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3. The L? Space

In this section we consider a space LP(F) which resembles ¢/ on many aspects. After general
concepts of measure and integral were introduced, we will see that these two spaces can be viewed
as special cases of a more general LP space.

DEFINITION 3.1. Given a measurable set £ C R™. For 0 < p < oo, define the space LP(F) and
the real-valued function || - ||, on LP(E) by

1
LP(E) = {f: f is measurable on F and / IfIP <o},  |fllp = </ f\p> ’
E E
The essential supremum of a measurable function f on F is defined by
esssup f = inf{a € (—o0,00] : m({f > a}) = 0}.
E
The space L>°(F) and the real-valued function || - ||o on L*°(E) are given by
L*(E) = {f : f is measurable on E and esssup |f| < oo}, | flleo = esssup|f]|.
E

Functions in L*°(F) are said to be essentially bounded.

The measurable function f in the definition of LP(E) for 0 < p < oo can be complex-valued,
but functions in L*°(E) are assumed to be real-valued. We leave it to the readers to check that
m(f > esssupp f) = 0 for any f € L*°(E) (Exercise 3.1). In other words, f < esssupp f and
If] < || fllco almost everywhere.

For any 0 < p < oo, two functions f1, fo in LP(E) are considered equivalent if f; = fo almost
everywhere on E. The space of equivalence classes, still denoted by LP(E), are called LP(E) classes
or LP(E) spaces.

Similar to ¢P, the space LP(E) is a vector space for any 0 < p < oo. Indeed, ||afl, = |af|| fllp
for any scalar «, ||af|, = ||| f|l, and

frge P(E) = |f+gl" < 2max{|f][g]})" <2°(IfI” + |g/"),
fr9e L¥(E) = [If +glloo < 1flloc + lI9llo-
The second line follows by observing that

|71 < || flloo almost everywhere

l9] < |lg]lco almost everywhere } = [+ 9] < flleo + llglloo almost everywhere.

When 1 < p < oo, the function || ||, is a norm on LP(E). This follows from the theorem below,
the proof for which is similar to that of /P.
THEOREM 3.1. Given 1 < p,q < oo with %—l—% = 1. Let f, g be measurable functions on E C R™.
(a) (HOLDER'S INEQUALITY FOR LP) If f € LP(E), g € LY(E), then fg € L'(E) and
1fglly < [l fllpllglq-

(b) (MINKOWSKI’'S INEQUALITY FOR LP)

1F =+ glly < 171lp + [lgllp-
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PROOF. (a) The cases p =1, ¢ = oo and p = 00, ¢ = 1 are obvious. Consider 1 < p,q < co. If
| fllp =0 or ||g|]lg =0, then fg = 0 almost everywhere on E, and the asserted inequality is obvious.
We may now assume 0 < Hpr, llgllg < oo.

Let F = rfr, G =

By Young’s inequality,

Hgll

FpP |G|? FI5 G||2 1 1
[wa < [IEEL 108 I IGK 1 1,
E E P q p q b q

Ifglli = /E!fg! = Hf!pllgllq/E!FG < [I£llpllgllq-

(b) The case p = 1 is obvious, and the case p = 0o has been proved. Now we consider 1 < p < oo.
Note that ¢ = 1%. Minkowski’s inequality follows easily from (a):

[E\fﬂzlp

p—1 p—1
< /E|f+g| \f|+/E|f+g! 1l

(/E’Hg‘p)p;l </E|f|p);+ (/E‘ng)p? </E|g|p);

= I+ gl Ul + llgllp)-

IN

I1f+glip

O

The special case p = ¢ = 2 of the Holder inequality is also known as the Cauchy-Schwarz
inequality. The assumption 1 < p < oo is necessary. For example, let £ = [0,1], f = X[0,1]>
2
9= XL Then

1 1
1\r [1\? 4.1
I+ lals = (5)"+(5)" =27 <1 =17+l

COROLLARY 3.2. Suppose 0 < p < q < 0o, m(FE) < co. Then

() < Gl )

In particular, LY(E) C LP(E).

Q=

. S SR
PROOF. Let r = T then g T = 1. Therefore,

L < (Lam ) </El> _ (/;ﬂq)pm(mq.

Then the corollary follows from

1l = </E|f!p>1 <|Ifllgm(E)'® = | fllg m(E)
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EXAMPLE 3.1. Consider f(z) = 2", r # 0, defined on [0, c0).
1 1
When r <0, f € LP[1,00) if and only if p > ——, f € L”[0,1) if and only if 0 < p < ——.
r r
When r > 0, f ¢ LP[1,00) for any p > 0, f € LP[0,1) for any p > 0.
This example shows that the assumption m(FE) < oo is necessary in the above corollary, and
LY(E)C LP(E)if0<p<g<ooand E = [1,00).
EXAMPLE 3.2. The function log z belongs to LP(0, 1) for any 0 < p < oo but it is not in L>°(0, 1).
THEOREM 3.3. (RIESZ-FISHER) For any 1 < p < oo, the space (LP(E),||-||p) is a Banach space.

PROOF. Consider p = oo first. Note that convergence in L*(F) means uniform convergence
outside a set of measure zero.
Let {f,} be a Cauchy sequence in L>®(E). For each n,m € N, |f, — fi| < ||fr. — fm|loo €xcept
on a set Zp ,, of measure zero. Let Z = |J Z,;m, then Z has measure zero and
n,meN

In particular, for any € E'\ Z, {fn(x)} converges. Let f(z) = lim,—o fn(z) for x € E\ Z and
set f(z) =0 on Z. Then
fn — f uniformly on E'\ Z.
This implies that f,, converges to f in L*°(FE), and so L>°(FE) is complete.
Now we consider 1 < p < oo. By Theorem 1.3, we only have to show that every absolutely

convergent series converges to some element in LP(E).
Let 17, fr be an absolutely convergent series. Then > ;7 || fxllp = M is finite. Let

n n
gnzz‘fﬂa Sn:ka:'
k=1 k=1

n
By Minkowski’s inequality, ||gnll, < 3 || fellp, < M. Thus [, gh < MP? for any n. For any = € E,
k=1

the function g, (x) is increasing in n, and so g, converges pointwise to some function g : E' — [0, 00].
The function g is measurable and, by Fatou’s lemma,

/gpgliminf/gﬁgMp.
E n—oo JE

Therefore g is finite almost everywhere and g € LP(E). When g(z) is finite, Y po; fr(z) is absolutely
convergent. Let s(z) be its value, and set s(x) = 0 elsewhere. Then the function s is defined
everywhere, measurable on F, and

n
Z fr = sp — s almost everywhere on F.
k=1
Since |s,(x)| < g(z) for all n, we have |s(x)| < g(z), where hence s € LP(E) and |s,(x) — s(z)] <
2¢g(x) € LP(F). By the Lebesgue dominated convergence theorem,

/|sn—s|p—>0asn—>oo.
E

This proves that > -, fi converges to s € LP(E), and thus proves completeness of LP(E). O
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THEOREM 3.4. If 1 < p < oo, then LP(E) is separable.

PRrOOF. Consider £ = R". Consider the collection of cubes of the form [ki, k1 + 1] X ... x
[kn, kn+1], k1...,k, € Z. Bisect each of these cubes into 2" congrument subcubes, and repeat this
process. The collection of all these cubes are called dyadic cubes. Let D be the set of finite linear
combinations of characteristic functions on these dyadic cubes with rational coefficients. Clearly D
is countable. All we need to prove is that D is dense in LP(R™). That is, given f € LP(R"), there
exists a sequence f € D such that || fr, — f|l, — 0 as k — oc.

It suffices to consider the case f > 0 since

F=f"=1" W= Fll <15 =T lp+ 1S5 = llp (by Minkowski’s inequality).
In fact, it suffices to consider the case f > 0 with compact support since
[ 1= g = i fo— 117
R™ M=0 J[—m,m|"

Let {gr} be an increasing sequence of nonnegative simple functions such that g, /' f, f >0
has compact support. Then, by the monotone convergence theorem,

gr. € LP(R™), / lgr — fIP — 0 as k — oc.
Rn

Therefore, it suffices to consider the case f > 0, f is a simple function with compact support.

N
For a simple function f = ) apxg,,
k=1

N
/ |f—glP = Z/ la, — g|P for any g € LP(R™).
R k=1" Pk

From this observation, it suffices to consider the case when f is the characteristic function of some
bounded measurable set E. There exists a Gs set G containing E with m(G \ E) = 0, so that we
may consider only the case F being a Gy set.
o0
Let E = () O, O1 D O2 D --- is a nested sequence of bounded open sets. Then, by the

k=1
monotone convergence theorem,

/ Ixo, — x| =0 ask— oo.
]Rn

Therefore, it suffices to consider f = x@, where O is a bounded open set. But in this case,
o0
f =" Xc, for some dyadic cubes ¢;. This proves D is dense in LP(R").
k=1
Now consider arbitrary measurable set E C R". Let D' = {g-xg : g € D}. Then D' is a
countable set consisting of finite linear combinations of characteristic functions on dyadic cubes
which intersect with £/ and with rational coefficients. ~
Given f € LP(E). Let f = fon E, f = 0on R"\ E. Choose {fi} C D such that [p, [fr—f[" — 0
as k — oo. Then

/|fk'XE—f|p=/ |fu-xg— fIP — 0as k — occ.
E Rn
This proves that D’ is dense in LP(E). O



126 8. INTRODUCTION TO BANACH SPACES

Given h € R". Let 7,f(z) = f(x + h) be the translation operator. Similar to the case L'(R"),
we have continuity of variable translations with respect to || - ||,

THEOREM 3.5. If 1 <p < oo and f € LP(R™), then
lim [ f — fll, = 0.
h—o0

PRrOOF. Let C), be the collection of LP(R™) functions satisfying this property. It follows easily
from the Minkowski inequality that it is a subspace of LP(R™).
Given E C R™ with m(E) < oo. By the Lebesgue dominated convergence theorem,

/Rn IXE(z + h) — xg(z)[Pde = m(E \ E) + m(E, \ E) — 0as h — 0,

where Ej, = E —h = {e — h : e € E'}. This shows that xg € C), and as well as simple functions
in LP(R™). Suppose f € LP(R™) is nonnegative. Choose simple functions fr > 0, f /" f. Then
fr € LP(R™) and, by the monotone convergence theorem, ||fx — f||, — 0 as k — oco. Therefore,
I7nf = fllp < ll7nf = o fellp + 70 fk = fellp + 1k = Fllp
< mnfe = fullp +21F = frllp

Let h — 0, then let k¥ — oo, we find that lim supy,_, ||7nf — f||, = 0. This proves that f € C},. This
actually implies C), = LP(R") since any f € LP(R") is the difference of two nonnegative measurable
functions in LP(R™). O

Exercises.

3.1. Given any f € L*°(F). Show that m({f > esssupg f}) = 0.

3.2. Use the generalized Young’s inequality in Exercise 2.2 to formulate a generalization of
Holder’s inequality for LP(E).

3.3. Suppose m(E) < oo. Show that || f|lec = limp .o || f||p- How about if m(E) = oco?

3.4. Let f be a real-valued measurable function on E. Define the essential infimum on E by

essEinff = sup{a € (—o0,00] : m({f < a}) = 0}.

Show that, if f > 0, then essinfg f = 1/esssupg(1/f).

3.5. Consider LP(E) with 0 < p < 1. Verify that p,(f,g) = [ |f — g|” is a metric on LP(E).
Prove that (LP(E), pp) is a complete separable metric space.

3.6. Given 0 < p < o0, f,, € LP(E). Suppose f, converges to f almost everywhere. Prove that
each of the following conditions implies || f, — f||, — 0 as n — oc.
(a) There exists some g € LP(E) such that |f,| < g for any n.
(b) [fallp = [1fllp as n — oo
3.7. For what kind of f € LP(F) and g € LY(E), % + % = 1, do we have equality for the Holder
inequality? For what kind of f,g € LP(FE) do we have equality for the Minkowski inequality?
3.8. Consider 1 < p < co. Give a proof for the Minkowski inequality using convexity of zP, and
without using Holder’s inequality.

3.9. Show that L*°(E) is not separable whenever m(E) > 0.



