
CHAPTER 4

Kepler’s Equation

4.1. Derivation of Kepler’s equation

As soon as the trajectory (semi-major axis and eccentricity) of a Keplerian orbit is determined,
the next question is to describe the dynamics on it. Namely, we wish to determine the position of
the celestial body as a function of time. To this end we need the concept of apsis and anomalies.

For convenience we set the phase angle ✓0 = 0 throughout this chapter, so that the Keplerian
orbit x = rei✓ are given by

r(✓) =
p

1 + e cos ✓
=

a(1� e2)

1 + e cos ✓
.

We also assume the true anomaly ✓ satisfies ✓̇ > 0, so that the scalar angular momentum is strictly
positive, and the eccentric or hyperbolic anomaly  satisfies  ̇ > 0.

Definition 4.1.1. An apsis is the point of greatest or least distance from the attractive focus
F . The point of least distance is called the periapsis or pericenter. For elliptic orbits, the point of
greatest distance is called the apoapsis or apocenter.1

Denote the minimum value of t by rmin and the its maximum value for elliptic orbits by rmax.
Then clearly

rmin =
p

1 + e
; rmax =

p

1� e
.

By conservation of energy, the maximum speed vmax occurs at periapsis and, for elliptic orbits, the
minimum speed vmin occurs at apoapsis. Following from (3.3.2) and (3.3.8), they are given by

vmax =

r
↵

pµ
(1 + e) =

s✓
1 + e

1� e

◆
↵

aµ
; vmin =

r
↵

pµ
(1� e) =

s✓
1� e

1 + e

◆
↵

aµ
.

Definition 4.1.2. Let ! be the mean motion; i.e. the average angular velocity ! = 2⇡/T ,
where T is the period. According to Kepler’s third law, we may define the mean motion using the
semi-major axis:

! =

r
↵

µ|a|3 .(4.1.1)

Let t be the time since the last periapsis passage. The mean anomaly is defined by

M = ! t.(4.1.2)

1There are several synonyms. When the attractive focus F is Sun, the periapsis is often called the perihelion

and the apoapsis is often called the aphelion. If the attractive focus F is Earth, then the periapsis if often called the
perigee and the apoapsis is often called the apogee.
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36 4. KEPLER’S EQUATION

Equations (3.2.6) and (3.2.7) determine relations between the true anomaly ✓ and the eccentric
anomaly  . The Kepler equation determines their relationships with the mean anomaly:

Theorem 4.1.1. (The Kepler equation)
For elliptic Keplerian orbits, the mean anomaly M and eccentric anomaly  are related by

M =  � e sin .

Proof. Let x = rei✓ be as in (3.3.5). For convenience, and without loss of generality, we assume
✓(0) = ✓0 = 0. Let T be the period of the elliptical orbit. Given 0  ⌧ < T . By (3.2.7), the area of
the sector swept by the position vector x for t 2 [0, ⌧ ] is

1

2

Z
✓(⌧)

0
r2 d✓ =

a2

2

Z
 (⌧)

0
(1� e cos )2

d✓

d 
d =

ab

2
( (⌧)� e sin (⌧)).

By Kepler’s second law, the areal velocity is constant, so the area of the above mentioned sector
also equals

(Area of ellipse) t

T
=

(⇡ab)!⌧

2⇡
=

ab

2
M(⌧).

This finishes the proof. ⇤
The proof above is essentially contained in the derivation of Kepler’s third law. Expressing semi-

major axis a and semi-minor axis b in terms of p and e has the advantage of including non-elliptical
cases; using the formula (3.3.6) for areal velocity, calculations above can be written

p2

2(1� e2)3/2
( (⌧)� e sin (⌧)) =

1

2

Z
✓(⌧)

0
r2 d✓ =

1

2

Z
⌧

0
r2✓̇ dt =

1

2

r
p↵

µ
⌧ =

1

2

p
pa3M(⌧)

=
p2

2(1� e2)3/2
M(⌧).

Since the mean anomaly M is a linear function in time t, Kepler’s equation determines the
eccentric anomaly  as a function of t, and so r and ✓ can be expressed in terms of t. This gives
us precise location of the planet at any given time. A natural question arises: How do we express
 in terms of t? This will be the subject of the next two sections.

Now let us turn to hyperbolic orbits. In this case we do not use “period” to define mean motion,
but the definition of mean motion in (4.1.1) still make sense, and so is (4.1.2). When h > 0 the
mean anomaly is also known as the hyperbolic mean anomaly.

Theorem 4.1.2. (The hyperbolic Kepler equation)
For hyperbolic Keplerian orbits, the mean anomaly MH and hyperbolic eccentric anomaly  H are

related by

MH = e sinh H �  H.

The proof is similar to the elliptic case and is left to the reader.
Lastly, we turn to parabolic orbits. In this case the semi-major axis is infinity and so the mean

motion in (4.1.1) is simply zero. However, using

r(✓) =
p

1 + cos ✓
=

p

2

✓
1 + tan2

✓

2

◆
,
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Figure 1. Kepler’s equation. Left: Graph of M as function of  , eccentricity from
0 to 1 with increment 0.2. Right: Graph of MH as function of  H, eccentricity from
1 to 2 with increment 0.2.

the calculation for the area of sector swept by the position vector can be expressed in terms of p:

1

2

Z
✓(⌧)

0
r2 d✓ =

p2

8

Z
✓(⌧)

0

✓
1 + tan2

✓

2

◆2

d✓ =
p2

4

✓
tan

✓

2
+

1

3
tan3

✓

2

◆
.

Substitutes for eccentric and mean anomalies are

 P = tan
✓

2
, MP = 2

r
↵

µp3
t.(4.1.3)

Again, here t is the time since the last periapsis passage. We call  P the parabolic eccentric anomaly

or simply the parabolic anomaly, and call MP the parabolic mean anomaly.

Theorem 4.1.3. (The parabolic Kepler equation)
For parabolic Keplerian orbits, the parabolic mean anomaly MP and the parabolic anomaly  P are

related by

MP =  P +
1

3
 3

P
.

A natural question arises: How do we express eccentric (or parabolic, hyperbolic) anomaly  
in terms of the mean anomaly M? Resolving this problem allows an explicit description of position
vector as function of time. This is the subject of the next two sections.
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4.2. Lagrange’s method of power series

A direct and simple way of solving Kepler’s equations is by iteration, due to Lagrange in 1771.
Assume 0  e ⌧ 1. Consider the Taylor series of  in powers of e.

 = M + e sin 

= M +O(e) as e ! 0.

)  = M + e sin(M +O(e))

= M + e sinM +O(e2).

)  = M + e sin(M + e sinM +O(e2))

= M + e sinM +
e2

2
sin 2M +O(e3).

The last line uses sin(M + e sinM +O(e2)) = sinM +cosM sinMe+O(e2), obtained by expanding
the lefthand side as series of e.

Continue this process,

 = M + e sin(M + e sinM +
e2

2
sin 2M +O(e2))

= M + e sinM +
e2

2
sin 2M +

e3

2
cosM sin 2M +O(e4)

= M + e sinM +
e2

2
sin 2M + e3

✓
3

8
sin(3M) � 1

8
sinM

◆
+O(e4)

= · · ·

= M +
1X

k=1

ak(M)ek.

The coe�cient ak is a linear combination of sin(jM) with 0  j  k. Radlus of convergence e⇤

is approximately 0.662743, called the Laplace limit.

4.3. Bessel’s method of Fourier series

The Bessel functions Jn of the first type are given by

Jn(x) =
1

⇡

Z
⇡

0
cos(n✓ � x sin ✓)d✓.

They solve the Bessel di↵erential equation:

x2
d2y

dx2
+ x

dy

dx
+ (x2 � n2)y = 0

and have the following simple and fast converging series expansion:

Jn(x) =
1X

k=0

(�1)kx2k+n

22k+nk!(n+ k)!
.(4.3.1)

Bessel functions of the first type arise naturally in solving the Laplace equation using separation of
variables. Their origin is Bessel’s approach for the Kepler equation using Fourier series.
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Figure 2. Bessel functions of the first kind

Observing the solution of the Bessel di↵erential equation in integral form is nontrivial but the
verification is simple:

J 0
n(x) =

1

⇡

Z
⇡

0
sin(n✓ � x sin ✓) sin ✓d✓

=
1

⇡

"
� sin(n✓ � x sin ✓) cos ✓

����
✓=⇡

✓=0

+

Z
⇡

0
cos(n✓ � x sin ✓)(n� x cos ✓) cos ✓d✓

#

=
1

⇡

Z
⇡

0
cos(n✓ � x sin ✓)(n� x cos ✓) cos ✓d✓

J 00
n(x) =

�1

⇡

Z
⇡

0
cos(n✓ � x sin ✓) sin2 ✓d✓.

Therefore

x2J 00
n(x) + xJ 0

n(x) + (x2 + n2)Jn(x)

=
1

⇡

Z
⇡

0
cos(n✓ � x sin ✓)

�
� x2 sin2 ✓ + x(n� x cos ✓) cos ✓ + x2 � n2

�
d✓

=
�n

⇡

Z 1

0
cos(n✓ � x sin ✓)(nx cos ✓ � n2)d✓

=
n

⇡
sin(n✓ � x sin ✓)

����
⇡=✓

0=0

= 0.

From Bessel’s di↵erential equation one can use the method of power series to verigy (4.3.1).
Let  = g(M). Then g(0) = 0, g(⇡) = ⇡, and g is an odd function. Therefore g(M)�M is an

odd function which equals zeros at 0 and ⇡. This allows us to uniformly approximate it by Fourier
sine series. Set

g(M)�M =
1X

n=1

bn(e) sin(nM), 0  M  ⇡.
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Fourier coe�cients bn(e) are determined by

b⇡(e) =
2

⇡

Z
⇡

0
(g(M)�M) sin(nM)dM

=
2

n⇡

Z
⇡

0
(g0(M)� 1) cos(nM)dM (use integration by parts)

=
2

n⇡

Z
⇡

0
cosnMdg(M)

By Kepler’s equation,

M =  � e sin = g(M)� e sin g(M),

we conclude

bn(e) =
2

n⇡

Z
⇡

0
cos(n � ne sin )d =

2

n
Jn(ne).

Therefore

 = M +
1X

n=1

✓
2

n
Jn(ne)

◆
sinnM.(4.3.2)

This is Bessel’s solution for the Kepler equation.


