

第十講:族群歧視

Srebrenica Genocide Memorial In Potocari, Bosnia (Source: islamicity.org)

Q: 極端民族主義與族群衝突的根源?

民族中心主義 (Ethnocentrism)

社會學家薩姆納(W.G.Sumner)觀察到人們 時常傾向於用自己的文化作為衡量其他文化 的標準,並傾向於認為自己的文化是優越 的,其他文化是低劣和奇怪的。

這種根據自己文化標準評判其他文化的行為稱為民族中心主義。

影響:種族歧視、極端民族主義

W.G. Sumner 1840-1910 Source: Wikipedia

顏色遊戲

政治學家Robert Axelrod與Ross Hammond (2006)考慮以下模型: 給人們四種隨機顏色,四種合作策略:

- (1) 和每個人合作
- (2) 不與任何人合作
- (3) 只和與自己顏色相同者合作
- (4) 只和與自己顏色不同者合作

個人與鄰近的人隨機配對互動,假設人們會偶爾遷徙,會學習 他人成功經驗,結果顯示:

策略(3)長期獲益較高,不同顏色會自然隔離。

啟示:民族中心主義與種族歧視的自然形成

什麼是歧視?

「差別待遇」不等於「歧視」;「隔離」也不一定代表歧視。「歧視」的關鍵在是否存在帶有偏見的貶抑。

定義: 歧視是針對特定族群的成員,基於對其族群的偏見, 而非個人特質,給予不同且較差的對待。

「歧視」是否成立,有時需要量化的判準來輔助。 問題:合理量化指標?

量化指標的常用平均數

量化指標通常需要累積大量數據,取其平均。 取平均數的方法有很多,最常見的幾個是:

- 1. 算術平均數: A=(x1+...+xn)/n
- 2. 幾何平均數: G=(x1...xn)^{1/n}
- 3. 調和平均數: *H=n/(x1⁻¹+…+xn⁻¹)*

Means of *x*, 1-*x* : $H \leq G \leq A$

課堂練習:計算(0.4,0.6)、(0.2,0.8)兩組數的算術平均數、幾何平均數、調和平均數,比較各平均數的差異。

考慮兩非負的數,可得 $H \leq G \leq A$ (後者即算幾不等式), $H = G^2/A$, H/G介於0、1之間。

觀察:H/G接近0表示兩數差距大,等於1表示兩數相等。

聯合國開發計劃署(United Nations Development Programme, UNDP)自1995年起採用衡量性別不平等的指數,並公布各 國數據,經過多次改進,於2010年起採用了延用至今的「性 別不平等指數」(Gender Inequality Index, GII),該指數結合 1. 生殖健康 2. 權力分配 3. 勞動市場 三個面向的指標。 (Ref: Suman Seth,"Inequality, Interactions, and Human Development", Journal of Human Development and Capabilities, 2009)

GII首先分別計算男、女上述三項指標的幾何平均數G_M、G_F, 取其調和平均H,再針對各項指標計算男、女指標的算術平均 數,然後求指標的幾何平均數G_{F,M},與H相比較,H/G_{F,M}接近1 表示平等程度高,接近0表示平等程度低。

著名的歧視案例:性別歧視

參政權: 20世紀前,多數民主國家沒有女性參政權 芬蘭1907年,女性參政權 英國在1918年,30歲以上、具一定社經地 位的女性投票權 1928年,與男性一樣的投票權 中華民國1947年,憲法保障男女平等參政權

美國1913年爭取女性投票權的示威活 動,手持標語為"Votes for Women". From Wikipedia

許多英國統治的國家在同時期賦予女性平等參政權 沙烏地阿拉伯2015年、女性投票權

著名的歧視案例:性別歧視

受教權:

拉·優素福扎伊。

20世紀前,大多數國家沒有賦予女性平等 的受教權,許多國家不許女性進大學。 1913年日本首次允許女性進大學,1920年中 國的大學首次出現男女合校,現在台灣的 大學生男女比例差不多是1:1。全球仍然有 6600萬女性被剝奪受教權。 2014年諾貝爾和平獎的獲獎人之一是因爭 取女性受教權而遇刺,幸運生還的馬拉

馬拉拉·優素福扎伊(1977~) From Wikipedia

GII的詳細計算方法如下: (UNDP, Human Development Indices and Indicators, 2018 Statistical Update)

$$G_F = \sqrt[3]{\left(\frac{10}{MMR} \cdot \frac{1}{ABR}\right)^{\frac{1}{2}} \cdot \left(PR_F \cdot SE_F\right)^{\frac{1}{2}} \cdot LFPR_F},$$

$$G_M = \sqrt[3]{1 \cdot (PR_M \cdot SE_M)^{\frac{1}{2}} \cdot LFPR_M}.$$

$$HARM(G_F, G_M) = \left[\frac{(G_F)^{-1} + (G_M)^{-1}}{2}\right]^{-1}$$

$$G_{F,M}^{-} = \sqrt[3]{Health} \cdot \overline{Empowerment} \cdot \overline{LFPR}$$

where
$$\overline{Health} = \left(\sqrt{\frac{10}{MMR} \cdot \frac{1}{ABR}} + 1\right)/2$$

$$\overline{Empowerment} = \left(\sqrt{PR_F \cdot SE_F} + \sqrt{PR_M \cdot SE_M}\right)/2 \text{ and}$$

$$\overline{LFPR} = \frac{LFPR_F + LFPR_M}{2}$$

- Maternal mortality ratio (*MMR*): UN Maternal Mortality Estimation Group (2017).
- Adolescent birth rate (*ABR*): UNDESA (2017).
- Share of parliamentary seats held by each sex (*PR*): IPU (2018).
- Population with at least some secondary education (*SE*): UNESCO Institute for Statistics (2018) and Barro and Lee (2016).
- Labour force participation rate (*LFPR*): ILO (2018).

$$GII = 1 - \frac{HARM(G_F, G_M)}{G_{\overline{F}, \overline{M}}}.$$

$$G_F = \sqrt[3]{\left(\frac{10}{MMR} \cdot \frac{1}{ABR}\right)^{\frac{1}{2}} \cdot \left(PR_F \cdot SE_F\right)^{\frac{1}{2}} \cdot LFPR_F},$$

$$G_{M} = \sqrt[3]{1 \cdot (PR_{M} \cdot SE_{M})^{\frac{1}{2}} \cdot LFPR_{M}}.$$

HARM $(G_{F}, G_{M}) = \left[\frac{(G_{F})^{-1} + (G_{M})^{-1}}{2}\right]^{-1}$

$$G_{\overline{F},\overline{M}} = \sqrt[3]{\overline{Health} \cdot \overline{Empowerment} \cdot \overline{LFPR}}$$

where
$$\overline{Health} = \left(\sqrt{\frac{10}{MMR} \cdot \frac{1}{ABR}} + 1\right)/2$$
,

$$\overline{Empowerment} = \left(\sqrt{PR_F \cdot SE_F} + \sqrt{PR_M \cdot SE_M}\right)/2 \text{ and}$$

$$\overline{LFPR} = \frac{LFPR_F + LFPR_M}{2}.$$

		Health		Empowerment		Labour market	
		Maternal mortality ratio (deaths per 100,000 live births)	Adolescent birth rate (births per 1,000 women ages 15–19)	Share of seats in parliament (% held by women)	Population with at least some secondary education (%)	Labour force participation rate (%)	
	Female	30	14.1	5.8	82.6	35.1	
	Male	na	na	94.2	83.1	74.1	
	$\frac{F+M}{2}$	$\frac{\sqrt{\left(\frac{10}{30}\right) \cdot \left(\frac{1}{14.1}\right)} + 1}{2} = 0.5769$		$\frac{\sqrt{0.058 \cdot 0.826} + \sqrt{0.942 \cdot 0.831}}{2} = 0.5518$		$\frac{0.351 + 0.741}{2} = 0.546$	
na is not applicable. $G_{F}: \sqrt[3]{\sqrt{\frac{10}{30} \cdot \frac{1}{14.1}}} \cdot \sqrt{0.058 \cdot 0.826} \cdot 0.351} = 0.2272$ $G_{M}: \sqrt[3]{1 \cdot \sqrt{0.942 \cdot 0.831} \cdot 0.741} = 0.8687$							
		HA	$RM(G_{F},G_{M})$	$(x):\left[\frac{1}{2}\left(\frac{1}{0.227}\right)\right]$	$\frac{1}{77} + \frac{1}{0.8687}$	$\left]^{-1} = 0.3608\right]$	
		$G_{\overline{F},\overline{I}}$	$\overline{M}: \sqrt[3]{0.5769}$	· 0.5518 · 0.	546 = 0.558	1	
		GII	: 1 – (0.36	608/0.5581)	= 0.354.		

世界各國的性別不平等指數GII: (From UNDP, 2014 Human Development Report)

著名歧視案例:種族歧視

種族隔離與受教權:美國南方長期維持種族 隔離政策,並得到最高法院的支持(1896, Plessy v. Ferguson),直到1954年被推翻 (Brown v. Board of Education of Topeka), 最高法院認定種族隔離是出於認定有色人種 為劣等,違背憲法保障之平等權,必須終止。

南方抗爭最著名事件: 1957年「小岩城中央中 學事件」(Little Rock Nine)。

美國於1965年徹底結束種族隔離。

美國時代雜誌1957年10月封面故 事:小岩城中央中學事件

著名歧視案例:種族歧視

種族隔離與公共資源:美國在種族隔離時 期,許多公共資源白人享有優先權。例如 公車上的座位區分白人區與黑人區,白人 座位不足時有黑人需讓出整排座位的規 定。1955年阿拉巴馬州發生Rosa Parks搭乘 公車坐在黑人區,拒絕讓位給白人而被逮 捕拘禁並罰款的事件。人權團體發起抵制 公車運動,領導人物包括Martin Luther King,原本為期1天,結果持續長達381天, 至最高法院宣告種族隔離規定違憲為止。

Rosa Parks and Martin L. King. From Wikipedia

種族歧視的量化

2004年,芝加哥大學的Marianne Bertrand與麻省理工的 Sendhil Mullainathan合作刊登於American Economic Review的一篇論文引起了廣泛關注。論文題目是"Are Emily and Greg More Employable Than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination"

他們設計了一項實驗來檢驗美國就業市場的種族歧視 程度。針對《波士頓環球報》與《芝加哥論壇報》的 求才廣告,寄出5000份捏造的履歷表,應徵文書處 理、客服、售貨員等職務,其中一半用了典型白人的 名字(如Emily, Greg),另一半用了典型非裔的名字(如 Lakisha, Jamal),捏造的資歷有高有低,分配在兩組履 歷的比例相當。

Photos of Bertrand (up) and Mullainathan (down) from websites of Univ. Chicago and Harvard Univ.

Bertrand-Mullainathan所得到的部分統計結果

Mean Call-back Rates By Racial Soundingness of Names ^a

	Call-back Rate for White Names	Call-back Rate for Black Names	Ratio	Difference (p-value)
Sample:				
All sent resumes	10.06% [2445]	6.70% [2445]	1.50	3.35% (.0000)
Chicago	8.61% [1359]	5.81% [1359]	1.48	2.80% (.0024)
Boston	11.88% [1086]	7.83% [1086]	1.52	4.05% (.0008)
Females	10.33% [1868]	6.87% [1893]	1.50	3.46% (.0001)
Females in administrative jobs	10.93% [1363]	6.81% [1364]	1.60	4.12% (.0001)
Females in sales jobs	8.71% [505]	6.99% [529]	1.25	1.72% (.1520)
Males	9.19% [577]	6.16% [552]	1.49	3.03% (.0283)

種族歧視的量化

Marianne Bertrand與Sendhil Mullainathan的實驗結果顯示:

- 同等資歷的白人與黑人,應徵相同的工作,白人的面試 機會比黑人多50%。
- 資歷強的白人求職者獲得的關注度比資歷弱的白人求職 者高出大約20%,黑人求職者獲得關注與否與資歷無關。

這個結果可以說驗證了就業市場普遍存在的種族歧視,而且 給出量化的方法。由於統計結果不能證明個別雇主存在有種 族歧視,目前無法藉由法律扭轉這個現象。

逆向歧視與假歧視

逆向歧視(reverse discrimination)是指藉由過度優惠弱勢或過去受 壓迫的群體,使得主流群體得到較差待遇的歧視現象。

一般的歧視是弱勢族群受到明顯較差的待遇。為了實現平權,法律 或輿論可能要求對弱勢族群提高保障,例如立法委員選舉辦法中設 有原住民以及不分區婦女保障名額。如果弱勢族群的保障名額過 多,或是該弱勢族群並不是太弱勢,那便可能造成逆向歧視。

統計數字時常被用來佐證歧視,但有時統計數字會嚴重誤導,而且 「保障弱勢」常常被視為政治正確,使媒體輿論將非歧視的事件定 調為存在歧視,是為假歧視。

問題:我們該如何判別逆向歧視與假歧視的現象?

課堂活動:選擇治療方案

假設你得了某種疾病,屬於輕度患者,醫師建議了甲乙兩種治療方式,並告訴你統計數據顯示甲方案的治療成功率是83%, 乙方案的治療成功率是78%。

- 1. 假設甲乙兩案在自付額多寡、療癒所需時間、後遺症、復發 比率等等都不相上下的。在此前提下,你要選哪一個方案?
- 在 1. 的假設前提下,已知甲方案大多被用在輕度患者,乙 方案大多被用在重症病患,而你屬於輕度患者,那你要選哪 一個方案?

課堂活動:選擇治療方案

上面的例子仿自一個真實的案例 (Charig, Webb, Payne, Wickham, British Medical Journal, 1986),乙方案實際上在各方面都 優於甲方案(如右表所示)。

上面例子僅提供了部分的數據(右下表圈 中的資訊), 完全誤導病患的 決策。

	輕症病患 治癒率	輕症病患 佔比	重症病患 治癒率	重症病患 佔比	整體治癒 率
甲方案	0.87	78%	0.69	22%	0.8304
乙方案	0.93	25%	0.73	75%	0.78
			0.87×0.78	s+0.69x0.22	= 0.8304

 $0.93 \times 0.25 + 0.73 \times 0.75 = 0.78$

	輕症病患	重症病患
甲方案治 癒率	0.87	0.69
乙方案治 癒率	0.93	0.73

辛普森悖論

這種在所有分組評比均佔優勢的選項,整體評比卻處劣勢的現象,在統計上稱之為辛普森悖論(Simpson's Paradox, or Yule-Simpson effect)。這種現象乍看似乎違背直觀,故被稱為悖論。

辛普森悖論可以用下面的簡單命題解釋: 命題:若0<b1<a1<b2<a2,則存在0<s<t<1使得 b1 s + b2 (1-s) > a1 t + a2 (1-t)

證明:取s接近0,t接近1即可。

辛普森悖論

命題:若0<b₁<a₁<b₂<a₂,則存在0<s<t<1使得 b₁s+b₂(1-s) > a₁t + a₂(1-t)

回到剛才例子: (b₁,b₂)=(0.69,0.87)、(a₁,a₂)=(0.73,0.93)、s=0.22、t=0.75,則 $0.87x0.78+0.69x0.22 = b_2 (1-s)+b_1 s = 0.8304$ $0.93x0.25+0.73x0.75 = a_2 (1-t) +a_1 t = 0.78$

	輕症病患 治癒率	輕症病患 佔比	重症病患 治癒率	重症病患 佔比	整體治癒 率
甲方案	0.87	78%	0.69	22%	0.8304
乙方案	0.93	25%	0.73	75%	0.78

辛普森悖論

辛普森悖論可說明一些逆向歧視與假歧視。 以大學入學申請為例。

假設甲、乙兩族群在某大學的入學申請成功率分別是36%與 27%,是否表示乙族群受到了歧視?

假設該大學有理、工、文學院, 申請與錄取人數如右:

	甲申請	甲錄取	乙申請	乙錄取
理	500	200	200	100
I	800	320	300	150
文	200	20	1000	150
總計	1500	540	1500	400

辛普森悖論

雖然甲的錄取率 (540/1500 = 0.36) 高過乙 (400/1500=0.266...) 不少,但甲在理學院與工學院的錄取率都是40%,明顯低於 乙族群在理學院與工學院的50%錄取率,甲在文學院的錄取 率是10%,也明顯低於乙在文學院的15%錄取率。原因與前面 的醫療方案一樣,出在乙中的大多數申請了錄取率低的文學 院,拉低了乙的整體錄取率。

此例仿自1973年發生於美國加州柏克 萊大學的真實案例,甲是男性,乙是 女性。原被懷疑柏克萊歧視女性,經 查各學院申請與錄取人數時才發現非 真歧視。

	甲申請	甲錄取	乙申請	乙錄取
理	500	200	200	100
I	800	320	300	150
文	200	20	1000	150
總計	1500	540	1500	400

Recommended Readings (Required)

- M. Buchanan: The Social Atom Why the Rich Get Richer, Cheaters Get Caught, and Your Neighbor Usually Looks Like You, Bloomsbury USA, 2007. 中譯本:《隱藏的邏輯》, 天下遠見, 2007. 第七章
 - Jordan Ellenberg: "How Not to Be Wrong: The Power of Mathematical Thinking", Penguin Group USA, 2014. (中譯本名稱:《數學教你不犯 錯》,天下文化, 2016.) 第四章
 - United Nations Development Programme, Human Development Reports 2014~2018.
 - 4. 維基百科條目: Gender inequality index、Racial segregation、Simpson's paradox