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4. Dense Subspaces of Lp

In the proof of Theorem 3.4 we constructed a countable collection of step functions which is
dense in Lp(E). These step functions are linear combinations of characteristic functions on some
dyadic cubes. This implies that the space of simple functions is also dense in Lp(Rn). In this section
we prove that the space of smooth functions with compact supports, and the space of functions with
rapidly decreasing derivatives are also dense in L(Rn).

Let us begin by recalling that (L1(Rn), ∗) is a commutative algebra without identity, but there
are “good kernels” {Kδ} which approximate the identity in the sense that, for any f ∈ L1(Rn),

f ∗Kδ → f a.e. and ‖f ∗Kδ − f‖1 → 0 as δ ↘ 0.

For example, kernels satisfying the following conditions are approximations to the identity:

(1)
∫
Kδ = 1 for any δ > 0.

(2) There exist some C > 0 such that |Kδ| ≤ C
δn for any δ > 0.

(3) There exist some C ′ > 0 such that |Kδ(x)| ≤ C′δ
|x|n+1 for any δ > 0, x ∈ Rn \ {0}.

Conditions (2) and (3) imply

(4) There exist some C > 0 such that
∫
Kδ = 1 and

∫
|Kδ| < C for any δ > 0.

(5) For any η > 0,
∫
|x|≥η |Kδ(x)|dx→ 0 as δ ↘ 0.

Recall also that, for any f, g ∈ L1(Rn), f ∗ g ∈ L1(Rn) and

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1.

We may extend these results to Lp(Rn) for 1 ≤ p <∞, based on two auxiliary inequalities:

Lemma 4.1. Given 1 ≤ p ≤ ∞.

(a) If f ∈ Lp(Rn), g ∈ L1(Rn), then f ∗ g ∈ Lp(Rn) and

‖f ∗ g‖p ≤ ‖f‖p‖g‖1.

(b) (Minkowski’s integral inequality)
If 1 < p <∞, f ∈ Lp(Rn × Rn), then

[∫
Rn

∣∣∣∣∫
Rn
f(x, y)dx

∣∣∣∣p dy] 1
p

≤
∫

Rn

[∫
Rn
|f(x, y)|pdy

] 1
p

dx.

Both inequalities are simple applications of Hölder’s inequality. The first one is a special case
of Young’s convolution inequality (see exercise 4.1). We leave details and proofs as exercises.

Lemma 4.2. Given 1 ≤ p ≤ ∞. If f ∈ Lp(Rn), g ∈ Cm0 (Rn), 0 ≤ m ≤ ∞, then f ∗ g ∈ Cm0 (Rn)
and Dα(f ∗ g) = f ∗Dαg for any multi-index α with |α| ≤ m.
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Proof. Let q = p
p−1 be the conjugate exponent of p. Consider m = 0. Given h ∈ Rn,

|(f ∗ g)(x+ h)− (f ∗ g)(x)| =
∣∣∣∣∫

Rn
f(x+ h− y)g(y)dy −

∫
Rn
f(x− y)g(y)dy

∣∣∣∣
=

∣∣∣∣∫
Rn
f(x− y)g(y + h)dy −

∫
Rn
f(x− y)g(y)dy

∣∣∣∣
=

∣∣∣∣∫
Rn
f(x− y)[g(y + h)− g(y)]dy

∣∣∣∣
≤ ‖f‖p‖τhg − g‖q (by Hölder’s inequality).

By Theorem 3.5, the last term converges to zero as h → 0. Note that when p = 1, the term
‖τhg − g‖q converges to zero as h→ 0 since g is uniformly continuous. This proves f ∗ g ∈ C0(Rn).

Consider m = 1. Given t > 0. By the mean-value theorem, there exist s ∈ [0, t] such that

(f ∗ g)(x+ tei)− (f ∗ g)(x) =
∫

Rn
f(y) [g(x+ tei − y)− g(x− y)] dy

=
∫

Rn
f(y)

∂

∂xi
g(x+ sei − y)tdy

= f ∗ ∂

∂xi
g(x+ sei)t.

Since ∂
∂xi
g ∈ C0

0 (Rn), f ∗ ∂
∂xi
g ∈ C0(Rn), we see that ∂

∂xi
(f ∗ g) exists and equals f ∗ ∂

∂xi
g. This

implies f ∗ g ∈ C1(Rn) since i is arbitrary. The proof for general m follows by induction. �

Theorem 4.3. Given 1 ≤ p < ∞. Let {Kδ} be kernels satisfying (1),(2),(3). Then for any
1 ≤ p <∞ and f ∈ Lp(Rn),

‖f ∗Kδ − f‖p → 0 as δ ↘ 0.

Proof. Observe that

|f ∗Kδ(x)− f(x)| ≤
∫

Rn
|f(x− y)− f(x)||Kδ(y)|dy.

By Minkowski’s integral inequality,

‖f ∗Kδ − f‖p ≤
[∫

Rn

[∫
Rn
|f(x− y)− f(x)||Kδ(y)|dy

]p
dx

] 1
p

≤
∫

Rn

[∫
Rn
|f(x− y)− f(x)|p|Kδ(y)|pdx

] 1
p

dy

=
∫

Rn

[∫
Rn
|f(x− y)− f(x)|pdx

] 1
p

|Kδ(y)|dy

=
∫

Rn
‖τ−yf − f‖p|Kδ(y)|dy.

Given ε > 0, choose η > 0 such that ‖τ−yf − f‖ < ε whenever |y| < η. Then

‖f ∗Kδ − f‖p ≤ ε

∫
|y|<η

|Kδ(y)|dy +
∫
|y|≥η

2‖f‖p|Kδ(y)|dy.
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The theorem follows by letting δ → 0 and then ε→ 0. �

The support supp(f) of a measurable function f is defined as the intersection of set in

Kf = {K ⊂ Rn : K is closed and f = 0 a.e. on Kc}.

Lemma 4.4. Given measurable functions f and g. We have f ∗ g = 0 on (supp(f) + supp(g))c.
In particular, supp(f ∗ g) ⊂ supp(f) + supp(g).

Proof. Observe that

(f ∗ g)(x) =
∫

Rn
f(x− y)g(y)dy =

∫
supp(g)

f(x− y)g(y)dy = 0

if x− y /∈ supp(f) for every y ∈ supp(g). That is, f ∗ g = 0 on (supp(f) + supp(g))c. �

Theorem 4.5. C∞0 (Rn) is dense in Lp(Rn), 1 ≤ p <∞.

Proof. Given f ∈ Lp(Rn). For any N ∈ N, let

fN =
{
f(x) if |f(x)|, ‖x‖ < N
0 otherwise.

Clearly fN converges almost everywhere to f as N → ∞, and |f(x) − fN (x)|p ≤ 2p|f(x)|p. By
Lebesgue dominated convergence theorem, ‖f − fN‖p → 0 as N → ∞. From this observation, it
suffices to consider the case of bounded f with compact support.

Choose a nonnegative function K ∈ C∞0 (Rn) with
∫

Rn K = 1. Let

Kδ(x) =
1
δn
K
(x1

δ
, · · · , xn

δ

)
for δ > 0.

Then the family {Kδ} satisfies conditions (1), (2), (3) stated at the beginning of this section (check
it!). By Lemma 4.2 and Lemma 4.4, f ∗ Kδ ∈ C∞0 (Rn). By Theorem 4.3, ‖f ∗ Kδ − f‖p → 0 as
δ ↘ 0. This completes the proof. �

Definition 4.1. The Schwartz class S(Rn) is defined by

S(Rn) = {f ∈ C∞(Rn) | sup
x∈Rn

|xαDβf(x)| <∞ for any multi-indices α, β}.

Roughly speaking, the Schwartz class consists of smooth functions whose derivatives decrease
to zero faster than the inverse of any polynomial. This function space is of special importance in
Fourier analysis and distribution theory.

Corollary 4.6. For any 1 ≤ p <∞, the Schwartz class S(Rn) is a dense subspace of Lp(Rn).

Proof. It follows easily from Theorem 4.5, C∞0 (Rn) ⊂ S(Rn), and the observation that S(Rn)
is a subspace of Lp(Rn). �

Exercises.

4.1. Prove the Lemma 4.1(a). More generally, given 1 ≤ p, q, r ≤ ∞ such that 1
p + 1

q = 1 + 1
r ,

and given f ∈ Lp(Rn), g ∈ Lq(Rn), prove the following Young’s convolution inequality:

‖f ∗ g‖r ≤ ‖f‖p‖g‖q.
Hint: Find suitable p′, q′ such that 1

p′ + 1
q + 1

r = 1, then apply generalized Hölder’s inequality.
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4.2. Use Hölder’s inequality to prove Minkowski’s integral inequality.

4.3. Verify that kernels {Kδ} in the proof of Theorem 4.5 satisfies (1), (2), (3) stated at the
beginning of this section.

4.4. Suppose 1 ≤ p, q ≤ ∞ and 1
p + 1

q = 1. Show that if f ∈ Lp(Rn), g ∈ Lq(Rn), then
f ∗ g ∈ C0(Rn).

4.5. Show that f(x) = e−
1
x2
(
1 − e−

1
x2
)
χ(0,∞) belongs to S(R), and g(x) = f(x − a)f(b − x) ∈

C∞0 (R), where a < b are fixed.

4.6. Given bounded open sets G1 ⊂ G2 such that G1 ⊂ G2. Construct a function f ∈ C∞0 such
that f = 1 on G1 and f = 0 on Gc2.

5. Linear Transformations

This section is brief introduction to the concepts of bounded linear operators and dual spaces.
Those who unacquainted with undefined concepts here are referred to any standard textbook on lin-
ear algebra. Those who discontented with brevity of discussions herein are referred to any standard
textbook on functional analysis. For concepts intimately related to our discussions for Lp spaces,
we prove them here.

In this section we consider only normed spaces, even though many concepts can be extended
to more general topological vector spaces. For convenience, we shall use the same notation ‖ · ‖ for
norms of various spaces, and we shall simply write X for (X, ‖ · ‖), for instance. It is often evident
which norm we are referring to. When it is necessary to avoid confusion, we denote its norm by
‖ · ‖X .

Definition 5.1. Given two normed spaces X and Y , a linear transformation (operator) T :
X → Y is said to be bounded if there exists some M > 0 such that

‖Tx‖ ≤ M‖x‖ for any x ∈ X.
Denote the space of bounded linear operators from X to Y by B(X,Y ).

Theorem 5.1. A linear operator T : X → Y is bounded if and only if it is continuous.

Proof. Clearly any bounded linear operator is Lipschitz continuous. If T is continuous, then
T−1(B1(0)) ⊃ Bδ(0) for some δ > 0. Then, whenever ‖x‖ ≤ 1, we have

‖Tx‖ =
2
δ

∥∥∥∥T (δ2x
)∥∥∥∥ ≤ 2

δ
.

For general x, we have ‖Tx‖ = ‖T
(
x
‖x‖
)
‖ ‖x‖ ≤ 2

δ‖x‖. Thus T is bounded. �

It is a simple exercise to show that

sup
‖x‖=1

‖Tx‖ = sup
x 6=0

‖Tx‖
‖x‖

= sup
‖x‖≤1

‖Tx‖ = inf{M : ‖Tx‖ ≤M‖x‖ ∀x ∈ X}.

Their common value is denoted by ‖T‖. This notation is justified in the following theorem.

Theorem 5.2. B(X,Y ) with the function T 7→ ‖T‖ is a normed space. If Y is a Banach space,
then so is B(X,Y ).


