CHAPTER 8

Introduction to Banach Spaces

1. Uniform and Absolute Convergence

As a preparation we begin by reviewing some familiar properties of Cauchy sequences and uniform limits in the setting of metric spaces.

DEFINITION 1.1. A metric space is a pair (X, ρ) , where X is a set and ρ is a real-valued function on $X \times X$ which satisfies that, for any $x, y, z \in X$,

- (a) $\rho(x, y) \ge 0$ and $\rho(x, y) = 0$ if and only if x = y,
- (b) $\rho(x, y) = \rho(y, x),$
- (c) $\rho(x,z) \le \rho(x,y) + \rho(y,z)$. (Triangle inequality)

The function ρ is called the *metric* on X.

Any metric space has a natural topology induced from its metric. A subset U of X is said to be open if for any $x \in U$ there exists some r > 0 such that $B_r(x) \subset U$. Here $B_r(x) = \{y \in X : \rho(x, y) < r\}$ is the open ball of radius r centered at x. It is an easy exercise to show that open balls are indeed open and the collection of open sets is indeed a topology, called the *metric topology*.

On the contrary, there are topological spaces whose topology can be defined by some metric. In this case we say the topology is *metrizable*.

DEFINITION 1.2. A sequence $\{x_n\}$ in a metric space (X, ρ) is said to be a Cauchy Sequence if

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ such that } \rho(x_n, x_m) < \varepsilon \text{ whenever } n, m \geq N.$$

The metric space (X, ρ) is said to be *complete* if every Cauchy sequence is convergent.

DEFINITION 1.3. Let (X, ρ) be a metric space. For any nonempty set $A \subset X$, the *diameter* of the set A is defined by

$$\operatorname{diam}(A) = \sup\{\rho(x, y) : x, y \in A\}.$$

The set A is said to be *bounded* if its diameter is finite. Otherwise, we say it is *unbounded*.

Let S be a nonempty set. We say a function $f: S \to X$ is bounded if its image f(S) is a bounded set. Equivalently, it is bounded if for any $x \in X$, there exists M > 0 such that $\rho(f(s), x) \leq M$ for any $s \in S$. We say f is unbounded if it is not bounded.

DEFINITION 1.4. Given a sequence $\{f_n\}$ of functions from S to X. We say $\{f_n\}$ converges pointwise to the function $f: S \to X$ if

 $\forall s \in S, \forall \varepsilon > 0, \exists N_s \in \mathbb{N} \text{ such that } \rho(f_n(s), f(s)) < \varepsilon, \forall n \ge N.$

In this case, the function f is called the *pointwise limit*.

We say $\{f_n\}$ converges uniformly to a function $f: S \to X$ if the above N_s is independent of s; that is,

 $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ such that $\rho(f_n(s), f(s)) < \varepsilon, \forall n \ge N, \forall s \in S.$

The function f is called the *uniform limit* of $\{f_n\}$.

When S is countably infinite, the function f above is a sequence in X, and $\{f_n\}$ is a sequence of sequences in X; or in other words, $\{f_n(m)\}$ is a double sequence in X.

The next two theorems highlight some important features of Cauchy sequences and uniform convergence.

THEOREM 1.1. (Cauchy Sequences) Consider sequences in a metric space (X, ρ) .

- (a) Any convergent sequence is a Cauchy sequence.
- (b) Any Cauchy sequence is bounded.
- (c) If a subsequence of a Cauchy sequence converges, then the Cauchy sequence converges to the same limit.

PROOF. (a) Suppose $\{x_n\}$ converges to x. Given $\varepsilon > 0$, there is an $N \in \mathbb{N}$ such that $\rho(x_n, x) < \varepsilon/2$ for any $n \ge N$. The sequence $\{x_n\}$ is Cauchy because

$$\rho(x_n, x_m) < \rho(x_n, x) + \rho(x, x_m) < \varepsilon \quad \text{for any } n, m \ge N.$$

(b) Let $\{x_n\}$ be a Cauchy sequence. Choose $N \in \mathbb{N}$ such that $\rho(x_n, x_m) < 1$ for all $n, m \geq N$. Then for any $x \in X$,

$$\rho(x_n, x) \leq \rho(x_n, x_N) + \rho(x_N, x) < \max\{\rho(x_1, x_N), \rho(x_2, x_N), \cdots, \rho(x_{N-1}, x_N), 1\} + \rho(x_N, x),$$

where the last equation is a finite bound independent of n.

(c) Let $\{x_n\}$ be a Cauchy sequence with a subsequence $\{x_{n_k}\}$ converging to x. Given $\varepsilon > 0$, choose $K, N \in \mathbb{N}$ such that

$$\rho(x_{n_k}, x) < \frac{\varepsilon}{2} \quad \text{for any } k \ge K,$$

 $\rho(x_n, x_m) < \frac{\varepsilon}{2} \quad \text{for any } n, m \ge N.$

Taking n_k such that $k \ge K$ and $n_k \ge N$, then

$$\rho(x_n, x) \le \rho(x_n, x_{n_k}) + \rho(x_{n_k}, x) < \varepsilon \text{ for any } n \ge N.$$

This shows that $\{x_n\}$ converges to x.

THEOREM 1.2. (Uniform Convergence) Given a sequence of functions $\{f_n\}$ from a nonempty set S to a metric space (X, ρ) . Suppose $\{f_n\}$ converges uniformly to a function $f : S \to X$.

- (a) If each f_n is bounded, then so is f.
- (b) Assume S is a topological space, $E \subset S$. If each f_n is continuous on E, then so is f.

PROOF. (a) Choose $N \in \mathbb{N}$ such that $\rho(f(s), f_n(s)) < 1$ for any $n \ge N$ and $s \in S$. Given $x \in X$, choose M > 0 such that $\rho(f_N(s), x) < M$ for any $s \in S$. Then f is bounded since

$$\rho(f(s), x) \le \rho(f(s), f_N(s)) + \rho(f_N(s), x) \le 1 + M \quad \text{for any } t \in S.$$

(b) Given $\varepsilon > 0$, $e \in E$. Choose $N \in \mathbb{N}$ such that $\rho(f(s), f_n(s)) < \varepsilon/3$ for any $n \ge N$ and $s \in S$. For this particular N, f_N is continuous at e, and so there is a neighborhood U of e such that $\rho(f_N(e), f_N(u)) < \varepsilon/3$ whenever $u \in U$. Then

$$\rho(f(e), f(u)) \leq \rho(f(e), f_N(e)) + \rho(f_N(e), f_N(u)) + \rho(f_N(u), f(u)) < \varepsilon \quad \forall u \in U.$$

Therefore f is continuous at e, and is continuous on E since $e \in E$ is arbitrary.

116

DEFINITION 1.5. A vector space V over field \mathbb{F} is called a *normed vector space* (or *normed space*) if there is a real-valued function $\|\cdot\|$ on V, called the *norm*, such that for any $x, y \in V$ and any $\alpha \in \mathbb{F}$,

(a) $||x|| \ge 0$ and ||x|| = 0 if and only if x = 0.

- (b) $\|\alpha x\| = |\alpha| \|x\|$.
- (c) $||x + y|| \le ||x|| + ||y||$. (Triangle inequality)

A norm $\|\cdot\|$ of V defines a metric ρ on V via $\rho(x, y) = \|x - y\|$. All concepts from metric and topological spaces are applicable to normed spaces.

There are multiple ways of choosing norms once a norm is selected. A trivial one is to multiply the original norm by a positive constant. Concepts like neighborhood, convergence, and completeness are independent of the choice of these two norms, and so we shall consider them equivalent norms. A more precise characterization of equivalent norms is as follows.

DEFINITION 1.6. Let V be a vector space with two norms $\|\cdot\|$, $\|\cdot\|'$. We say these two norms are *equivalent* if there exists some constant c > 0 such that

$$\frac{1}{c}||x||' \leq ||x|| \leq c||x||' \text{ for any } x \in V.$$

EXAMPLE 1.1. The Euclidean space \mathbb{F}^n , $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , with the standard norm $\|\cdot\|$ defined by

$$||x|| = (|x_1|^2 + \dots + |x_n|^2)^{\frac{1}{2}}$$

is a normed space. Now consider two other norms of \mathbb{F}^n defined by

 $\begin{aligned} \|x\|_{\infty} &= \max\{|x_1|, \cdots, |x_n|\}, \quad \text{called the sup norm}; \\ \|x\|_1 &= |x_1| + \cdots + |x_n|, \quad \text{called the 1-norm.} \end{aligned}$

Verifications for axioms of norms are completely straightforward.

In the case of sup norm, "balls" in \mathbb{R}^n are actually cubes in \mathbb{R}^n with faces parallel to coordinate axes. In the case of 1-norm, "balls" in \mathbb{R}^n are cubes in \mathbb{R}^n with vertices on coordinate axes. These norms are equivalent since

$$||x||_{\infty} \le ||x|| \le ||x||_1 \le n ||x||_{\infty}$$

DEFINITION 1.7. A complete normed vector space is called a *Banach space*.

EXAMPLE 1.2. Consider the Euclidean space \mathbb{F}^n , $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , with the standard norm $\|\cdot\|$. The normed space $(\mathbb{R}^n, \|\cdot\|)$ is complete since every Cauchy sequence is bounded and every bounded sequence has a convergent subsequence with limit in \mathbb{R}^n (the Bolzano-Weierstrass theorem). The spaces $(\mathbb{R}^n, \|\cdot\|_1)$ and $(\mathbb{R}^n, \|\cdot\|_\infty)$ are also Banach spaces since these norms are equivalent.

EXAMPLE 1.3. Given a nonempty set X and a normed space $(Y, \|\cdot\|)$ over field \mathbb{F} . The space of functions from X to Y form a vector space over \mathbb{F} , where addition and scalar multiplication are defined in a trivial manner: Given two functions f, g, and two scalars $\alpha, \beta \in \mathbb{F}$, define $\alpha f + \beta g$ by

$$(\alpha f + \beta g)(x) = \alpha f(s) + \beta g(s), \quad x \in X.$$

Let b(X, Y) be the subspace consisting of bounded functions from X to Y. Define a real-valued function $\|\cdot\|_{\infty}$ on b(X, Y) by

$$||f||_{\infty} = \sup_{x \in X} ||f(x)||.$$

It is clearly a norm on b(X, Y), also called the *sup norm*. Convergence with respect to the sup norm is clearly the same as uniform convergence.

If $(Y, \|\cdot\|)$ is a Banach space, then any Cauchy sequence $\{f_n\}$ in b(X, Y) converges pointwise to some function $f: X \to Y$, since $\{f_n(x)\}$ is a Cauchy sequence in Y for any fixed $x \in X$. In fact, the convergence $f_n \to f$ is uniform. To see this, let $\varepsilon > 0$ be arbitrary. Choose $N \in \mathbb{N}$ such that $\|f_n - f_m\|_{\infty} < \varepsilon/2$ whenever $n, m \ge N$. For any $x \in X$, there exists some $m_x \ge N$ such that $\|f_{m_x}(x) - f(x)\| < \varepsilon/2$. Then for any $n \ge N$,

$$||f_n(x) - f(x)|| \le ||f_n(x) - f_{m_x}(x)|| + ||f_{m_x}(x) - f(x)|| < \varepsilon.$$

This proves that the convergence $f_n \to f$ is uniform. By Theorem 1.2(a), $f \in b(X, Y)$, and so the space b(X, Y) with the sup norm is a Banach space.

EXAMPLE 1.4. Let (X, \mathcal{T}) be a topological space and let $(Y, \|\cdot\|)$ be a Banach space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Denote by C(X, Y) the space of continuous functions from X to Y. Let $C_b(X, Y) = C(X, Y) \cap b(X, Y)$, the space of bounded continuous functions from X to Y. Given any sequence $\{f_n\}$ in $C_b(X, Y)$ which converges uniformly to $f \in b(X, Y)$. By Theorem 1.2(b), $f \in C_b(X, Y)$. This shows that $C_b(X, Y)$ is a closed subspace of b(X, Y), and is therefore a Banach space (see Exercise 1.1).

DEFINITION 1.8. A series $\sum_{k=1}^{\infty} a_k$ in a normed space X is said to be *convergent* (or *summable*) if its partial sum $\sum_{k=1}^{n} a_k$ converges to some $s \in X$ as $n \to \infty$. We say $\sum_{k=1}^{\infty} a_k$ is absolutely convergent (or absolutely summable) if $\sum_{k=1}^{\infty} ||a_k|| < \infty$.

In the following we prove some useful criteria for completeness and uniform convergence of series.

THEOREM 1.3. A normed space X is complete if and only if every absolutely convergent series is convergent.

PROOF. Suppose X is complete, $\sum_{k=1}^{\infty} a_k$ is absolutely convergent. We need to show the convergence of $s_n = \sum_{k=1}^n a_k$. Given $\varepsilon > 0$, choose $N \in \mathbb{N}$ such that $\sum_{k=N}^{\infty} ||a_k|| < \varepsilon$, then $||s_n - s_m|| < \varepsilon$ whenever $n, m \ge N$. Thus $\{s_n\}_{n=1}^{\infty}$ is a Cauchy sequence, and so it converges.

Conversely, suppose every absolutely convergent series in X converges. Let $\{s_n\}_{n=1}^{\infty}$ be a Cauchy sequence in X. By Theorem 1.1 it suffices to show that $\{s_n\}_{n=1}^{\infty}$ has a convergent subsequence $\{s_{n_k}\}_{k=1}^{\infty}$. Now choose n_k such that

$$n_k < n_{k+1}, \quad ||s_{n_k} - s_{n_{k+1}}|| < \frac{1}{2^k} \quad \text{for any } k \in \mathbb{N}.$$

Then the series $s_{n_1} + \sum_{k=1}^{\infty} (s_{n_{k+1}} - s_{n_k})$ converges absolutely, so that it converges to some $s \in X$. This implies that $s_{n_k} = s_{n_1} + \sum_{j=1}^{k-1} (s_{n_{j+1}} - s_{n_j})$ converges to s as $k \to \infty$, completing the proof. \Box

COROLLARY 1.4. (WEIERSTRASS M-TEST)

Let b(X, Y) be the space bounded functions from a nonempty set X to a Banach space $(Y, \|\cdot\|)$. Given a sequence of functions $\{f_n\}_{n=1}^{\infty}$ in b(X, Y). If $\|f_n\|_{\infty} \leq M_n$ for any $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} M_n$ converges, then $\sum_{n=1}^{\infty} f_n$ converges uniformly.

PROOF. The assumption says that $\sum_{n=1}^{\infty} f_n$ is absolutely convergent. By Theorem 1.3 (and Example 1.3), the series converges in b(X, Y), implying that the convergence is uniform.

Exercises.

- 1.1. Show that a subset of a complete metric space is complete if and only if it is closed.
- 1.2. Let $\Sigma_2 = \{0, 1\}^{\mathbb{N}}$, the space of infinite sequences of $\{0, 1\}$; that is,

 $\Sigma_2 = \{(a_1, a_2, \dots): a_k = 0 \text{ or } 1 \text{ for each } k\}.$

Given $\lambda > 1, a, b \in \Sigma_2$, let

$$\rho_{\lambda}(a,b) = \sum_{k=1}^{\infty} \frac{|a_k - b_k|}{\lambda^k}.$$

Show that (Σ_2, ρ_λ) is a complete metric space.

1.3. Consider the space of real sequences s. Let

$$\rho(a,b) = \sum_{k=1}^{\infty} \frac{|a_k - b_k|}{2^k (1 + |a_k - b_k|)}.$$

Show that (s, ρ) is a complete metric space.

1.4. Consider the space BV[a, b] of functions on [a, b] with bounded variations. For any $f \in BV[a, b]$, let $||f|| = |f(a)| + V_a^b(f)$. Show that $(BV[a, b], || \cdot ||)$ is a Banach space. Is it separable?

2. The ℓ^p Space

DEFINITION 2.1. Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Given 0 , define

$$\ell^{p} = \{a = (a_{1}, a_{2}, \cdots) : a_{k} \in \mathbb{F} \text{ for any } k, \sum_{k} |a_{k}|^{p} < \infty\}, \qquad \|a\|_{p} = \left(\sum_{k} |a_{k}|^{p}\right)^{\frac{1}{p}}, \\ \ell^{\infty} = \{a = (a_{1}, a_{2}, \cdots) : a_{k} \in \mathbb{F} \text{ for any } k, \sup_{k} |a_{k}| < \infty\}, \qquad \|a\|_{\infty} = \sup_{k} |a_{k}|.$$

The space ℓ^{∞} consists of bounded sequences in \mathbb{F} . Addition and multiplication of sequences are defined componentwise:

$$(a_1, a_2, \cdots) + (b_1, b_2, \cdots) = (a_1 + b_1, a_2 + b_2, \cdots) (a_1, a_2, \cdots) \cdot (b_1, b_2, \cdots) = (a_1 b_1, a_2 b_2, \cdots).$$

Clearly ℓ^p with any $0 is a vector space, since <math>\|\alpha a\|_p = |\alpha| \|a\|_p$ for any $\alpha \in \mathbb{F}$ and

$$a, b \in \ell^p \quad \Rightarrow \quad \sum_k |a_k + b_k|^p \le \sum_k (2\max\{|a_k|, |b_k|\})^p \le 2^p \sum_k (|a_k|^p + |b_k|^p),$$

$$a, b \in \ell^\infty \quad \Rightarrow \quad \sup_k |a_k + b_k| \le \sup_k |a_k| + \sup_k |b_k|.$$

When $1 \le p \le \infty$, the function $\|\cdot\|_p$ is a norm on ℓ^p . This follows from Theorem 2.1 below. THEOREM 2.1. Given $1 \le p, q \le \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$. Let a, b be sequences of complex numbers. (a) (YOUNG'S INEQUALITY) If $u, v \ge 0, 1 < p, q < \infty$, then

$$uv \le \frac{u^p}{p} + \frac{v^q}{q}.$$

(b) (HÖLDER'S INEQUALITY FOR ℓ^p) If $a \in \ell^p$, $b \in \ell^q$, then $ab \in \ell^1$ and

$$||ab||_1 \le ||a||_p ||b||_q.$$

(c) (MINKOWSKI'S INEQUALITY FOR ℓ^p)

$$||a+b||_p \le ||a||_p + ||b||_p.$$

PROOF. It would be convenient to write $q = \frac{p}{p-1}$ $(q = \infty \text{ if } p = 1, q = 1 \text{ if } p = \infty)$. The curve $y = x^{p-1}$ can be alternatively written $x = y^{q-1}$. Part (a) follows easily by observing

$$U = \int_0^u x^{p-1} dx = \frac{u^p}{p}, \quad V = \int_0^v y^{q-1} dy = \frac{v^q}{q}, \quad U + V \ge uv.$$

For part (b), the cases p = 1, $q = \infty$ and $p = \infty$, q = 1 are obvious. Consider $1 < p, q < \infty$. The cases $\|a\|_p = 0$ or $\|b\|_q = 0$ are also obvious, so we assume $0 < \|a\|_p$, $\|b\|_q < \infty$. Let $A = \frac{a}{\|a\|_p}$, $B = \frac{b}{\|b\|_q}$. By Young's inequality,

$$\sum_{k} |A_{k}B_{k}| \leq \sum_{k} \left(\frac{|A_{k}|^{p}}{p} + \frac{|B_{k}|^{q}}{q} \right) = \frac{\|A\|_{p}^{p}}{p} + \frac{\|B\|_{q}^{q}}{q} = \frac{1}{p} + \frac{1}{q} = 1,$$

$$\|ab\|_{1} = \sum_{k} |a_{k}b_{k}| = \|a\|_{p} \|b\|_{q} \sum_{k} |A_{k}B_{k}| \leq \|a\|_{p} \|b\|_{q}.$$

The cases p = 1 and $p = \infty$ for (c) are obvious. For 1 , (c) follows easily from (b):

$$\begin{aligned} ||a+b||_{p}^{p} &= \sum_{k} |a_{k}+b_{k}|^{p} \\ &\leq \sum_{k} |a_{k}+b_{k}|^{p-1} |a_{k}| + \sum_{k} |a_{k}+b_{k}|^{p-1} |b_{k}| \\ &\leq \left(\sum_{k} |a_{k}+b_{k}|^{p}\right)^{\frac{p-1}{p}} \left(\sum_{k} |a_{k}|^{p}\right)^{\frac{1}{p}} + \left(\sum_{k} |a_{k}+b_{k}|^{p}\right)^{\frac{p-1}{p}} \left(\sum_{k} |b_{k}|^{p}\right)^{\frac{1}{p}} \\ &= ||a+b||_{p}^{p-1} (||a||_{p} + ||b||_{p}). \end{aligned}$$

THEOREM 2.2. For any $1 \le p \le \infty$, $(\ell^p, \|\cdot\|_p)$ is a Banach space.

PROOF. Completeness of ℓ^{∞} is a special case of Example 1.3. Consider $1 \leq p < \infty$. Let $\{a^{(n)}\}_{i=1}^{\infty}$ be a Cauchy sequence in ℓ^p . For each $k, \{a_k^{(n)}\}_{n=1}^{\infty}$ is a Cauchy sequence of real numbers since

$$\left|a_{k}^{(n)} - a_{k}^{(m)}\right| \leq \left(\sum_{j=1}^{\infty} |a_{j}^{(n)} - a_{j}^{(m)}|^{p}\right)^{\frac{1}{p}} = \left\|a^{(n)} - a^{(m)}\right\|_{p}.$$

Then there is a sequence $a = (a_1, a_2, \cdots)$ such that, for each k,

$$a_k^{(n)} \to a_k \in \mathbb{R} \quad \text{as } n \to \infty.$$

120

Given $\varepsilon > 0, M \in \mathbb{N}$, there exists some $N \in \mathbb{N}$ such that

$$\left(\sum_{k=1}^{M} \left|a_{k}^{(n)} - a_{k}^{(m)}\right|^{p}\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{\infty} \left|a_{k}^{(n)} - a_{k}^{(m)}\right|^{p}\right)^{\frac{1}{p}} < \varepsilon \quad \forall \ n > m \ge N$$

Let $m \to \infty$, then let $M \to \infty$, we find

$$\|a^{(n)} - a\|_p = \left(\sum_{k=1}^{\infty} \left|a_k^{(n)} - a_k\right|^p\right)^{\frac{1}{p}} \le \varepsilon \quad \text{for any } n \ge N.$$

Thus $||a^{(n)} - a||_p \to 0$ as $n \to \infty$, and so $||a||_p \le ||a - a^{(n)}||_p + ||a^{(n)}||_p < \infty$, $a \in \ell^p$. This verifies completeness of ℓ^p .

THEOREM 2.3. The space ℓ^p is separable if $1 \leq p < \infty$, and the space ℓ^{∞} is not separable.

PROOF. The space ℓ^{∞} is not separable because it has an uncountable subset $s = \{a = (a_1, a_2, \ldots) \in \ell^{\infty} : a_n = 0 \text{ or } 1 \forall n\}$ and $||a - b||_{\infty} = 1$ for any $a \neq b \in s$.

Consider $1 \leq p < \infty$. Let \mathcal{D} be the set of finite sequences with rational coordinates. Clearly \mathcal{D} is countable. Given $a \in \ell^p$ and any $\varepsilon > 0$, we can choose $N \in \mathbb{N}$ such that $\sum_{k=N+1}^{\infty} |a_k|^p < \varepsilon^p/2$. Now choose $b_1, \dots, b_N \in \mathbb{Q}$ such that $\sum_{k=1}^{N} |a_k - b_k|^p < \varepsilon^p/2$. Let $b = (b_1, \dots, b_N, 0, 0, \dots) \in \mathcal{D}$. Then

$$||a-b||_p^p = \sum_{k=1}^{\infty} |a_k - b_k|^p = \sum_{k=1}^{N} |a_k - b_k|^p + \sum_{k=N+1}^{\infty} |a_k|^p < \varepsilon^p.$$

Thus $||a - b||_p < \varepsilon$. This shows that \mathcal{D} is dense since $\varepsilon > 0$ is arbitrary.

Exercises.

2.1. Consider the ℓ^p space with $0 . Verify that <math>\rho_p(a, b) = \sum_{k=1}^{\infty} |a_k - b_k|^p$ is a metric on ℓ^p . Prove that (ℓ^p, ρ_p) is a complete separable metric space.

2.2. Prove the following generalization of Young's inequality: Given $1 < p_1, \dots, p_n < \infty$ with $\sum_{k=1}^{n} \frac{1}{p_k} = 1$. If $u_1, \dots, u_n \ge 0$, then

$$u_1 \cdots u_n \le \frac{u_1^{p_1}}{p_1} + \cdots + \frac{u_n^{p_n}}{p_n}$$

Use it to formulate a generalization of Hölder's inequality for ℓ^p .

2.3. Consider sequences of real numbers. Show that the space c_0 of sequences converging to zero with sup norm is a Banach space, and for any $1 \le p < q \le \infty$, $a \in \ell^p$,

 $\ell^p \subsetneq \ell^q \subsetneq c_0, \quad \|a\|_{\infty} \le \|a\|_q \le \|a\|_p.$

Are these norms on ℓ^p equivalent?

2.4. Explain why the set s in the proof of Theorem 2.3 is uncountable.