A Few Exercises About Abstract Measures

- 1. Suppose μ_n is a monotone sequence of measures on the measurable space (X, \mathscr{B}) . Define $\mu(E) = \lim_{n \to \infty} \mu_n(E)$ for any $E \in \mathscr{B}$.
 - (a) Show that μ is a measure if μ_n is increasing; i.e. $\mu_n(E) \leq \mu_{n+1}(E)$ for any n and $E \in \mathscr{B}$.
 - (b) Show that μ may not be a measure if μ_n is decreasing.
- 2. Let μ_1 , μ_2 be finite signed measures on the measurable space (X, \mathscr{B}) . Show that μ_1 and μ_2 has a greatest lower bound μ_* . That is, μ_* is a signed measure such that $\mu_* \leq \mu_1$, μ_2 , and if σ is a signed measure satisfying $\sigma \leq \mu_1$, μ_2 , then $\sigma \leq \mu_*$. Similarly, show that μ_1 and μ_2 has a least upper bound μ^* .
- 3. Suppose $f \ge 0$ is a measurable function on a σ -finite measure space (X, \mathscr{B}, μ) . Show that f is the pointwise limit of an increasing sequence of nonnegative simple functions ϕ_n with each ϕ_n vanishes outside a set of finite μ -measure.
- 4. Suppose $f \ge 0$ is an integrable function on a measure space (X, \mathscr{B}, μ) . Show that the statement in the previous exercise holds even if μ is not σ -finite.
- 5. Suppose f is measurable on a complete measure space (X, \mathscr{B}, μ) and $f = g \mu$ -a.e. Show that g is measurable. Find a counterexample if μ is not complete.
- 6. Suppose f_n are measurable on a complete measure space (X, \mathcal{B}, μ) and f_n converges to $f \mu$ -a.e. Show that f is measurable. Find a counterexample if μ is not complete.