
CHAPTER 6

Restricted Three-Body Problem

The restricted three-body problem is the three-body problem with two positive masses and one
zero mass. Although the same phrase may also refer to the three-body problem with two zero masses,
we only consider the case with one zero mass, which exhibits intriguing and complex phenomena,
while the other case is simply the coupling of two independent Kepler problems.

Throughout this chapter we assume masses m1 and m2 are positive, denote their respective
positions by x1, x2 2 Rd, and x2 � x1 is an elliptical Keplerian orbit. Denote the position of the
zero mass m3 by q. Then equation of motion for the zero mass is

q̈ =
m1(x1 � q)

|x1 � q|3
+

m1(x2 � q)

|x2 � q|3
.(6.0.1)

This chapter is merely an introduction to the restricted three-body problem, we shall revisit this
model in several later chapters.

6.1. The planar circular problem

Let x2 � x1 be a circular Keplerian orbit. By suitable choice of mass, time, and length units,
we may assume m1 = 1 � µ, m2 = µ for some µ 2 (0, 1), angular velocity and the gravitational
constant are both equal to 1. Then, by suitable choice of space coordinates, we may assume x1 and
x2 are given by

x1(t) = �µeit, x2(t) = (1� µ)eit.

The equation of motion for the planar circular restricted 3-body problem, abbreviated as (PCR3BD),
becomes an non-autonomous Newtonian mechanical system:

q̈ =
@

@q
U(q, t), where U(q, t) =

1� µ

|x1(t)� q|
+

µ

|x2(t)� q|
.

Introduce a rotating coordinate system on which x1 and x2 are stationary: z = x+ iy = e�itq.
Then the equation above can be easily seen to be equivalent to

ẍ� 2ẏ � x = �
(1� µ)(x+ µ)

�
(x+ µ)2 + y2

�3/2 �
µ(x� 1� µ)

�
(x� 1 + µ)2 + y2

�3/2 ,

ÿ + 2ẋ� y = �
(1� µ)y

�
(x+ µ)2 + y2

�3/2 �
µy

�
(x� 1 + µ)2 + y2

�3/2 .

A briefer formulation is

(ẍ� 2ẏ, ÿ + 2ẋ) = rV,(6.1.1)
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where

V (x, y) =
1

2
(x2 + y2) +

1� µ

⇢1
+

µ

⇢2
,

⇢1 =
p

(x+ µ)2 + y2, ⇢2 =
p
(x� 1 + µ)2 + y2.
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Figure 1. The planar circular restricted 3-body problem in rotating coordinate
system, and the five Lagrange points. Here µ = 0.2, L1 ⇡ 0.438, L2 ⇡ 1.271,
L3 ⇡ �1.083.

The system (PCR3BD) is a Lagrangian system, with Lagrangian

L(x, y, ẋ, ẏ) =
1

2
(ẋ2 + ẏ2) + xẏ � yẋ+ V (x, y).

By setting u = ẋ� y, v = ẏ + x,

H(x, y, u, v) =
1

2
(x2 + y2 + u2 + v2) + yu� xv � V (x, y),

(PCR3BD) can be alternatively expressed as a Hamiltonian system:
8
>>>><

>>>>:

ẋ = y + u = Hu

ẏ = �x+ v = Hv

u̇ = �x+ v + Vx = �Hx

v̇ = �y � u+ Vy = �Hy.

(6.1.2)

Observe that the system (6.1.2) has exactly five equilibrium points. To see this, note that
equilibrium points are given by equations ẋ = ẏ = 0 and

0 = Vx = x


1�

1� µ

⇢31
�

µ

⇢32

�
� µ(1� µ)

✓
1

⇢31
�

1

⇢32

◆
,

0 = Vy = y


1�

1� µ

⇢31
�

µ

⇢32

�
.

If y 6= 0, then the square brackets [ · · · ] in identities above must be zero. From Vx = 0 we
conclude ⇢1 = ⇢2 = 1. This shows that there are exactly two non-collinear equilibrium points,
located (1� 2µ)/2± i

p
3/2, forming equilateral triangles with m1 and m2.
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If y = 0, then Vy = 0. The function

g(x) := V (x, 0) =
x2

2
+

1� µ

|x+ µ|
+

µ

|x� 1 + µ|

has strictly positive second derivative on intervals (�1,�µ), (�µ, 1 � µ), and (1 � µ,1). It
approaches infinity as x approaches boundaries of these intervals, so each interval contains exactly
one critical point. See figure 2. This shows that there are exactly three collinear equilibrium points.

The five equilibrium points are called Lagrange points or libration points. Assuming m1 � m2,
conventional notations for these Lagrange points are L1 ⇠ L5, where L1 ⇠ L3 are collinear, L4 is
the one in the upper half plane, L5 is the one in the lower half plane. The collinear one between
m1 and m2 is L1, the one on m2’s side is L2, the remaining one is L3 (see figure 1).
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Figure 2. The graph of g with µ = 0.2.

Let ⇣ = (x, y, u, v)T , and write the Hamiltonian system (6.1.2) as ⇣̇ = F (⇣).
The linearized system at ⇣0 is

⇣̇ = F (⇣0) +DF (⇣0)(⇣ � ⇣0).

The total derivative of F is given by

DF (⇣) =

0

BB@

0 1 1 0
�1 0 0 1

�1 + Vxx Vxy 0 1
Vxy �1 + Vyy �1 0

1

CCA .

We say an equilibrium solution ⇣0 is spectrally stable if the linearized map DF (⇣0) is diagonaliz-
able and has only pure imaginary eigenvalues. We leave it as an exercise to show that an equilibrium
is unstable if it is not spectrally stable.

Lemma 6.1.1. Eigenvalues of the matrix DF (⇣) has pure imaginary eigenvalues if and only if

the following three conditions hold:

(1) 4� Vxx � Vyy > 0,
(2) VxxVyy � V 2

xy > 0,
(3) (4� Vxx � Vyy)2 > 4(VxxVyy � V 2

xy).

Proof. The characteristic equation of the matrix is

(6.1.3) 0 = det(DF (z)� �I) = �4 + (4� Vxx � Vyy)�
2 + (VxxVyy � V 2

xy).
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Let ⌫ = �2 and rewrite it as

(6.1.4) ⌫2 + (4� Vxx � Vyy)⌫ + (VxxVyy � V 2
xy) = 0.

From this identity we see that eigenvalues of DF (⇣) are pure imaginary if and only if roots ⌫1, ⌫2 of
(6.1.4) are both negative, which is equivalent to (i) ⌫1, ⌫2 are distinct and real, (ii) ⌫1 + ⌫2 < 0, and
(iii) ⌫1⌫2 > 0. These three conditions are exactly the three asserted conditions in the Lemma. ⇤

Theorem 6.1.2. Collinear Lagrange points L1, L2, L3 are unstable; equilateral Lagrange points

L4, L5 are spectrally stable if and only if 27µ(1� µ) < 1.

Proof. Observe that

Vxx = 1 +
1� µ

⇢51

�
3(x+ µ)2 � ⇢21

�
+

µ

⇢52

�
3(x� 1 + µ)2 � ⇢22

�

Vyy = 1 +
1� µ

⇢51

�
3y2 � ⇢21

�
+

µ

⇢52

�
3y2 � ⇢22

�

Vxy = 3y

✓
(1� µ)(x+ µ)

⇢51
+

µ(x� 1 + µ)

⇢52

◆
.

Denote the xy-coordinates of Li by (⇠i, 0), i = 1, 2, 3. Then ⇠3 < �µ < ⇠1 < 1� µ < ⇠2. At L1,
⇢1 = ⇠1 + µ, ⇢2 = 1� µ� ⇠1 = 1� ⇢1. From Vx(L1) = 0 we obtain

⇠1 �
1� µ

⇢21
+

µ

⇢22
= 0; i.e.

1� µ

⇢21
= ⇢1 � µ+

µ

⇢22
Therefore

1� µ

⇢31
+

µ

⇢32
= 1 +

µ

⇢1

✓
�1 +

1

⇢22

◆
+

µ

⇢32
= 1 +

µ

⇢1

✓
1

⇢32
� 1

◆
,

Vxx = 1 + 2

✓
1� µ

⇢31
+

µ

⇢32

◆
= 3 +

2µ

⇢1

✓
1

⇢32
� 1

◆
> 0,

Vyy = 1�

✓
1� µ

⇢31
+

µ

⇢32

◆
= �

µ

⇢1

✓
1

⇢32
� 1

◆
< 0,

Vxy = 0.

The second condition in Lemma 6.1.1 fails to hold, so L1 is unstable. Discussions for L2, L3 are
similar.

At L4 =
⇣
1�2µ
2 ,

p
3
2

⌘
, ⇢1 = ⇢2 = 1, and it can be easily verified that

Vxx =
3

4
, Vyy =

9

4
, Vxy =

3
p
3

4
(1� 2µ).

Therefore the first and second conditions in Lemma 6.1.1 holds. The third condition in Lemma 6.1.1
is equivalent to 27µ(1� µ) < 1. This proves that at L4 eigenvalues of DF are pure imaginary. To
prove spectral stability it remains to show that DF (L4) is diagonalizable when 27µ(1� µ) < 1.

Note that roots of 27µ(1� µ)� 1 are 1
2

⇣
1±

q
23
27

⌘
, Assuming 0 < µ < 1, then

27µ(1� µ) < 1 , 0 < µ <
1

2

 
1�

r
23

27

!
(⇡ 0.03852 · · · )
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At L4, equation (6.1.4) becomes

⌫2 + ⌫ +
27

4
µ(1� µ) = 0.

Its roots are ⌫1 = �
1
2

⇣
1 +

p
1� 27µ(1� µ)

⌘
, ⌫2 = �

1
2

⇣
1�

p
1� 27µ(1� µ)

⌘
. Assuming 27µ(1�

µ) < 1, then ⌫1 6= ⌫2, ⌫1, ⌫2 < 0. This implies (6.1.3) has 4 distinct roots, so DF at L4 is
diagonalizable. The proof for L5 is the same. ⇤

This system has an integral of motion

h =
1

2
(ẋ2 + ẏ2)� V (x, y),

called the Jacobi integral.
Given h 2 R, the Hill region for (PCR3BD) is defined by

H(h) =
�
(x, y) 2 R2 : V (x, y) + h � 0

 
.

It is the region of possible positions for orbits with Jacobi integral h. The topology of Hill’s region
H(h) varies as h changes, and the bifurcation points are exactly Lagrange points. See figure 3.

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

Figure 3. Hill’s regions of (PCR3BD) with µ = 0.2.


