
CHAPTER 7

Introduction to Central Configurations

Recall that equations of motion for the the restricted and non-restricted Newtonian N -body
problem can be written

ẍk =
X

i 6=k

mi(xi � xk)

|xi � xk|3
, k = 1, 2, · · · , N,

where the right-hand side of the equation is the instantaneous acceleration of mass mk. If the
system starts from rest and for each k the right-hand side is pointing toward or away from the
mass center, then the system has zero torque and zero angular momentum. If, additionally, the
right-hand side is in a fixed proportion to the position relative to the mass center, it is easy to see
that the system would collapse in a self-similar way. Configurations and solutions of these types,
called central configurations, are interesting and important for several reasons. We will begin with
equivalent mathematical formulations for such configurations, discuss their significance, and then
show some simple classes of central configurations.

7.1. Definition and equivalent formulations

The position vector x = (x1, · · · , xN ) 2 (Rd)N is often referred to as the configuration of the
system, and vectors {xk} are vertices of the configuration x. We assume the total mass M is strictly
positive, for otherwise we would have a trivial system consisting of zero masses. For convenience,
some notations are introduced for some special positions and vectors:

Notations.

� = {x 2 (Rd)N : xi = xj for some i 6= j}, (collision set)

cx =
1

M
(m1x1 + · · ·+mNxN ), (mass center of x)

Ak =
X

i 6=k

mi(xi � xk)

|xi � xk|3
, (gravitational acceleration of mass mk)

I(x; c) =
NX

k=1

mk|xk � c|2. (moment of inertia about position vector c 2 Rd)

I(x) =
NX

k=1

mk|xk � cx|
2. (moment of inertia about the mass center)

Definition 7.1.1. Given a system of masses m = (m1, · · · ,mN ) 2 RN
+ \ {0}. A non-collision

configuration x = (x1, · · · , xN ) 2 (Rd)N \� is called a central configuration for masses m if there
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54 7. INTRODUCTION TO CENTRAL CONFIGURATIONS

exists some constant �, called the multiplier, such that

��(xk � cx) = Ak, k = 1, 2, · · · , N.(7.1.1)

To put in words, central configurations are special configurations characterized by the property
that the acceleration vector Ak of each mass mk is a constant multiple of the vector from xk to
the mass center cx. The set of central configurations are invariant under similarity transformations;
i.e. compositions of translations, rotations, and scalings. Translations and rotations do not a↵ect
the multiplier, while the scaling x 7! cx changes the multiplier from � to �/c3. Conventionally,
central configurations within the same similarity class are considered equivalent, so the term “central
configurations” is often referred to similarity classes of central configurations.

Now we discuss some alternative formulations for central configurations.

Lemma 7.1.1. The moment of inertia about the mass center can be written

I(x) =
1

M

X

i<j

mimj |xi � xj |
2.

Proof. For any c 2 Rd,

I(x; c) =
NX

k=1

mk|xk|
2 +M |c|2 � 2

NX

k=1

mkhxk, ci =
NX

k=1

mk|xk|
2 +Mhc, c� 2cxi.

In particular, when c = cx we have

I(x) =
NX

k=1

mk|xk|
2
�M |cx|

2.

Therefore

X

i<j

mimj |xi � xj |
2 =

1

2

NX

i=1

NX

j=1

mimj |xi � xj |
2

= M
NX

k=1

mk|xk|
2
�

NX

i=1

NX

j=1

mimjhxi, xji

= M(I(x) +M |cx|
2)� hMcx,Mcxi = MI(x).

⇤
Theorem 7.1.2. Given a system of masses m = (m1, · · · ,mN ) with mk � 0 for each k and

with total mass M > 0, and given a non-collision configuration x = (x1, · · · , xN ) 2 (Rd)N \�. The

followings are equivalent:

(a) x is a central configuration for m with multiplier �;
(b) ��(xi � xj) = Ai � Aj for any i 6= j;
(c)

�

2rI(x) = �rU(x);

(d) x is a critical point of
p
I U and � = U(x)/I(x);

(e)
X

i 6=k

mi

✓
1

|xi � xk|3
�

�

M

◆
(xi � xk) = 0, k = 1, 2, · · · , N.
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Proof. Clearly (a) implies (b). That (b) implies (a) follows from

MAi =
NX

j=1

mj(Ai � Aj) = ��
NX

j=1

mj(xi � xj) = ��M(xi � cx).

Equivalence of (a) and (c) is obvious. Observe that

r
�p

I U
�

=
p

IrU +
U

2
p
I
rI .

Equivalence of (c) and (d) follows from this observation and Euler’s theorem for homogeneous
functions. Equivalence of (c) and (e) follows immediately from Lemma 7.1.1. ⇤

Part (c) of the theorem above justifies the terminology “multiplier” for �; x is a central con-
figuration if and only if it is a constraint extremum of �U restricted to constant levels of 1

2I with
Lagrange multiplier �. Coe�cients �1 and 1

2 reflect degrees of homogeneity of U and I. Existence
of central configuration is clear from formulation (c) since constant levels of I are ellipsoids and U
is positive and smooth except on �, near which U approaches infinity.

Another equivalent formulation is as follows. The term I/U depends not only on mutual dis-
tances rij = |xi � xj | but also on masses m = (m1, · · · ,mN ). It is homogeneous in r = (rij)i<j

of degree �3 and homogeneous in m of degree 1, so the set of dimension-less “shape” variables
u = (uij)i<j given by

uij = rij

✓
�

M

◆ 1
3

reveals the shape of the central configuration, and is independent of the total mass and size. With
this in mind, it is natural to introduce a variable r0 in place of �/M and consider their ratios with
rij ’s:

r0 =

✓
�

M

◆� 1
3

, uij =
rij
r0

.(7.1.2)

In terms of mutual distances rij and r0, the system Theorem 7.1.2 (e) can be written

NX

i=1

mi

✓
1

r3
ik

�
1

r30

◆
(xi � xk) = 0, k = 1, 2, · · · , N.(7.1.3)

In terms of dimension-less variables uij , the above system can be written

NX

i=1

mi

✓
1

u3
ik

� 1

◆
(xi � xk) = 0, k = 1, 2, · · · , N.(7.1.4)

Let �ijk be the oriented area of the triangle with vertices (xi, xj , xk); i.e.

�ijk =
1

2
(xj � xi) ^ (xk � xi).

By taking wedge product of the identity in Theorem 7.1.2 (e) with xj � xk, we find

NX

i=1

mi

✓
1

rik
�

�

M

◆
�ijk = 0.
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Interchange xj and xk and then subtract the two resulting identities, then
X

i 6=j, k

mi

✓
1

rij
�

1

rik

◆
�ijk = 0, 8j 6= k.(7.1.5)

Equations (7.1.5) are called Laura-Andoyer equations for the central configuration x.

Theorem 7.1.3. A non-collinear configuration x = (x1, · · · , xN ) 2 (Rd)N is a central configu-

ration for masses (m1, · · · ,mN ) if and only if (7.1.5) holds.

Proof. It is su�cient to show that (7.1.5) implies Theorem 7.1.2 (b) holds for some constant
�. Assume (7.1.5) holds. Then Aj � Ak and xj � xk are parallel for any j 6= k since

(Aj � Ak) ^ (xj � xk) = = �

X

i 6=j, k

mi

 
1

r3
ij

�
1

r3
ik

!
�ijk = 0.

Let �jk 2 R be chosen so that Aj � Ak = �jk(xj � xk). Clearly �jk = �kj for any j 6= k. What we
need to show is that every �ij is the same.

Given distinct i, j, k 2 {1, 2, · · · , N}. If xi, xj , xk are not collinear, then �ij = �jk = �ik since

0 = (Ai � Aj) + (Aj � Ak) + (Ak � Ai)

= �ij(xi � xj) + �jk(xj � xk) + �ki(xk � xi)

= �ij(xi � xj) + �jk(xj � xk) + �ik((xk � xj) + (xj � xi))

= (�ij � �ik)(xi � xj) + (�jk � �ik)(xj � xk).

Suppose xi, xj , xk are collinear, then there exists some ` 62 {i, j, k} such that x` is not collinear
with them. Then

�ij = �i` = �ik.

The first identity holds because xi, xj , x` are not collinear, the second identity holds because xi,
xk, x` are not collinear. In any case, we have �ij = �ik, so every �ij is the same. ⇤

We finish this section by outlining the significance of central configurations without showing
technical details:

(1) Observed by Laplace, each planar central configuration gives rise to a family of periodic
solutions. To see this, given any elliptical Keplerian orbit k(t) 2 C and any planar central
configuration (a1, · · · , aN ) 2 CN for (1.1.1), the orbit x(t) = (x1(t), · · · , xN (t)) defined by
xi(t) = k(t)ai, 8i, is a periodic solution of (1.1.1). Any relative equilibrium is of the this
form with circular k(t).

(2) If the initial configuration of the N bodies is a central configuration and if it starts with
zero velocity, then the solution has the form x(t) = k(t)x(0), where the scalar function k(t)
is a collinear Keplerian orbit starting with zero velocity. The solution ends in total collapse

(i.e. collision of all N bodies). If a solution ends in total collapse, it is not necessarily a
central configuration but it is asymptotically a central configuration. Therefore, knowledge
of central configurations is important in the study of total collapse.

(3) The topology of the integral manifold M(h,!) ⇢ TV may change as the total energy h
and angular momentum ! vary. Let ⇡ : TV ! V denote the natural projection. In the
planar case, if the topology of the integral manifold bifurcates at the level (h,!), then the
projection ⇡(@M(h,!)) of the boundary of M(h,!) into the configuration space contains
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a central configuration. Let C(h,!) := ⇡(M(h,!)), called the Hill’s region. Bifurcation
points in V at which the topology of Hill’s region changes are also central configurations.

7.2. Examples of central configurations

In this section we introduce some simple classes of central configurations.
(Details to be added for Lagrange’s equilateral triangles (1772), generation by Lehmann-Filhés

(1891), regular n-gon by Perko-Walter (1985). )
Collinear central configurations are also known as Euler-Moulton central configurations in honor

of Euler’s complete classification for the case N = 3 (1762, 1764) and Moulton’s generalization to
general N (1910).

For each 1  i < j  N the set

�ij = {(x1, · · · , xN ) 2 RN : xi = xj}

is an (N � 1)-dimensional subspace with a normal vector ei � ej . It separates RN into two half
spaces: one characterized by xi < xj and the other by xj < xi. Clearly

� =
[

i<j

�ij .

Each component of RN
\� corresponds a specific ordering of collinear configurations, so there is a

total of N ! components.

Theorem 7.2.1. (Moulton’s theorem, 1910)
Given N positive masses m1, · · · ,mN . For any ordering of masses on the line, there is exactly one

similarity class of collinear central configurations.

Proof. Given an ordering, say x1 < x2 < · · · < xN , the component ⌦ of RN
\� consisting of

configurations with this ordering is convex since it is the intersection of half spaces. More generally,
the intersection of convex sets is convex, so the intersection ⌦ \ V is also convex. It is su�cient to
prove that, with a fixed � > 0, there exists unique central configuration in ⌦\ V with multiplier �.
That is, we need to show the function

F (x) =
�

2
I(x) + U(x)

has precisely one critical point in ⌦ \ V .
On V the function F can be expressed as

F (r) =
X

i<j

mimj

✓
�

2
r2ij +

1

rij

◆
, r = (rij)1i<jN .

Then

@2

@r2
ij

F (r) = mimj

 
�+

1

r3
ij

!
> 0.

Given x, y 2 ⌦ \ V . By convexity the line segment `(t) := (1 � t)x + ty, t 2 [0, 1], is contained
entirely in ⌦\ V . The mutual distance rij(t) = |`i(t)� `j(t)| is actually a polynomial in t of degree
 1 when t 2 [0, 1]. This is because x and y have the same ordering, so for each i 6= j the di↵erences
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xi � xj and yi � yj have the same sign. If x 6= y, then for some i < j the mutual distance rij(t) has
degree 1. Now, restricting F to this line segment yields

d2

dt2
F (r(t)) =

X

i<j

mimj

✓
�+

1

rij(t)3

◆
r0ij(t)

2 > 0.

Therefore x and y can not be both critical points of F . This shows that F has at most one critical
point in ⌦ \ V . But since F > 0 and it approaches 1 as x ! @⌦ or |x| ! 1, there must be a
minimum point of F in the interior of ⌦ \ V . This finishes the proof. ⇤

For the case N = 3 here is an alternative approach. Given an ordering, say x1 < x2 < x3 or
x3 < x2 < x1, both of which correspond the constraint r12 + r23 = r13 on mutual distances. Setting
r12 = r, r23 = 1� r, r13 = 1, then x = (x1, x2, x3) is a central configuration if and only if r 2 (0, 1)
is a critical point of

F (r) := I U2 =
1

M

�
m1m2r

2 +m2m3(1� r)2 +m1m3
�✓m1m2

r
+

m2m3

1� r
+m1m3

◆2

.

Note that

F 0(r) =
2m1m2m3

Mr3(1� r)3
f(r)g(r),

where

f(r) = m1m2(1� r) +m2m3r +m1m3r(1� r),

g(r) = (m1 +m3)r
5
� (2m1 + 3m3)r

4 + (m1 + 2m2 + 3m3)r
3

� (m1 + 3m2)r
2 + (2m1 + 3m2)r � (m1 +m2).

Polynomial f(r) is strictly positive on (0, 1), and g has unique root in (0, 1) since g(0) = �(m1+m2),
g(1) = m2 +m3, and

g0(r) = m1(1� r)2(5r2 + 2r + 2) +m2(6r
2
� 6r + 3) +m3r

2(5r2 � 12r + 9) > 0 for r 2 (0, 1).

This proves the existence of unique collinear central configuration with the prescribed ordering.


