MATH 3510 Introduction to Topology Homework Assignments

Problems with asterisks * will be collected and graded. The date on the left is the due date.
10/4. page 27: 1, 2, 3, 4
page 34: ${ }^{*} 1,2,3,{ }^{*} 4$
*(A). Given a set in a metric space. What is the maximal possible number of different sets by successive applications of closure and complement?

10/18. page 34: 5, 6
page 40: $1, * 2,3,4$
page 51: *1, 2, 3, *5
$11 / 8$. page 58 : $2,{ }^{*} 3,{ }^{*} 6,7,8,{ }^{*} 9$
$11 / 29$. Page 71: $1,2,{ }^{*} 6,7,{ }^{*} 8$
Note: For problem 6, the topology \mathcal{T} is generated by all $N_{a, b}$ (arithmetic progressions). It is known as the evenly spaced integer topology. You can skip (a) and treat (b)-(d) as hints for proving (e).
Page 78: 1, 2, 3, 7, 8, *10
$12 / 20$. Page 88: $3,4,{ }^{*} 6,7,{ }^{*} 8,{ }^{*} 9,10$
N/A Page 99: 3, 4, 9
Page 106: 2, 4, 5
Page 115: 6, 7

