links Lebesgue integral with
improper Riemann integral:

Theorem 7.1. Suppose f � 0 is measurable on E ⇢ Rd
and its distribution function w = wf,E

is bounded. Given any real-valued C1
function � on (0,1), we have

Z

E

� � f = ��w
��1
0

+

Z
1

0
�0(↵)w(↵)d↵.
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Proof. Given 0 < a < b < 1. Let Ea,b = {a < f  b}. We claim that
Z

Ea,b

� � f = ��w
��b
a
+

Z
b

a

�0(↵)w(↵)d↵.

The theorem follows by observing E =
S

1

k=1E1/k,k and letting a ! 0+, b ! 1.
We first observe that � � f is measurable (since � is C1), so the Lebesgue integral on the left

side makes sense. Also, �0w has a countable number of discontinuities, so the Riemann integral on
the right side also makes sense.

Since � is of bounded variation on [a, b], it can be written as the di↵erence of two bounded
increasing functions, so there is no loss of generality by assuming that � is increasing. Then, given
any partition P = {↵0 < ↵1 < · · · < ↵n} of [a, b],

Z

Ea,b

� � f =
nX

k=1

Z

E↵k�1,↵k

� � f

�
nX

k=1

�(↵k�1)m(E↵k�1,↵k)

=
nX

k=1

�(↵k�1) (w(↵k�1)� w(↵k))

= �(↵0)w(↵0)� �(↵n�1)w(↵n) +
n�1X

k=1

w(↵k) (�(↵k)� �(↵k�1))

= �(a)w(a)� �(↵n�1)w(b) +
n�1X

k=1

w(↵k)�
0(⇠k) (↵k � ↵k�1)

for some ⇠k 2 [↵k�1,↵k]. Let |P| ! 0, we find a lower bound for
R
Ea,b

� � f :

�(a)w(a)� �(b)w(b) +

Z
b

a

w(↵)�0(↵)d↵.

Similarly,
Z

Ea,b

� � f 
nX

k=1

�(↵k)m(E↵k�1,↵k)

=
nX

k=1

�(↵k) (w(↵k�1)� w(↵k))

= �(↵1)w(↵0)� �(↵n)w(↵n) +
n�1X

k=1

w(↵k�1) (�(↵k)� �(↵k�1))

= �(↵1)w(a)� �(b)w(b) +
n�1X

k=1

w(↵k�1)�
0(⌘k) (↵k � ↵k�1)

for some ⌘k 2 [↵k�1,↵k]. Let |P| ! 0, then the lower bound for
R
Ea,b

� � f we found above becomes

an upper bound, so they must be equal. ⇤
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Theorem 7.2. Suppose f 2 Lp(E), 1 < p < 1. Then
Z

E

|f |p = p

Z
1

0
↵p�1w|f |,E(↵)d↵.

Proof. The distribution function w|f |,E of |f | on E is bounded because (as the proof of Cheby-
shev’s inequality)

↵pw|f |,E(↵) = ↵pm ({|f | > ↵}) 
Z

|f |>↵

|f |p < 1.(9)

Replace the function f in Theorem 7.1 by |f | and let �(s) = sp. Denote w|f |,E by w for
convenience. Then the corollary follows once we have proved

lim
↵!0+

↵p�1w(↵) = 0 = lim
↵!1

↵p�1w(↵).

The second identity follows trivially from (9). We leave the first identity as exercise. ⇤
Theorem 7.3. If f 2 Lp(Rd), 1 < p  1, then f⇤ 2 Lp(Rd) and

kf⇤kp  Ckfkp
for some constant C which depends only on d and p.

Proof. The case p = 1 is obvious since kf⇤k1  kfk1. Assume 1 < p < 1. Denote the
distribution function of f⇤ on Rd by w.

Given ↵ > 0. Let g = f · �{|f |�
↵
2 }
. Then

|f(x)|  |g(x)|+ ↵

2
.

f⇤(x)  sup
0<r<1

1

m(Br)

Z

Br(x)
|g(y)|+ ↵

2
= g⇤(x) +

↵

2
.

Therefor, {f⇤ > ↵} ⇢ {g⇤ > ↵

2 } and hence

w(↵)  m({g⇤ > ↵

2
})  2c

↵
kgk1 =

2c

↵

Z

{|f |�
↵
2 }

|f | 8 ↵ > 0.

Note that g 2 L1 because E = {|f | � ↵

2 } has finite measure and Lp(E) ⇢ L1(E).
Z

Rd
(f⇤)p = p

Z
1

0
↵p�1w(↵)d↵

 2cp

Z
1

0

Z

{|f |�
↵
2 }

↵p�2|f(x)|dx d↵

= 2cp

Z

Rd

Z 2|f(x)|

0
↵p�2|f(x)|d↵ dx (by Tonelli’s Theorem)

=
2cp

p� 1

Z

Rd
|f(x)|↵p�1

��↵=2|f(x)|
↵=0

dx

=
2pcp

p� 1

Z

Rd
|f(x)|pdx

This completes the proof by taking C = 2( cp

p�1)
1
p . ⇤


