
CHAPTER 5

Lambert’s Problem

5.1. Rectilinear Lambert’s Problem

Lambert’s problem is boundary value problem for the Kepler problem. It concerns the deter-
mination of the Keplerian orbit from one point is space to another using a predetermined transfer
time. The problem has important applications in space mission designs and targeting problems.

In this section we deal with the rectilinear case. The rectilinear Kepler problem is the one-
dimensional Kepler problem. This is a simple special case which deserves special attention, for its
behavior exhibits several fundamental features of general N -body problems, and its regularization
provides a handy tool for analysis of double collisions.

Let us begin with a special solution – the parabolic ejection orbit xpe given by

xpe(t) = cpe t
2
3 , where cpe =
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◆ 1
3

.(5.1.1)

It is easy to check that this is the only solution for (3.1.1) of the form c t�, and it is indeed parabolic.
Consider the rectilinear Kepler problem along the positive real axis with boundary conditions:

µẍ = � ↵

x2
, x(0) = x0, x(T ) = x1, 0  x0 < x1.(5.1.2)

By conservation of energy, solution curves are given by
µ

2
ẋ2 � ↵

x
=: h = Constants.(5.1.3)

Figure 1 shows typical phase curves of the di↵erential equation (5.1.2). Along the positive real axis
ẋ is decreasing, so the flow along these phase curves are downward.

When h < 0, x is bounded above by �↵/h; when h = 0, x goes to infinity as |ẋ| approaches 0;
when h > 0, |ẋ| >

q
2h
µ

and x goes to infinity as |ẋ| approaches
q

2h
µ
+. Let

xmax =

⇢
�↵/h, when h < 0,

1 when h � 0.

Then xmax is the least upper bound of x.
Consider orbits with negative energy. For elliptical orbits the energy H equals � ↵

2a , while in
rectilinear case the energy h equals � ↵

xmax
. We shall therefore call a := 1

2xmax the semi-major axis
for this case, so that the total energy equals � ↵

2a in both planar and rectilinear cases.
If we let T (x0, x1, h) > 0 be the transfer time from x0 to x1 following an orbit with energy h,

then there are cases for which T is undefined. When h � 0, T (x0, x1, h) is well-defined since there
exists unique solution for (5.1.2). When h < 0, T (x0, x1, h) is well-defined if x1 = xmax, undefined
if x1 > xmax, and is double-valued if x1 < xmax. These observations are evident from figure 1.
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Figure 1. Integral curves of the rectilinear Kepler problem. Phase curve crosses
the x-axis if and only if h < 0.

For x1  xmax we let T1(x0, x1, h) be the first time the rectilinear orbit passes x1. For elliptic
orbits (i.e. h < 0) we let T2(x0, x1, h) be the second time it passes x1. Then T1(x0, xmax, h) <
T2(x0, xmax, h) and

T1(x0, x1, h) = T1(0, x1, h)� T1(0, x0, h),

T2(x0, x1, h) = T2(0, x1, h)� T1(0, x0, h),

T2(0, x1, h) = T1(0, xmax, h) + T1(x1, xmax, h).

Therefore, to determine the relation between transfer time and energy, we only need a general
formula for T1(0, x, h).

Given ⇠ > 0, let x be the solution curve which goes from 0 to ⇠ using transfer time T1(0, ⇠, h).
Then for t 2 (0, T1(0, ⇠, h)) we have ẋ > 0 and from (5.1.3) we have
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r
2

µ

⇣
h+

↵

x

⌘
.

Thus, for h < 0,

T1(0, ⇠, h) =
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The righthand side can be easily evaluated using the integral formula:

c > 0,

Z
s dsp

�s2 + cs
= �

p
�s2 + cs+ c sin�1
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The case h > 0 is similar but we shall use another integral formula:

c > 0,

Z
s dsp
s2 + cs
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When h = 0, we have
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This can be also obtained from (5.1.1) by observing the solution xpe is parabolic.
To summarize, we find
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(5.1.4)

See figure 2 for graphs of these transfer times.
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Figure 2. Left: graphs of transfer time T1(0, x, h) (black) and T2(0, x, h) (gray) as
functions of x. Energies ranges from �1.6 to �0.2. Right: graphs of transfer time
T1(0, x, h) as functions of x. Energies ranges from 0 to 2.

5.2. Planar Lambert’s problem


