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3. The Lp Space

In this section we consider a space Lp(E) which resembles `p on many aspects. After general
concepts of measure and integral were introduced, we will see that these two spaces can be viewed
as special cases of a more general Lp space.

Definition 3.1. Given a measurable set E ⊂ Rn. For 0 < p <∞, define the space Lp(E) and
the real-valued function ‖ · ‖p on Lp(E) by

Lp(E) = {f : f is measurable on E and
∫
E
|f |p <∞}, ‖f‖p =

(∫
E
|f |p

) 1
p

.

The essential supremum of a measurable function f on E is defined by

ess sup
E

f = inf{α ∈ (−∞,∞] : m({f > α}) = 0}.

The space L∞(E) and the real-valued function ‖ · ‖∞ on L∞(E) are given by

L∞(E) = {f : f is measurable on E and ess sup
E
|f | <∞}, ‖f‖∞ = ess sup |f |.

Functions in L∞(E) are said to be essentially bounded.

The measurable function f in the definition of Lp(E) for 0 < p < ∞ can be complex-valued,
but functions in L∞(E) are assumed to be real-valued. We leave it to the readers to check that
m(f > ess supE f) = 0 for any f ∈ L∞(E) (Exercise 3.1). In other words, f ≤ ess supE f and
|f | ≤ ‖f‖∞ almost everywhere.

For any 0 < p ≤ ∞, two functions f1, f2 in Lp(E) are considered equivalent if f1 = f2 almost
everywhere on E. The space of equivalence classes, still denoted by Lp(E), are called Lp(E) classes
or Lp(E) spaces.

Similar to `p, the space Lp(E) is a vector space for any 0 < p ≤ ∞. Indeed, ‖αf‖p = |α|‖f‖p
for any scalar α, ‖αf‖p = |α|‖f‖p and

f, g ∈ Lp(E) ⇒ |f + g|p ≤ (2 max{|f |, |g|})p ≤ 2p(|f |p + |g|p),
f, g ∈ L∞(E) ⇒ ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞.

The second line follows by observing that

|f | ≤ ‖f‖∞ almost everywhere
|g| ≤ ‖g‖∞ almost everywhere

}
⇒ |f + g| ≤ ‖f‖∞ + ‖g‖∞ almost everywhere.

When 1 ≤ p ≤ ∞, the function ‖ · ‖p is a norm on Lp(E). This follows from the theorem below,
the proof for which is similar to that of `p.

Theorem 3.1. Given 1 ≤ p, q ≤ ∞ with 1
p + 1

q = 1. Let f, g be measurable functions on E ⊂ Rn.

(a) (Hölder’s Inequality for Lp) If f ∈ Lp(E), g ∈ Lq(E), then fg ∈ L1(E) and

‖fg‖1 ≤ ‖f‖p‖g‖q.

(b) (Minkowski’s Inequality for Lp)

‖f + g‖p ≤ ‖f‖p + ‖g‖p.
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Proof. (a) The cases p = 1, q =∞ and p =∞, q = 1 are obvious. Consider 1 < p, q <∞. If
‖f‖p = 0 or ‖g‖q = 0, then fg = 0 almost everywhere on E, and the asserted inequality is obvious.
We may now assume 0 < ‖f‖p, ‖g‖q <∞.

Let F = f
‖f‖p , G = g

‖g‖q . By Young’s inequality,∫
E
|FG| ≤

∫
E

|F |p

p
+
|G|q

q
=
‖F‖pp
p

+
‖G‖qq
q

=
1
p

+
1
q

= 1,

‖fg‖1 =
∫
E
|fg| = ‖f‖p‖g‖q

∫
E
|FG| ≤ ‖f‖p‖g‖q.

(b) The case p = 1 is obvious, and the case p =∞ has been proved. Now we consider 1 < p <∞.
Note that q = p

p−1 . Minkowski’s inequality follows easily from (a):

‖f + g‖pp =
∫
E
|f + g|p

≤
∫
E
|f + g|p−1|f |+

∫
E
|f + g|p−1|g|

=
(∫

E
|f + g|p

) p−1
p
(∫

E
|f |p

) 1
p

+
(∫

E
|f + g|p

) p−1
p
(∫

E
|g|p
) 1
p

= ‖f + g‖p−1
p (‖f‖p + ‖g‖p).

�

The special case p = q = 2 of the Hölder inequality is also known as the Cauchy-Schwarz
inequality. The assumption 1 ≤ p ≤ ∞ is necessary. For example, let E = [0, 1], f = χ[0, 1

2
],

g = χ[ 1
2
,1]. Then

‖f‖p + ‖g‖p =
(

1
2

) 1
p

+
(

1
2

) 1
p

= 21− 1
p < 1 = ‖f + g‖p.

Corollary 3.2. Suppose 0 < p < q <∞, m(E) <∞. Then(
1

m(E)

∫
E
|f |p

) 1
p

≤
(

1
m(E)

∫
E
|f |q
) 1
q

.

In particular, Lq(E) ⊂ Lp(E).

Proof. Let r = q
q−p , then 1

q/p + 1
r = 1. Therefore,∫

E
|f |p ≤

(∫
E

(|f |p)
q
p

) p
q
(∫

E
1r
) 1
r

=
(∫

E
|f |q
) p
q

m(E)
q−p
q .

Then the corollary follows from

‖f‖p =
(∫

E
|f |p

) 1
p

≤ ‖f‖qm(E)
q−p
qp = ‖f‖qm(E)

1
p
− 1
q .

�
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Example 3.1. Consider f(x) = xr, r 6= 0, defined on [0,∞).

When r < 0, f ∈ Lp[1,∞) if and only if p > −1
r

, f ∈ Lp[0, 1) if and only if 0 < p < −1
r
.

When r > 0, f /∈ Lp[1,∞) for any p > 0, f ∈ Lp[0, 1) for any p > 0.

This example shows that the assumption m(E) < ∞ is necessary in the above corollary, and
Lq(E) ( Lp(E) if 0 < p < q <∞ and E = [1,∞).

Example 3.2. The function log x belongs to Lp(0, 1) for any 0 < p <∞ but it is not in L∞(0, 1).

Theorem 3.3. (Riesz-Fisher) For any 1 ≤ p ≤ ∞, the space (Lp(E), ‖·‖p) is a Banach space.

Proof. Consider p = ∞ first. Note that convergence in L∞(E) means uniform convergence
outside a set of measure zero.

Let {fn} be a Cauchy sequence in L∞(E). For each n,m ∈ N, |fn − fm| ≤ ‖fn − fm‖∞ except
on a set Zn,m of measure zero. Let Z =

⋃
n,m∈N

Zn,m, then Z has measure zero and

|fn − fm| ≤ ‖fn − fm‖∞ on E \ Z
In particular, for any x ∈ E \ Z, {fn(x)} converges. Let f(x) = limn→∞ fn(x) for x ∈ E \ Z and
set f(x) = 0 on Z. Then

fn → f uniformly on E \ Z.
This implies that fn converges to f in L∞(E), and so L∞(E) is complete.

Now we consider 1 ≤ p < ∞. By Theorem 1.3, we only have to show that every absolutely
convergent series converges to some element in Lp(E).

Let
∑∞

k=1 fk be an absolutely convergent series. Then
∑∞

k=1 ‖fk‖p = M is finite. Let

gn =
n∑
k=1

|fk|, sn =
n∑
k=1

fk.

By Minkowski’s inequality, ‖gn‖p ≤
n∑
k=1

‖fk‖p ≤ M . Thus
∫
E g

p
n ≤ Mp for any n. For any x ∈ E,

the function gn(x) is increasing in n, and so gn converges pointwise to some function g : E → [0,∞].
The function g is measurable and, by Fatou’s lemma,∫

E
gp ≤ lim inf

n→∞

∫
E
gpn ≤Mp.

Therefore g is finite almost everywhere and g ∈ Lp(E). When g(x) is finite,
∑∞

k=1 fk(x) is absolutely
convergent. Let s(x) be its value, and set s(x) = 0 elsewhere. Then the function s is defined
everywhere, measurable on E, and

n∑
k=1

fk = sn → s almost everywhere on E.

Since |sn(x)| ≤ g(x) for all n, we have |s(x)| ≤ g(x), where hence s ∈ Lp(E) and |sn(x) − s(x)| ≤
2g(x) ∈ Lp(E). By the Lebesgue dominated convergence theorem,∫

E
|sn − s|p → 0 as n→∞.

This proves that
∑∞

k=1 fk converges to s ∈ Lp(E), and thus proves completeness of Lp(E). �
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Theorem 3.4. If 1 ≤ p <∞, then Lp(E) is separable.

Proof. Consider E = Rn. Consider the collection of cubes of the form [k1, k1 + 1] × . . . ×
[kn, kn+ 1], k1 . . . , kn ∈ Z. Bisect each of these cubes into 2n congrument subcubes, and repeat this
process. The collection of all these cubes are called dyadic cubes. Let D be the set of finite linear
combinations of characteristic functions on these dyadic cubes with rational coefficients. Clearly D
is countable. All we need to prove is that D is dense in Lp(Rn). That is, given f ∈ Lp(Rn), there
exists a sequence fk ∈ D such that ‖fk − f‖p → 0 as k →∞.

It suffices to consider the case f ≥ 0 since

f = f+ − f−, ‖fk − f‖p ≤ ‖f+
k − f

+‖p + ‖f−k − f
−‖p (by Minkowski’s inequality).

In fact, it suffices to consider the case f ≥ 0 with compact support since∫
Rn
|fk − f |p = lim

m→∞

∫
[−m,m]n

|fk − f |p

Let {gk} be an increasing sequence of nonnegative simple functions such that gk ↗ f , f ≥ 0
has compact support. Then, by the monotone convergence theorem,

gk ∈ Lp(Rn),
∫

Rn
|gk − f |p → 0 as k →∞.

Therefore, it suffices to consider the case f ≥ 0, f is a simple function with compact support.

For a simple function f =
N∑
k=1

akχEk ,

∫
Rn
|f − g|p =

N∑
k=1

∫
Ek

|ak − g|p for any g ∈ Lp(Rn).

From this observation, it suffices to consider the case when f is the characteristic function of some
bounded measurable set E. There exists a Gδ set G containing E with m(G \ E) = 0, so that we
may consider only the case E being a Gδ set.

Let E =
∞⋂
k=1

Ok, O1 ⊃ O2 ⊃ · · · is a nested sequence of bounded open sets. Then, by the

monotone convergence theorem, ∫
Rn
|χOk − χE |

p → 0 as k →∞.

Therefore, it suffices to consider f = χO, where O is a bounded open set. But in this case,

f =
∞∑
k=1

χck for some dyadic cubes ck. This proves D is dense in Lp(Rn).

Now consider arbitrary measurable set E ⊂ Rn. Let D′ = {g · χE : g ∈ D}. Then D′ is a
countable set consisting of finite linear combinations of characteristic functions on dyadic cubes
which intersect with E and with rational coefficients.

Given f ∈ Lp(E). Let f̃ = f on E, f̃ = 0 on Rn\E. Choose {fk} ⊂ D such that
∫

Rn |fk−f̃ |
p → 0

as k →∞. Then ∫
E
|fk · χE − f̃ |p =

∫
Rn
|fk · χE − f̃ |p → 0 as k →∞.

This proves that D′ is dense in Lp(E). �
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Given h ∈ Rn. Let τhf(x) = f(x+ h) be the translation operator. Similar to the case L1(Rn),
we have continuity of variable translations with respect to ‖ · ‖p:

Theorem 3.5. If 1 ≤ p <∞ and f ∈ Lp(Rn), then

lim
h→∞

‖τhf − f‖p = 0.

Proof. Let Cp be the collection of Lp(Rn) functions satisfying this property. It follows easily
from the Minkowski inequality that it is a subspace of Lp(Rn).

Given E ⊂ Rn with m(E) <∞. By the Lebesgue dominated convergence theorem,∫
Rn
|χE(x+ h)− χE(x)|pdx = m(E \ Eh) +m(Eh \ E)→ 0 as h→ 0,

where Eh = E − h = {e − h : e ∈ E}. This shows that χE ∈ Cp, and as well as simple functions
in Lp(Rn). Suppose f ∈ Lp(Rn) is nonnegative. Choose simple functions fk ≥ 0, fk ↗ f . Then
fk ∈ Lp(Rn) and, by the monotone convergence theorem, ‖fk → f‖p → 0 as k →∞. Therefore,

‖τhf − f‖p ≤ ‖τhf − τhfk‖p + ‖τhfk − fk‖p + ‖fk − f‖p
≤ ‖τhfk − fk‖p + 2‖f − fk‖p

Let h→ 0, then let k →∞, we find that lim suph→∞ ‖τhf−f‖p = 0. This proves that f ∈ Cp. This
actually implies Cp = Lp(Rn) since any f ∈ Lp(Rn) is the difference of two nonnegative measurable
functions in Lp(Rn). �

Exercises.

3.1. Given any f ∈ L∞(E). Show that m({f > ess supE f}) = 0.

3.2. Use the generalized Young’s inequality in Exercise 2.2 to formulate a generalization of
Hölder’s inequality for Lp(E).

3.3. Suppose m(E) <∞. Show that ‖f‖∞ = limp→∞ ‖f‖p. How about if m(E) =∞?

3.4. Let f be a real-valued measurable function on E. Define the essential infimum on E by

ess inf
E

f = sup{α ∈ (−∞,∞] : m({f < α}) = 0}.

Show that, if f ≥ 0, then ess infE f = 1/ ess supE(1/f).

3.5. Consider Lp(E) with 0 < p < 1. Verify that ρp(f, g) =
∫
E |f − g|

p is a metric on Lp(E).
Prove that (Lp(E), ρp) is a complete separable metric space.

3.6. Given 0 < p <∞, fn ∈ Lp(E). Suppose fn converges to f almost everywhere. Prove that
each of the following conditions implies ‖fn − f‖p → 0 as n→∞.

(a) There exists some g ∈ Lp(E) such that |fn| ≤ g for any n.
(b) ‖fn‖p → ‖f‖p as n→∞.

3.7. For what kind of f ∈ Lp(E) and g ∈ Lq(E), 1
p + 1

q = 1, do we have equality for the Hölder
inequality? For what kind of f, g ∈ Lp(E) do we have equality for the Minkowski inequality?

3.8. Consider 1 < p <∞. Give a proof for the Minkowski inequality using convexity of xp, and
without using Hölder’s inequality.

3.9. Show that L∞(E) is not separable whenever m(E) > 0.


