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4.2. Use Hölder’s inequality to prove Minkowski’s integral inequality.

4.3. Verify that kernels {Kδ} in the proof of Theorem 4.5 satisfies (1), (2), (3) stated at the
beginning of this section.

4.4. Suppose 1 ≤ p, q ≤ ∞ and 1
p + 1

q = 1. Show that if f ∈ Lp(Rn), g ∈ Lq(Rn), then
f ∗ g ∈ C0(Rn).

4.5. Show that f(x) = e−
1
x2
−x2

χ(0,∞) belongs to S(R), and g(x) = f(x− a)f(b− x) ∈ C∞0 (R),
where a < b are fixed.

4.6. Given bounded open sets G1 ⊂ G2 such that G1 ⊂ G2. Construct a function f ∈ C∞0 such
that f = 1 on G1 and f = 0 on Gc2.

5. Linear Transformations

This section is brief introduction to the concepts of bounded linear operators and dual spaces.
Those who unacquainted with undefined concepts here are referred to any standard textbook on lin-
ear algebra. Those who discontented with brevity of discussions herein are referred to any standard
textbook on functional analysis. For concepts intimately related to our discussions for Lp spaces,
we prove them here.

In this section we consider only normed spaces, even though many concepts can be extended
to more general topological vector spaces. For convenience, we shall use the same notation ‖ · ‖ for
norms of various spaces, and we shall simply write X for (X, ‖ · ‖), for instance. It is often evident
which norm we are referring to. When it is necessary to avoid confusion, we denote its norm by
‖ · ‖X .

Definition 5.1. Given two normed spaces X and Y , a linear transformation (operator) T :
X → Y is said to be bounded if there exists some M > 0 such that

‖Tx‖ ≤ M‖x‖ for any x ∈ X.
Denote the space of bounded linear operators from X to Y by B(X,Y ).

Theorem 5.1. A linear operator T : X → Y is bounded if and only if it is continuous.

Proof. Clearly any bounded linear operator is Lipschitz continuous. If T is continuous, then
T−1(B1(0)) ⊃ Bδ(0) for some δ > 0. Then, whenever ‖x‖ ≤ 1, we have

‖Tx‖ =
2
δ

∥∥∥∥T (δ2x
)∥∥∥∥ ≤ 2

δ
.

For general x, we have ‖Tx‖ = ‖T
(
x
‖x‖
)
‖ ‖x‖ ≤ 2

δ‖x‖. Thus T is bounded. �

It is a simple exercise to show that

sup
‖x‖=1

‖Tx‖ = sup
x 6=0

‖Tx‖
‖x‖

= sup
‖x‖≤1

‖Tx‖ = inf{M : ‖Tx‖ ≤M‖x‖ ∀x ∈ X}.

Their common value is denoted by ‖T‖. This notation is justified in the following theorem.

Theorem 5.2. B(X,Y ) with the function T 7→ ‖T‖ is a normed space. If Y is a Banach space,
then so is B(X,Y ).
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Proof. We only verify the triangle inequality for ‖ · ‖, for the other two axioms of norm are
obvious here. Given S, T ∈ B(X,Y ), and x ∈ V .

‖(S + T )x‖ = ‖Sx+ Tx‖ ≤ ‖Sx‖+ ‖Tx‖ ≤ ‖S‖ ‖x‖+ ‖T‖ ‖x‖.
This implies the triangle inequality ‖S + T‖ ≤ ‖S‖+ ‖T‖.

Given a Cauchy sequence {Tn} in B(X,Y ). For any x ∈ V , the sequence {Tnx} is a Cauchy
sequence in Y , and so it converges. Let T : X → Y be defined by Tx = limn→∞ Tnx. Clearly T is
linear. Given ε > 0, choose N such that ‖Tn − Tm‖ < ε for all n,m ≥ N . Fix n ≥ N and x ∈ X,

‖Tnx− Tx‖ = lim
m→∞

‖Tnx− Tmx‖ ≤ ε‖x‖.

Therefore,
‖Tx‖ ≤ ‖Tx− TNx‖+ ‖TNx‖ ≤ (ε+ ‖TN‖)‖x‖.

This shows that T is bounded. Furthermore,

‖Tn − T‖ = sup
‖x‖=1

‖Tnx− Tx‖ ≤ ε for any n ≥ N.

This implies that ‖Tn − T‖ → 0 as n→∞, since ε > 0 is arbitrary. �

A simple fact worth mentioning is: any composition of bounded linear operators is a bounded
linear operator. Indeed, if S ∈ B(X,Y ), T ∈ B(Y,Z), then TS ∈ B(X,Z) and ‖TS‖ ≤ ‖T‖ ‖S‖
since

‖TSx‖ ≤ ‖T‖ ‖Sx‖ ≤ ‖T‖ ‖S‖ ‖x‖ for any x ∈ X.
Example 5.1. Given g ∈ L1(Rn), 1 ≤ p ≤ ∞. Define the convolution operator G : Lp(Rn) →

Lp(Rn) by G(f) = f ∗ g. Lemma 4.1 tells us that G is a bounded linear operator and ‖G‖ ≤ ‖g‖1.
More generally, if 1

p + 1
q = 1 + 1

r , g ∈ Lq(Rn), then Young’s convolution inequality (exercise 4.1)
tells us that G : Lp(Rn)→ Lr(Rn) is a bounded linear operator and ‖G‖ ≤ ‖g‖q.

Definition 5.2. A linear functional f on a normed space X over F (= R or C) is a linear
transformation from X to F. The space B(X,F) of bounded linear functionals on X is called the
dual space of X. It is usually denoted by X∗.

Corollary 5.3. The dual space X∗ of any normed space X over R or C is a Banach space.

Definition 5.3. Given T ∈ B(X,Y ). The adjoint of T , denoted by T ∗, is a linear operator
from Y ∗ to X∗ defined by

(T ∗y∗)(x) = y∗(Tx),

where y∗ ∈ Y ∗, x ∈ X. In other words, T ∗y∗ = y ◦ T .

It is straightforward to verify that T ∗ is linear. T ∗y∗ is indeed a bounded linear functional on
X since it is simply composition of y∗ and T . Moreover, T ∗ ∈ B(Y ∗, X∗) since

‖T ∗y∗‖ = ‖y∗ ◦ T‖ = sup
‖x‖=1

‖y∗(Tx)‖ ≤ sup
‖x‖=1

‖y∗‖ ‖Tx‖ ≤ ‖T‖‖y∗‖ for any y∗ ∈ Y ∗.

A frequently used notation for x∗(x) is 〈x∗, x〉, where x∗ ∈ X∗ and x ∈ X.

Remark 5.1. If S ∈ B(X,Y ), T ∈ B(Y,Z), then (TS)∗ = S∗T ∗. This follows trivially from the
definition of adjoint:

(TS)∗z∗ = z∗ ◦ (TS) = (z∗ ◦ T ) ◦ S = S∗(T ∗z∗) = (S∗T ∗)z∗ for any z∗ ∈ Z∗.
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Definition 5.4. Two normed spaces X, Y are said to be isomorphic if there exists a bijective
T ∈ B(X,Y ) with inverse T−1 ∈ B(Y,X). Such an operator T is called an isomorphism. We say X,
Y are isometrically isomorphic if there exists an isomorphism T : X → Y which is also an isometry.

Two normed spaces are considered equivalent if they are isometrically isomorphic. This clearly
defines an equivalence relation on the class of Banach spaces.

Now we state some facts without proof. They can be served as incentives to consider isometric
isomorphisms and separable Banach spaces.

Example 5.2. Given any normed space X, there exists a canonical isometric isomorphism τ
from X to a subspace of X∗∗. It is defined by τ(x)(x∗) = x∗(x). The mapping τ is often called the
canonical embedding from X to X∗∗. For convenience, the term τ(x) is often written x, and thus
we regard elements in X as elements in X∗∗.

Definition 5.5. We say a normed space X is reflexive if the canonical embedding τ : X → X∗∗

is an isomorphism.

Note that, by Corollary 5.3, any reflexive normed space is a Banach space.

Example 5.3. Every separable Banach is isometrically isomorphic to a closed subspace of
C0[0, 1]. This is known as the Banach-Mazur theorem. Note that the space Q[t] of polynomi-
als with rational coefficients is a countable dense subset of C0[0, 1] (by Weierstrass approximation
theorem, or Stone-Weierstrass theorem). The Banach-Mazur theorem tells us that C0[0, 1] is the
“largest” separable Banach space.

Exercises.

5.1. Verify identities above Theorem 5.2.

5.2. Given 1 < p < ∞, 1
p + 1

q = 1. Suppose K ∈ Lq(Rn × Rn). Consider the integral operator
T defined by

T (f)(x) =
∫

Rn
K(x, y)f(y) dy, f ∈ Lp(Rn).

(a) Given f ∈ Lp(Rn). Show that for almost every x, the function K(x, y)f(y) is integrable
with respect to y.

(b) Show that T is a bounded operator from Lp(Rn) to Lq(Rn), and ‖T‖ ≤ ‖K‖q.

5.3. Assume the following axiom1:
For any linear subspace X0 of X, ` ∈ X∗0 , there exists ˜̀∈ X∗ such that ˜̀ |X0= ` and ‖˜̀‖ = ‖`‖.

Now prove the following statements under this assumption.
(a) For any x ∈ X, ‖x‖ = sup{|x∗(x)| : x∗ ∈ X∗, ‖x∗‖ ≤ 1}.

(Hint: Consider a function which sends αx to α‖x‖, where α is a scalar.)
(b) For any T ∈ B(X,Y ), ‖T‖ = sup{|y∗(Tx)| : y∗ ∈ Y ∗, ‖y∗‖ ≤ 1, x ∈ X, ‖x‖ ≤ 1}.
(c) ‖T‖ = ‖T ∗‖ for any T ∈ B(X,Y ).
(d) The canonical embedding τ : X → X∗∗ in Example 5.2 is an isometric isomorphism from

X to τ(X).

1It is a special case of a more general statement known as the Hahn-Banach theorem, which is a consequence of
the axiom of choice.
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6. Dual Space of Lp

In this section we characterize the dual space of Lp(I), where I is an interval. A more general
theorem will be proved after general measures and integrals were introduced.

The key ingredients of the proof are the following two lemmas. The first one says that, roughly
speaking, any bounded linear functional on Lp(I) induces a canonical indefinite integral. Gener-
alization of this lemma to higher dimensional spaces requires further knowledge about indefinite
integrals.

Lemma 6.1. Let I be a bounded interval, Ī = [a, b], 1 ≤ p < ∞. For any G ∈ Lp(I)∗, there
exists g ∈ L1(I) such that G(χA) =

∫
A g for any measurable set A ⊂ I.

Proof. Without loss of generality, assume I = [a, b]. Let B be the σ-algebra of measurable sets
in I. First note that G(χA) = G(χB) if A∆B has measure zero. Let φ(s) = G(χ[a,s]), s ∈ I. Then
for any subinterval [s, t] ⊂ I,

φ(t)− φ(s) = G(χ[a,t])−G(χ[a,s]) = G(χ[a,t] − χ[a,s]) = G(χ[s,t]).

Given nonoverlapping subintervals {[ai, bi] : i = 1, · · · , n} of I with total length δ.
n∑
i=1

|φ(bi)− φ(ai)| =
n∑
i=1

(φ(bi)− φ(ai)) sgn (φ(bi)− φ(ai))

=
n∑
i=1

G(χ[ai,bi]) sgn (φ(bi)− φ(ai))

= G

(
n∑
i=1

sgn (φ(bi)− φ(ai))χ[ai,bi]

)

≤ ‖G‖

∥∥∥∥∥
n∑
i=1

sgn (φ(bi)− φ(ai))χ[ai,bi]

∥∥∥∥∥
p

≤ ‖G‖δ1/p.

This implies that φ ∈ AC[a, b]. By the fundamental theorem of calculus, g = φ′ ∈ L1(I) and

G(χ[s,t]) = φ(t)− φ(s) =
∫ t

s
g(u) du for any subinterval [s, t] ⊂ I.

It follows that G(χA) =
∫
A g for any A ∈ B (exercise 6.1). �

Lemma 6.2. Let 1 ≤ p <∞, 1
p + 1

q = 1. Let E ⊂ R be measurable. Suppose g ∈ L1(E) and for
some M > 0, ∣∣∣∣∫

E
ϕg

∣∣∣∣ ≤M‖ϕ‖p
for any simple function ϕ. Then g ∈ Lq(E) and ‖g‖q ≤M .

Proof. Assume 1 < p < ∞. Let ψn be a sequence of nonnegative simple functions such that

ψn ↗ |g|q. Let ϕn = ψ
1
p
n sgn(g). Then ϕn is a simple function and

ϕng = ψ
1
p
n |g| ≥ |ψn|

1
p

+ 1
q = |ψn|.
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Then, ∫
E
ψn ≤

∫
E
ϕng ≤M‖ϕn‖p = M

(∫
E
ψn

) 1
p

,

implying that
∫
E ψn ≤ M q. By the monotone convergence theorem,

∫
E |g|

q ≤ M q. The case p = 1
is left to the reader (exercise 6.2). �

Theorem 6.3. (Riesz Representation Theorem for Lp(I), I ⊂ R)
Suppose 1 ≤ p < ∞, 1

p + 1
q = 1, I ⊂ R is an interval. For any G ∈ Lp(I)∗, there exists unique

g ∈ Lq(I) such that

G(f) =
∫
E
fg for any f ∈ Lp(I).

Moreover, ‖G‖ = ‖g‖q. The map G 7→ g is an isometric isomorphism from Lp(I)∗ to Lq(I).

Proof. Denote the σ-algebra of measurable sets in I by B. Consider the case Ī = [a, b]. By
Lemma 6.1, there exists g ∈ L1(I) such that G(χA) =

∫
A g for any A ∈ B.

Given any simple function ϕ =
∑n

i=1 aiχEi , where {Ei} ⊂ B are disjoint.

G(ϕ) =
n∑
i=1

aiG(χEi) =
n∑
i=1

ai

∫
Ei

g =
n∑
i=1

ai

∫
E
χEig =

∫
I
ϕg.

Therefore, ∣∣∣∣∫
I
ϕg

∣∣∣∣ = |G(ϕ)| ≤ ‖G‖ ‖ϕ‖p.

By Lemma 6.2, g ∈ Lq(I) and ‖g‖q ≤ ‖G‖. Consider the linear functional G̃ on Lp(I) defined by
G̃(f) =

∫
I fg. It is clearly continuous, by Hölder’s inequality. Since simple functions are dense in

Lp(I), we see that G = G̃. Hölder’s inequality also tells us that ‖G‖ ≤ ‖g‖q, and so ‖g‖q = ‖G‖.
The function g ∈ Lq(I) is unique, for if G(f) =

∫
E fg̃ for all f ∈ Lp(I), we would have∫

I
f(g − g̃) = 0 for all f ∈ Lp(I).

Then g − g̃ gives the zero functional on Lp(I), so that ‖g − g̃‖q = 0. That is, g = g̃ in Lq(I).
Now we consider unbounded interval I. Let {In} be an increasing sequence of bounded intervals

such that
⋃∞
n=1 In = I. Then for any n, there exists unique gn ∈ Lq(I) such that gn = 0 on Icn and

G(f) =
∫
I
fgn for any f ∈ Lp(I) with f = 0 on Icn.

Moreover, ‖gn‖q ≤ ‖G‖. By uniqueness, gn+1 = gn a.e. on In for each n. We may assume without
loss of generality that gn+1 = gn on In. Then the function

g(x) := gn(x), x ∈ In
is well-defined on I. Furthermore, |gn(x)| ↗ |g(x)| as n → ∞. By the monotone convergence
theorem, ∫

I
|g|q = lim

n→∞

∫
I
|gn|q ≤ ‖G‖q.
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In particular, g ∈ Lq(I), ‖g‖q ≤ ‖G‖. For any f ∈ Lp(I), let fn = f χIn . Then |fn| ≤ |f |, fn → f
pointwise on I as n→∞. It follows that ‖gn−g‖q → 0, ‖fn−f‖p → 0 (see exercise 3.6), and hence

‖fngn − fg‖1 ≤ ‖(fn − f)gn‖1 + ‖f(gn − g)‖1
≤ ‖fn − f‖p ‖gn‖q + ‖f‖p ‖gn − g‖q → 0 as n→∞.

Then, by continuity of G on Lp(I),∫
I
fg = lim

n→∞

∫
I
fngn = lim

n→∞
G(fn) = G(f).

Moreover, ‖G‖ ≤ ‖g‖q, and so ‖g|q = ‖G‖. Uniqueness of such g follows as in the case of bounded
I. This completes the proof. �

Corollary 6.4. If 1 < p <∞, then Lp(I) is reflexive.

This is an immediate consequence of the Riesz representation theorem for Lp(I).

Exercises.

6.1. Let I ⊂ R be a bounded interval. Given 1 ≤ p < ∞, G ∈ Lp(I)∗, g ∈ L1(I). Suppose
G(χJ) =

∫
J g on any subinterval J ⊂ I. Show that G(χA) =

∫
A g for any measurable set A ⊂ I.

6.2. Prove Lemma 6.2 for the case p = 1.

6.3. Let I ⊂ R be an interval. Suppose g ∈ L∞(I). Show that for any ε > 0 there exists
f ∈ L1(I), ‖f‖1 6= 0, such that ∫

I
fg ≥ ‖f‖1(‖g‖∞ − ε).

6.4. Let I = [0, 1]. Consider the linear functional G on C(I) defined by G(f) = f(1). Use
this linear functional and the assumption in Exercise 5.3 to show that L1(I) is not isometrically
isomorphic to L∞(I)∗.

6.5. Determine a representation for (`p)∗, 1 ≤ p <∞.


