MATH 3510 Introduction to Topology Homework Assignments

Problems with asterisks * will be collected and graded. The date on the left is the due date.

- 10/4. page 27: 1, 2, 3, 4
 page 34: *1, 2, 3, *4
 *(A). Given a set in a metric space. What is the maximal possible number of different sets by successive applications of closure and complement?
- 10/18. page 34: 5, 6 page 40: 1, *2, 3, 4 page 51: *1, 2, 3, *5
- 11/8. page 58: 2, *3, *6, 7, 8, *9
- 11/29. Page 71: 1, 2, *6, 7, *8 Note: For problem 6, the topology \mathcal{T} is generated by all $N_{a,b}$ (arithmetic progressions). It is known as the *evenly spaced integer topology*. You can skip (a) and treat (b)-(d) as hints for proving (e). Page 78: 1, 2, 3, 7, 8, *10
- 12/20. Page 88: 3, 4, *6, 7, *8, *9, 10

N/A Page 99: 3, 4, 9 Page 106: 2, 4, 5 Page 115: 6, 7