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Here is amendment to the lecture on 12/21 about the Lyapunov stability theorem. The proof will
not be part of final exam.
Ref: Hirsch-Smale’s book “Differential Equations, Dynamical Systems, and Linear Algebra” §9.3

Suppose V' is a strict Lyapunov function for & = f(x) on neighborhood U of isolated equilibrium
point . We want to show that Z is asymptotically stable.

Choose § > 0 small so that Bs(z) C U. Let

a= inf V, U ={xe€ Bsx): V(z)<a}.
0B;(2)
Then any solution z(t) starting from U; will stay inside Bs(Z) for ¢ > 0 since V' (z(t)) is decreasing
in t. This implies stability of z.
To prove asymptotic stability, we need to show that any solution z(t) starting from U; ap-
proaches T as t — co. Assume otherwise, then there exists some solution z(t) starting from Uy
and some sequence t, /oo such that z(t,) — § # T as n — oo. Observe that

Viz(t)) > V(y) forallt>0

since V(x(t)) is strictly decreasing in ¢ and lim, - V(x(t,)) = V(y). Let y(t) be the solution
starting from g, then V(y(t)) < V(y) for all ¢ > 0. In particular, V(y(1)) < V(y). By continuous
dependence on initial condition there exists §’ sufficiently small such that any solution z(t) starting
from By (y) C U, satisfies V(2(1)) < V(y). Choose N large so that z(tn) € By /(y), let z(t) be
the solution starting from z(¢y), then

Viz(in +1)) = V(z(1)) < V(5),

which is a contradiction.



