3. The L^p Space

In this section we consider a space $L^p(E)$ which resembles ℓ^p on many aspects. After general concepts of measure and integral were introduced, we will see that these two spaces can be viewed as special cases of a more general L^p space.

DEFINITION 3.1. Given a measurable set $E \subset \mathbb{R}^n$. For $0 , define the space <math>L^p(E)$ and the real-valued function $\|\cdot\|_p$ on $L^p(E)$ by

$$L^p(E) = \{f : f \text{ is measurable on } E \text{ and } \int_E |f|^p < \infty\}, \qquad \|f\|_p = \left(\int_E |f|^p\right)^{\frac{1}{p}}.$$

The essential supremum of a measurable function f on E is defined by

$$\mathop{\mathrm{ess\,sup}}_{E} f = \inf\{\alpha \in (-\infty,\infty] : m(\{f > \alpha\}) = 0\}.$$

The space $L^{\infty}(E)$ and the real-valued function $\|\cdot\|_{\infty}$ on $L^{\infty}(E)$ are given by

$$L^{\infty}(E) = \{f : f \text{ is measurable on } E \text{ and } \operatorname{ess\,sup}_{E} |f| < \infty\}, \qquad \|f\|_{\infty} = \operatorname{ess\,sup}_{E} |f|.$$

Functions in $L^{\infty}(E)$ are said to be essentially bounded.

The measurable function f in the definition of $L^p(E)$ for 0 can be complex-valued, $but functions in <math>L^{\infty}(E)$ are assumed to be real-valued. We leave it to the readers to check that $m(f > \operatorname{ess\,sup}_E f) = 0$ for any $f \in L^{\infty}(E)$ (Exercise 3.1). In other words, $f \leq \operatorname{ess\,sup}_E f$ and $|f| \leq ||f||_{\infty}$ almost everywhere.

For any $0 , two functions <math>f_1, f_2$ in $L^p(E)$ are considered equivalent if $f_1 = f_2$ almost everywhere on E. The space of equivalence classes, still denoted by $L^p(E)$, are called $L^p(E)$ classes or $L^p(E)$ spaces.

Similar to ℓ^p , the space $L^p(E)$ is a vector space for any $0 . Indeed, <math>\|\alpha f\|_p = |\alpha| \|f\|_p$ for any scalar α , $\|\alpha f\|_p = |\alpha| \|f\|_p$ and

$$f, g \in L^{p}(E) \implies |f + g|^{p} \le (2 \max\{|f|, |g|\})^{p} \le 2^{p}(|f|^{p} + |g|^{p}),$$

$$f, g \in L^{\infty}(E) \implies ||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}.$$

The second line follows by observing that

 $\begin{array}{l} |f| \leq \|f\|_{\infty} \text{ almost everywhere } \\ |g| \leq \|g\|_{\infty} \text{ almost everywhere } \end{array} \right\} \Rightarrow |f+g| \leq \|f\|_{\infty} + \|g\|_{\infty} \text{ almost everywhere.}$

When $1 \le p \le \infty$, the function $\|\cdot\|_p$ is a norm on $L^p(E)$. This follows from the theorem below, the proof for which is similar to that of ℓ^p .

THEOREM 3.1. Given $1 \le p, q \le \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$. Let f, g be measurable functions on $E \subset \mathbb{R}^n$.

(a) (HÖLDER'S INEQUALITY FOR L^p) If $f \in L^p(E)$, $g \in L^q(E)$, then $fg \in L^1(E)$ and

$$||fg||_1 \le ||f||_p ||g||_q$$

(b) (MINKOWSKI'S INEQUALITY FOR L^p)

$$||f + g||_p \le ||f||_p + ||g||_p.$$

PROOF. (a) The cases p = 1, $q = \infty$ and $p = \infty$, q = 1 are obvious. Consider $1 < p, q < \infty$. If $||f||_p = 0$ or $||g||_q = 0$, then fg = 0 almost everywhere on E, and the asserted inequality is obvious. We may now assume $0 < ||f||_p$, $||g||_q < \infty$. Let $F = \frac{f}{||f||_p}$, $G = \frac{g}{||g||_q}$. By Young's inequality,

$$\int_{E} |FG| \leq \int_{E} \frac{|F|^{p}}{p} + \frac{|G|^{q}}{q} = \frac{||F||^{p}}{p} + \frac{||G||^{q}}{q} = \frac{1}{p} + \frac{1}{q} = 1,$$

$$||fg||_{1} = \int_{E} |fg| = ||f||_{p} ||g||_{q} \int_{E} |FG| \leq ||f||_{p} ||g||_{q}.$$

(b) The case p = 1 is obvious, and the case $p = \infty$ has been proved. Now we consider 1 .Note that $q = \frac{p}{p-1}$. Minkowski's inequality follows easily from (a):

$$\begin{split} \|f+g\|_{p}^{p} &= \int_{E} |f+g|^{p} \\ &\leq \int_{E} |f+g|^{p-1} |f| + \int_{E} |f+g|^{p-1} |g| \\ &= \left(\int_{E} |f+g|^{p}\right)^{\frac{p-1}{p}} \left(\int_{E} |f|^{p}\right)^{\frac{1}{p}} + \left(\int_{E} |f+g|^{p}\right)^{\frac{p-1}{p}} \left(\int_{E} |g|^{p}\right)^{\frac{1}{p}} \\ &= \|f+g\|_{p}^{p-1} (\|f\|_{p} + \|g\|_{p}). \end{split}$$

The special case p = q = 2 of the Hölder inequality is also known as the Cauchy-Schwarz *inequality.* The assumption $1 \le p \le \infty$ is necessary. For example, let $E = [0,1], f = \chi_{[0,\frac{1}{2}]}, f = \chi_{[$ $g = \chi_{[\frac{1}{2},1]}$. Then

$$||f||_p + ||g||_p = \left(\frac{1}{2}\right)^{\frac{1}{p}} + \left(\frac{1}{2}\right)^{\frac{1}{p}} = 2^{1-\frac{1}{p}} < 1 = ||f+g||_p.$$

Corollary 3.2. Suppose $0 , <math>m(E) < \infty$. Then

$$\left(\frac{1}{m(E)}\int_E |f|^p\right)^{\frac{1}{p}} \le \left(\frac{1}{m(E)}\int_E |f|^q\right)^{\frac{1}{q}}.$$

In particular, $L^q(E) \subset L^p(E)$.

PROOF. Let $r = \frac{q}{q-p}$, then $\frac{1}{q/p} + \frac{1}{r} = 1$. Therefore,

$$\int_{E} |f|^{p} \leq \left(\int_{E} (|f|^{p})^{\frac{q}{p}} \right)^{\frac{p}{q}} \left(\int_{E} 1^{r} \right)^{\frac{1}{r}} = \left(\int_{E} |f|^{q} \right)^{\frac{p}{q}} m(E)^{\frac{q-p}{q}}.$$

Then the corollary follows from

$$||f||_p = \left(\int_E |f|^p\right)^{\frac{1}{p}} \le ||f||_q m(E)^{\frac{q-p}{qp}} = ||f||_q m(E)^{\frac{1}{p}-\frac{1}{q}}.$$

EXAMPLE 3.1. Consider $f(x) = x^r$, $r \neq 0$, defined on $[0, \infty)$.

When r < 0, $f \in L^p[1,\infty)$ if and only if $p > -\frac{1}{r}$, $f \in L^p[0,1)$ if and only if 0 .When <math>r > 0, $f \notin L^p[1,\infty)$ for any p > 0, $f \in L^p[0,1)$ for any p > 0.

This example shows that the assumption $m(E) < \infty$ is necessary in the above corollary, and $L^q(E) \subsetneq L^p(E)$ if $0 and <math>E = [1, \infty)$.

EXAMPLE 3.2. The function log x belongs to $L^p(0,1)$ for any $0 but it is not in <math>L^{\infty}(0,1)$.

THEOREM 3.3. (RIESZ-FISHER) For any $1 \le p \le \infty$, the space $(L^p(E), \|\cdot\|_p)$ is a Banach space.

PROOF. Consider $p = \infty$ first. Note that convergence in $L^{\infty}(E)$ means uniform convergence outside a set of measure zero.

Let $\{f_n\}$ be a Cauchy sequence in $L^{\infty}(E)$. For each $n, m \in \mathbb{N}$, $|f_n - f_m| \leq ||f_n - f_m||_{\infty}$ except on a set $Z_{n,m}$ of measure zero. Let $Z = \bigcup_{n,m\in\mathbb{N}} Z_{n,m}$, then Z has measure zero and

 $|f_n - f_m| \le ||f_n - f_m||_{\infty}$ on $E \setminus Z$

In particular, for any $x \in E \setminus Z$, $\{f_n(x)\}$ converges. Let $f(x) = \lim_{n \to \infty} f_n(x)$ for $x \in E \setminus Z$ and set f(x) = 0 on Z. Then

 $f_n \to f$ uniformly on $E \setminus Z$.

This implies that f_n converges to f in $L^{\infty}(E)$, and so $L^{\infty}(E)$ is complete.

Now we consider $1 \leq p < \infty$. By Theorem 1.3, we only have to show that every absolutely convergent series converges to some element in $L^p(E)$.

Let $\sum_{k=1}^{\infty} f_k$ be an absolutely convergent series. Then $\sum_{k=1}^{\infty} \|f_k\|_p = M$ is finite. Let

$$g_n = \sum_{k=1}^n |f_k|, \quad s_n = \sum_{k=1}^n f_k.$$

By Minkowski's inequality, $||g_n||_p \leq \sum_{k=1}^n ||f_k||_p \leq M$. Thus $\int_E g_n^p \leq M^p$ for any n. For any $x \in E$, the function $g_n(x)$ is increasing in n, and so g_n converges pointwise to some function $g: E \to [0, \infty]$. The function g is measurable and, by Fatou's lemma,

$$\int_E g^p \le \liminf_{n \to \infty} \int_E g_n^p \le M^p.$$

Therefore g is finite almost everywhere and $g \in L^p(E)$. When g(x) is finite, $\sum_{k=1}^{\infty} f_k(x)$ is absolutely convergent. Let s(x) be its value, and set s(x) = 0 elsewhere. Then the function s is defined everywhere, measurable on E, and

$$\sum_{k=1}^{n} f_k = s_n \to s \quad \text{almost everywhere on } E.$$

Since $|s_n(x)| \leq g(x)$ for all n, we have $|s(x)| \leq g(x)$, where hence $s \in L^p(E)$ and $|s_n(x) - s(x)| \leq 2g(x) \in L^p(E)$. By the Lebesgue dominated convergence theorem,

$$\int_E |s_n - s|^p \to 0 \text{ as } n \to \infty.$$

This proves that $\sum_{k=1}^{\infty} f_k$ converges to $s \in L^p(E)$, and thus proves completeness of $L^p(E)$.

THEOREM 3.4. If $1 \leq p < \infty$, then $L^p(E)$ is separable.

PROOF. Consider $E = \mathbb{R}^n$. Consider the collection of cubes of the form $[k_1, k_1 + 1] \times \ldots \times [k_n, k_n + 1], k_1 \ldots, k_n \in \mathbb{Z}$. Bisect each of these cubes into 2^n congrument subcubes, and repeat this process. The collection of all these cubes are called dyadic cubes. Let \mathcal{D} be the set of finite linear combinations of characteristic functions on these dyadic cubes with rational coefficients. Clearly \mathcal{D} is countable. All we need to prove is that \mathcal{D} is dense in $L^p(\mathbb{R}^n)$. That is, given $f \in L^p(\mathbb{R}^n)$, there exists a sequence $f_k \in \mathcal{D}$ such that $||f_k - f||_p \to 0$ as $k \to \infty$.

It suffices to consider the case $f \ge 0$ since

$$f = f^+ - f^-, \quad ||f_k - f||_p \le ||f_k^+ - f^+||_p + ||f_k^- - f^-||_p \quad \text{(by Minkowski's inequality)}.$$

In fact, it suffices to consider the case $f \ge 0$ with compact support since

$$\int_{\mathbb{R}^n} |f_k - f|^p = \lim_{m \to \infty} \int_{[-m,m]^n} |f_k - f|^p$$

Let $\{g_k\}$ be an increasing sequence of nonnegative simple functions such that $g_k \nearrow f$, $f \ge 0$ has compact support. Then, by the monotone convergence theorem,

$$g_k \in L^p(\mathbb{R}^n), \quad \int_{\mathbb{R}^n} |g_k - f|^p \to 0 \quad \text{as } k \to \infty.$$

Therefore, it suffices to consider the case $f \ge 0$, f is a simple function with compact support.

For a simple function $f = \sum_{k=1}^{N} a_k \chi_{E_k}$,

$$\int_{\mathbb{R}^n} |f - g|^p = \sum_{k=1}^N \int_{E_k} |a_k - g|^p \quad \text{for any } g \in L^p(\mathbb{R}^n).$$

From this observation, it suffices to consider the case when f is the characteristic function of some bounded measurable set E. There exists a G_{δ} set G containing E with $m(G \setminus E) = 0$, so that we may consider only the case E being a G_{δ} set.

Let $E = \bigcap_{k=1}^{\infty} \mathcal{O}_k, \ \mathcal{O}_1 \supset \mathcal{O}_2 \supset \cdots$ is a nested sequence of bounded open sets. Then, by the monotone convergence theorem,

$$\int_{\mathbb{R}^n} |\chi_{\mathcal{O}_k} - \chi_E|^p \to 0 \quad \text{as } k \to \infty.$$

Therefore, it suffices to consider $f = \chi_{\mathcal{O}}$, where \mathcal{O} is a bounded open set. But in this case, $f = \sum_{k=1}^{\infty} \chi_{c_k}$ for some dyadic cubes c_k . This proves \mathcal{D} is dense in $L^p(\mathbb{R}^n)$.

Now consider arbitrary measurable set $E \subset \mathbb{R}^n$. Let $\mathcal{D}' = \{g \cdot \chi_E : g \in \mathcal{D}\}$. Then \mathcal{D}' is a countable set consisting of finite linear combinations of characteristic functions on dyadic cubes which intersect with E and with rational coefficients.

Given $f \in L^p(E)$. Let $\tilde{f} = f$ on E, $\tilde{f} = 0$ on $\mathbb{R}^n \setminus E$. Choose $\{f_k\} \subset \mathcal{D}$ such that $\int_{\mathbb{R}^n} |f_k - \tilde{f}|^p \to 0$ as $k \to \infty$. Then

$$\int_{E} |f_k \cdot \chi_E - \tilde{f}|^p = \int_{\mathbb{R}^n} |f_k \cdot \chi_E - \tilde{f}|^p \to 0 \text{ as } k \to \infty.$$

This proves that \mathcal{D}' is dense in $L^p(E)$.

125

Given $h \in \mathbb{R}^n$. Let $\tau_h f(x) = f(x+h)$ be the translation operator. Similar to the case $L^1(\mathbb{R}^n)$, we have continuity of variable translations with respect to $\|\cdot\|_p$:

THEOREM 3.5. If $1 \leq p < \infty$ and $f \in L^p(\mathbb{R}^n)$, then

$$\lim_{h \to \infty} \|\tau_h f - f\|_p = 0.$$

PROOF. Let C_p be the collection of $L^p(\mathbb{R}^n)$ functions satisfying this property. It follows easily from the Minkowski inequality that it is a subspace of $L^p(\mathbb{R}^n)$.

Given $E \subset \mathbb{R}^n$ with $m(E) < \infty$. By the Lebesgue dominated convergence theorem,

$$\int_{\mathbb{R}^n} |\chi_E(x+h) - \chi_E(x)|^p dx = m(E \setminus E_h) + m(E_h \setminus E) \to 0 \text{ as } h \to 0,$$

where $E_h = E - h = \{e - h : e \in E\}$. This shows that $\chi_E \in C_p$, and as well as simple functions in $L^p(\mathbb{R}^n)$. Suppose $f \in L^p(\mathbb{R}^n)$ is nonnegative. Choose simple functions $f_k \ge 0$, $f_k \nearrow f$. Then $f_k \in L^p(\mathbb{R}^n)$ and, by the monotone convergence theorem, $||f_k \to f||_p \to 0$ as $k \to \infty$. Therefore,

$$\begin{aligned} \|\tau_h f - f\|_p &\leq \|\tau_h f - \tau_h f_k\|_p + \|\tau_h f_k - f_k\|_p + \|f_k - f\|_p \\ &\leq \|\tau_h f_k - f_k\|_p + 2\|f - f_k\|_p \end{aligned}$$

Let $h \to 0$, then let $k \to \infty$, we find that $\limsup_{h\to\infty} \|\tau_h f - f\|_p = 0$. This proves that $f \in C_p$. This actually implies $C_p = L^p(\mathbb{R}^n)$ since any $f \in L^p(\mathbb{R}^n)$ is the difference of two nonnegative measurable functions in $L^p(\mathbb{R}^n)$.

Exercises.

3.1. Given any $f \in L^{\infty}(E)$. Show that $m(\{f > \operatorname{ess} \sup_{E} f\}) = 0$.

3.2. Use the generalized Young's inequality in Exercise 2.2 to formulate a generalization of Hölder's inequality for $L^p(E)$.

3.3. Suppose $m(E) < \infty$. Show that $||f||_{\infty} = \lim_{p \to \infty} ||f||_p$. How about if $m(E) = \infty$?

3.4. Let f be a real-valued measurable function on E. Define the essential infimum on E by

$$\operatorname{ess\,inf}_{F} f = \sup\{\alpha \in (-\infty, \infty] : m(\{f < \alpha\}) = 0\}$$

Show that, if $f \ge 0$, then $\operatorname{ess\,inf}_E f = 1/\operatorname{ess\,sup}_E(1/f)$.

3.5. Consider $L^p(E)$ with $0 . Verify that <math>\rho_p(f,g) = \int_E |f-g|^p$ is a metric on $L^p(E)$. Prove that $(L^p(E), \rho_p)$ is a complete separable metric space.

3.6. Given $0 , <math>f_n \in L^p(E)$. Suppose f_n converges to f almost everywhere. Prove that each of the following conditions implies $||f_n - f||_p \to 0$ as $n \to \infty$.

(a) There exists some $g \in L^p(E)$ such that $|f_n| \leq g$ for any n.

(b) $||f_n||_p \to ||f||_p$ as $n \to \infty$.

3.7. For what kind of $f \in L^p(E)$ and $g \in L^q(E)$, $\frac{1}{p} + \frac{1}{q} = 1$, do we have equality for the Hölder inequality? For what kind of $f, g \in L^p(E)$ do we have equality for the Minkowski inequality?

3.8. Consider $1 . Give a proof for the Minkowski inequality using convexity of <math>x^p$, and without using Hölder's inequality.

3.9. Show that $L^{\infty}(E)$ is not separable whenever m(E) > 0.