1 Chromatic polynomials

Definition 1.1. Let G be a graph. Denote the number of n-colorings of G by $P(G,n)$.

Example 1.2. For C_3,

\[
P(C_3, 1) = 0, \quad P(C_3, 2) = 0, \quad P(C_3, 3) = 6, \\
P(C_3, 4) = 4 \cdot 3 \cdot 2, \quad P(C_3, n) = n(n-1)(n-2) \text{ for } n \in \mathbb{N}
\]

Example 1.3. $P(K_m, n) = n(n-1) \cdots (n-m+1)$

Definition 1.4. Let G be a graph and $e = uv \in E(G)$. The contraction G/e is the graph obtained from $G - e$ by first deleting e, identifying u and v, then identifying multiple edges which have the same endpoints.

\[\text{Diagram of contraction} \]

1
Theorem 1.5. (The chromatic reduction theorem) Let G be a graph. If $e = uv \in E(G)$, then
\[P(G, n) = P(G - e, n) - P(G/e, n) \]

Proof. An n-coloring of G is an n-coloring of $G - e$. Hence
\[P(G - e, n) \geq P(G, n) \]
If ϕ is an n-coloring of $G - e$ but not of G then
\[\phi(u) = \phi(v) \]
Hence ϕ gives an n-coloring of G/e. An n-coloring of G/e defines an n-coloring of $G - e$ with
\[\phi(u) = \phi(v), \]
which implies that
\[P(G, n) = P(G - e, n) - P(G/e, n) \]

Example 1.6. Evaluate $P(K_4 - e, n)$.

Solution Since $P(K_4, n) = n(n - 1)(n - 2)(n - 3)$, $K_4/e = K_3$, hence $P(K_4/e, n) = n(n - 1)(n - 2)$. Therefore,
\[P(K_4 - e, n) = P(K_4, n) + P(K_4/e, n) = n(n - 1)(n - 2)(n - 3) + n(n - 1)(n - 2) \]
\[= n(n - 1)(n - 2)^2 \]

Remark 1.7. Let G be a graph.

1. $x = \chi(G)$ is the smallest positive integer such that $P(G, x) > 0$.
2. Let $\ell = \chi(G) - 1$.
 Since G has no 0-coloring, 1-coloring, ..., ℓ-coloring, hence
 \[P(G, 0) = P(G, 1) = \ldots = P(G, \ell) = 0 \]
 Thus
 \[P(G, x) = x^{k_1}(x - 1)^{k_2} \cdots (x - \ell)^{k_{\ell+1}} q(x) \]
 where $q(x)$ is a polynomial with integer coefficients that has no integer roots in $[0, \ell]$.

Example 1.8. $G = K_4 - e, \mathcal{X}(G) = 3$.

From the calculation above, we have

$$P(G, x) = x^4 - 5x^3 + 8x^2 - 4x = x(x - 1)(x - 2)^2$$

Theorem 1.9. If T is a tree on n vertices,

$$P(T, x) = x(x - 1)^{n-1}$$

Proof. Prove by induction on n. When $n = 1$, it is clear.

Suppose that the result is true for trees with less than n vertices. Let $u \in V(T)$ be a vertex of degree 1 and $e = uv \in E(T)$. Then $T - e$ has two components T_1 and T_2 where T_1 is the trivial graph $\{u\}$, T_2 is a tree isomorphic to T/e. Hence

$$P(T - e, x) = xP(T/e, x)$$

By the chromatic reductive theorem,

$$P(T, x) = P(T - e, x) - P(T/e, x) = xP(T/e, x) - P(T/e, x) = (x - 1)P(T/e, x)$$

$$= (x - 1)x(x - 1)^{n-2} = x(x - 1)^{n-1}$$

Corollary 1.10. If G is a graph on n vertices, then $P(G, x)$ is a monic polynomial in x of degree n with integer coefficients.
Proof. Induction on the number of edges $m = |E(G)|$.

If $m = 1$ and $|V(G)| = n$,

$$P(G, x) = x^{n-2}x(x - 1) = x^{n-1}(x - 1) = x^n - x^{n-1}$$

The result is true.

Suppose that the result is true for all graphs with less than m edges. Let G be a graph with m edges and n vertices. Let $e \in E(G)$. By the chromatic reduction theorem,

$$P(G, x) = P(G - e, x) - P(G/e, x)$$

Since $G - e$ has $m - 1$ edges and n vertices, G/e has at most $m - 1$ edges and $n - 1$ vertices. By the induction hypothesis, $P(G - e, x)$ and $P(G/e, x)$ are monic polynomials with integer coefficients and of degree n and less than n respectively. Hence, $P(G, x)$ is a monic polynomial with integer coefficients and of degree n.

Definition 1.11. The polynomial $P(G, x)$ is called the chromatic polynomial of G.

Conjecture 1.12. (Birkhoff-Lewis conjecture) If G is a planar graph, then

$$P(G, x) > 0$$

for all $x \in [4, \infty)$.

This implies the 4-color theorem when $x = 4$.

4