CHAPTER 8

Introduction to Banach Spaces

1. Uniform and Absolute Convergence

As a preparation we begin by reviewing some familiar properties of Cauchy sequences and
uniform limits in the setting of metric spaces.

DEFINITION 1.1. A metric space is a pair (X, p), where X is a set and p is a real-valued function
on X x X which satisfies that, for any z, y, z € X,
(a) p(z,y) > 0 and p(x,y) = 0 if and only if z = y,
(b) p(z,y) = ply, ),
(c) p(x,2) < p(z,y) + p(y,z). (Triangle inequality)
The function p is called the metric on X.

Any metric space has a natural topology induced from its metric. A subset U of X is said to
be open if for any x € U there exists some r > 0 such that B,(z) C U. Here B,(x) = {y € X :
p(z,y) < r} is the open ball of radius r centered at x. It is an easy exercise to show that open balls
are indeed open and the collection of open sets is indeed a topology, called the metric topology.

On the contrary, there are topological spaces whose topology can be defined by some metric. In
this case we say the topology is metrizable.

DEFINITION 1.2. A sequence {z,} in a metric space (X, p) is said to be a Cauchy Sequence if
Ve > 0,3dN € N such that p(z,, z,) < € whenever n,m > N.
The metric space (X, p) is said to be complete if every Cauchy sequence is convergent.

DEFINITION 1.3. Let (X, p) be a metric space. For any nonempty set A C X, the diameter of
the set A is defined by
diam(A) = sup{p(z,y): z,y € A}.
The set A is said to be bounded if its diameter is finite. Otherwise, we say it is unbounded.
Let S be a nonempty set. We say a function f : S — X is bounded if its image f(5) is a bounded
set. Equivalently, it is bounded if for any x € X, there exists M > 0 such that p(f(s),z) < M for
any s € S. We say f is unbounded if it is not bounded.

DEFINITION 1.4. Given a sequence {f,} of functions from S to X. We say {f,} converges
pointwise to the function f: S — X if

VseS,Ve>0,3N;, €N such that p(fn(s), f(s)) <e, Vn>N.

In this case, the function f is called the pointwise limit.
We say {fn} converges uniformly to a function f : S — X if the above Ny is independent of s;
that is,
Ve>0,3N €N suchthat p(fn(s),f(s) <e, Vn>N,Vselb.
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116 8. INTRODUCTION TO BANACH SPACES

The function f is called the uniform limit of {f,}.

When S is countably infinite, the function f above is a sequence in X, and {f,} is a sequence
of sequences in X; or in other words, {f,(m)} is a double sequence in X.

The next two theorems highlight some important features of Cauchy sequences and uniform
convergence.

THEOREM 1.1. (Cauchy Sequences) Consider sequences in a metric space (X, p).

(a) Any convergent sequence is a Cauchy sequence.

(b) Any Cauchy sequence is bounded.

(¢c) If a subsequence of a Cauchy sequence converges, then the Cauchy sequence converges to
the same limit.

PROOF. (a) Suppose {z,} converges to z. Given € > 0, there is an N € N such that p(x,,z) <
£/2 for any n > N. The sequence {z,} is Cauchy because
p(@n, Tm) < p(@n, x) + p(z,2m) <e for any n,m > N.
(b) Let {z,} be a Cauchy sequence. Choose N € N such that p(x,,z,) < 1 for all n,m > N.
Then for any = € X,
p(an,x) < plen,zy) + p(zN, )
< max{p(z1,2n), p(z2,2N), -+ s p(an-1,2N), 1} + p(2N, T),

where the last equation is a finite bound independent of n.
(c) Let {z),} be a Cauchy sequence with a subsequence {z,, } converging to x. Given ¢ > 0,
choose K, N € N such that

g for any k > K,

p(xnk7x) <
(X, ) < % for any n,m > N.

Taking nj such that £ > K and ni > N, then
P, 7) < plns Tny) + plng, ) <2 for any n> N,
This shows that {z,} converges to x. O

THEOREM 1.2. (Uniform Convergence) Given a sequence of functions {f,} from a nonempty
set S to a metric space (X, p). Suppose {fn} converges uniformly to a function f:S — X.
(a) If each f, is bounded, then so is f.
(b) Assume S is a topological space, E C S. If each f, is continuous on E, then so is f.

PRrROOF. (a) Choose N € N such that p(f(s), fn(s)) <1foranyn > N and s € S. Givenz € X,
choose M > 0 such that p(fn(s),x) < M for any s € S. Then f is bounded since
p(f(s),x) < p(f(s), fn(s)) + p(fn(s),x) <14+ M forany t € 5.

(b) Given ¢ > 0, e € E. Choose N € N such that p(f(s), fn(s)) < ¢/3 for any n > N and
s € S. For this particular IV, fx is continuous at e, and so there is a neighborhood U of e such that
p(fn(e), fn(u)) < e/3 whenever u € U. Then

p(f(e), f(u) < p(f(e), fn(e)) + p(fnle), fn(uw) + p(fn(u), f(u) < e Vuel.

Therefore f is continuous at e, and is continuous on F since e € F is arbitrary. O



1. UNIFORM AND ABSOLUTE CONVERGENCE 117

DEFINITION 1.5. A vector space V over field I is called a normed vector space (or normed space)

if there is a real-valued function || - || on V, called the norm, such that for any xz,y € V and any
a€el,

(a) ||z|| > 0 and ||z|| = 0 if and only if z = 0.

(b) [[az| = |af]|z].-

(¢) llz+yll < ll2ll + lyll. (Triangle nequality)

A norm | - || of V' defines a metric p on V' via p(z,y) = ||z — y||. All concepts from metric and
topological spaces are applicable to normed spaces.

There are multiple ways of choosing norms once a norm is selected. A trivial one is to multiply
the original norm by a positive constant. Concepts like neighborhood, convergence, and complete-
ness are independent of the choice of these two norms, and so we shall consider them equivalent
norms. A more precise characterization of equivalent norms is as follows.

DEFINITION 1.6. Let V' be a vector space with two norms || - ||, || - ||'. We say these two norms
are equivalent if there exists some constant ¢ > 0 such that

1
“[lzl" < [lzll < cllz]" for any z € V.
c
EXAMPLE 1.1. The Euclidean space F", F = R or C, with the standard norm || - || defined by
2 2)1
zll = (Jz1]” + -+ |za]")2
is a normed space. Now consider two other norms of F" defined by
Izl = max{|z1|, - ,|xn|}, called the sup norm;
|lzlli = ||+ -+ |zn], called the I-norm.
Verifications for axioms of norms are completely straightforward.
In the case of sup norm, “balls” in R™ are actually cubes in R™ with faces parallel to coordinate
axes. In the case of 1-norm, “balls” in R™ are cubes in R™ with vertices on coordinate axes. These

norms are equivalent since
[2]loo < flzll < flzfly < 7l

DEFINITION 1.7. A complete normed vector space is called a Banach space.

EXAMPLE 1.2. Consider the Euclidean space F", F = R or C, with the standard norm || - ||. The
normed space (R™, || - ||) is complete since every Cauchy sequence is bounded and every bounded
sequence has a convergent subsequence with limit in R™ (the Bolzano-Weierstrass theorem). The
spaces (R™, || - |]1) and (R™, | - ||c) are also Banach spaces since these norms are equivalent.

EXAMPLE 1.3. Given a nonempty set X and a normed space (Y, || - ||) over field F. The space
of functions from X to Y form a vector space over F, where addition and scalar multiplication are
defined in a trivial manner: Given two functions f, g, and two scalars «, 8 € F, define af + Gg by

(af +Bg)(x) = af(s) + Pg(s), ze€X.

Let b(X,Y) be the subspace consisting of bounded functions from X to Y. Define a real-valued
function || - ||co on b(X,Y") by

[ flloo = sup || f(@)]-
zeX
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It is clearly a norm on b(X,Y"), also called the sup norm. Convergence with respect to the sup norm
is clearly the same as uniform convergence.

If (Y,]| - ||) is a Banach space, then any Cauchy sequence {f,} in b(X,Y’) converges pointwise
to some function f : X — Y, since {f,(z)} is a Cauchy sequence in Y for any fixed z € X. In
fact, the convergence f, — f is uniform. To see this, let € > 0 be arbitrary. Choose N € N such
that || fn — fmlloo < €/2 whenever n,m > N. For any x € X, there exists some m, > N such that
|| fm. () — f(2)|] < &/2. Then for any n > N,

[fn(2) = F@)]| < [ fn(@) = Fone ()| + [ fme (2) = f(@)]] <.

This proves that the convergence f, — f is uniform. By Theorem 1.2(a), f € b(X,Y), and so the
space b(X,Y') with the sup norm is a Banach space.

EXAMPLE 1.4. Let (X,7) be a topological space and let (Y, - ||) be a Banach space over
F =R or C. Denote by C(X,Y) the space of continuous functions from X to Y. Let Cp(X,Y) =
C(X,Y)Nb(X,Y), the space of bounded continuous functions from X to Y. Given any sequence
{fn} in Cp(X,Y) which converges uniformly to f € b(X,Y). By Theorem 1.2(b), f € Cp(X,Y).
This shows that Cp(X,Y) is a closed subspace of b(X,Y), and is therefore a Banach space (see
Exercise 1.1).

DEFINITION 1.8. A series ) ,~; aj in a normed space X is said to be convergent (or summable)
if its partial sum ), ; a; converges to some s € X as n — oo. We say Y oo ai is absolutely
convergent (or absolutely summable) if Y722, |lax| < oo.

In the following we prove some useful criteria for completeness and uniform convergence of series.

THEOREM 1.3. A normed space X is complete if and only if every absolutely convergent series
18 convergent.

PROOF. Suppose X is complete, > 22 | aj, is absolutely convergent. We need to show the conver-
gence of s, = > }_; ar. Given € > 0, choose N € N such that Y7 v |lax| <€, then ||s,, — s,]| < e
whenever n,m > N. Thus {s,}°°; is a Cauchy sequence, and so it converges.

Conversely, suppose every absolutely convergent series in X converges. Let {s,}>2; be a Cauchy
sequence in X. By Theorem 1.1 it suffices to show that {s,}7°, has a convergent subsequence
{80, 1321 Now choose nj, such that

1
ng < Ng41, HSnk — 5%+1H < ok for any k € N.

Then the series sy, + > pe; (Sns,y — Sn,) converges absolutely, so that it converges to some s € X.
This implies that s,, = sy, —i—Z?;ll (snj 1 snj) converges to s as k — oo, completing the proof. [

COROLLARY 1.4. (WEIERSTRASS M-TEST)
Let b(X,Y) be the space bounded functions from a nonempty set X to a Banach space (Y,| - |).
Given a sequence of functions {fn}52, in b(X,Y). If | fullce < My for anyn € N and Y 02 | M,
converges, then Y " | f, converges uniformly.

PROOF. The assumption says that » 2 f, is absolutely convergent. By Theorem 1.3 (and
Example 1.3), the series converges in b(X,Y), implying that the convergence is uniform. O
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Exercises.

1.1. Show that a subset of a complete metric space is complete if and only if it is closed.

1.2. Let ¥y = {0, 1}, the space of infinite sequences of {0,1}; that is,
Yo ={(a1,a2,...): ar =0 or 1 for each k}.
Given A > 1, a,b € X9, let

[ee}

ar, — byl
pa(a,b) = ‘)\k
k=1

Show that (32, py) is a complete metric space.
1.3. Consider the space of real sequences s. Let

|lax, — byl

pla.b) = ; (1 + |ag — be])’

Show that (s, p) is a complete metric space.
1.4. Consider the space BV]a,b] of functions on [a,b] with bounded variations. For any f €
BVla,b], let | f|| = |f(a)| + V2(f). Show that (BV[a,b], ]| -||) is a Banach space. Is it separable?

2. The /P Space

DEFINITION 2.1. Let F =R or C. Given 0 < p < oo, define

1
P
# ={a=(a1,a2,---) s ap €F for any k, Y _|apf < oo}, [afl, = (Zlak|p> ,
k

k
(>* ={a=(a1,a2, ) :a €F for any k,sup |ag| < oo}, llallco = Sl]ip|ak|.
k

The space £°° consists of bounded sequences in F. Addition and multiplication of sequences are

defined componentwise:
(a17a27"‘)+(b17b27”') - (a1+b17a2+b27”‘)
(&1,&2,"')'(1)1,()2,"') = (alblaa2b27"')-
Clearly ¢7 with any 0 < p < oo is a vector space, since ||aal|, = |||/a]|, for any o € F and
abel = > lap+bplP < (2max{|agl, [be})P < 22> (|axl” + [brlP),
k k k
a,be (™ = suplag + bg| < sup|ag| + sup |bg|.
k k k

When 1 < p < oo, the function || - ||, is a norm on ¢°. This follows from Theorem 2.1 below.

THEOREM 2.1. Given 1 < p,q < oo with % + % = 1. Let a,b be sequences of complex numbers.

(a) (YOUNG’S INEQUALITY) Ifu,v >0, 1 < p,q < oo, then
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(b) (HOLDER’S INEQUALITY FOR fP) If a € (P, b € ¢4, then ab € (' and
labllx < [|allp[lbllq-
(¢) (MINKOWSKI’S INEQUALITY FOR (P)
la+bllp < llally + [[bllp-
PRrOOF. It would be convenient to write ¢ = p%l (= ifp=1,qg=11if p=00). The curve
y = 27! can be alternatively written x = y9~!. Part (a) follows easily by observing

U P v q
U :/ P e = u—, V= / Yty = v—, U+V > uv.
0 p 0 q

For part (b), the cases p =1, ¢ = 0o and p = 0o, ¢ = 1 are obvious. Consider 1 < p,q < oc.
The cases |lall, = 0 or ||b]|; = 0 are also obvious, so we assume 0 < ||a||,, ||b|lq < occ.
Let A= m, B= Hblilq' By Young’s inequality,

S Ay Z(\Ak\er \Bk|q> _ lAlp  IBlg 1Ly
p —~\ D q p q poq

lablly = > larbel = llalplble Y [AxBel < lallplbllg-
k k

IN

The cases p = 1 and p = oo for (c) are obvious. For 1 < p < oo, (c) follows easily from (b):

la+bl5 = > lak + bef”
k

< Y lak + bePMar] + ) lak + belP 7 b
k !

P p
< (o) () s (Sonr) " (i)’
= lla+blE=*(lall, + [16llp)-
O
THEOREM 2.2. For any 1 <p < oo, (P, -||p) is a Banach space.

Proor. Completeness of ¢*° is a special case of Example 1.3. Consider 1 < p < oo. Let

{a(™M}%° | be a Cauchy sequence in (7. For each k, {a;n)}fle is a Cauchy sequence of real numbers
since

B =

| (S - ) -,

p

Then there is a sequence a = (a1, a2, ---) such that, for each k,

(n)

a,’ —ap €R asn— oco.
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Given € > 0, M € N, there exists some N € N such that

1
M P 00 P
<Z ‘a](gn) — a](gm)‘p) ’ < (Z ‘a,(gn) - a,&m)‘p) <e Vn>m>N.
k=1 k=1

Let m — oo, then let M — oo, we find

1
00 P
Ha(n) B a”p _ (Z ‘a’l(cn) _ ak)p) <e for any n > N.
k=1

Thus [|a™ — al|, — 0 as n — oo, and so |lal, < [la — a™]|, + [|a™]|, < oo, a € ¢P. This verifies
completeness of /P. U

THEOREM 2.3. The space £P is separable if 1 < p < oo, and the space £%° is not separable.

PROOF. The space £ is not separable because it has an uncountable subset s = {a = (a1, a9,...) €
0> :a,=0o0r1V n}and ||a—b|le =1forany a #0b € s.

Consider 1 < p < oco. Let D be the set of finite sequences with rational coordinates. Clearly D
is countable. Given a € /P and any € > 0, we can choose N € N such that Y 7 v, [ax[P < P/2.
Now choose by, -+ ,by € Q such that Zivzl lax, — bg|P < eP/2. Let b = (by,---,bn,0,0,---) € D.
Then

0o N 00
la=blp = Y lak b = D la—belP+ D a < &
k=1 k=1 k=N-+1
Thus |la — b|[, < €. This shows that D is dense since ¢ > 0 is arbitrary. O

Exercises.

2.1. Consider the ¢? space with 0 < p < 1. Verify that p,(a,b) = > "7, |ar — bg|? is a metric on
¢P. Prove that (¢7, p,) is a complete separable metric space.

2.2. Prove the following generalization of Young’s inequality: Given 1 < p1,--- ,p, < oo with
> ory i =1. Ifuy, -+ ,up >0, then
pP1 Pn
4! Pn

Use it to formulate a generalization of Holder’s inequality for ¢P.

2.3. Consider sequences of real numbers. Show that the space ¢y of sequences converging to
zero with sup norm is a Banach space, and for any 1 < p < ¢ < 00, a € P,

Sl G o, Nalleo <llally < llallp.
Are these norms on ¢P equivalent?

2.4. Explain why the set s in the proof of Theorem 2.3 is uncountable.



