
SEMI-TOPOLOGICAL GALOIS THEORY

HSUAN-YI LIAO, JYH-HAUR TEH

Abstract. We introduce splitting coverings to enhance the well known analogy between field
extensions and covering spaces. Semi-topological Galois groups are defined for Weierstrass polyno-
mials and a Galois correspondence is proved. Combining results from braid groups, we solve the
topological inverse Galois problem. As an application, symmetric and cyclic groups are realized
over Q.

1. Introduction

It is well known that there is a Galois correspondence between subgroups of the fundamental
group of a topological space X and covering spaces over it which is analogous to the Galois cor-
respondence between field extensions and Galois groups. Since splitting fields play fundamental
roles in Galois theory, it is natural to ask what kind of covering spaces correspond to splitting
fields? This is the main motivation of our study in this paper. To answer this question, we study
covering spaces defined by Weierstrass polynomials on X. A Weierstrass polynomial f ∈ C(X)[z]
is a polynomial with coefficients in the ring of complex-valued continuous functions on X such that
whenever we fix a point x in X, each root of fx(z) is simple. We introduce a new concept called
splitting covering which plays the role similar to the one plays by splitting field in Galois theory.
Another motivation of our study is related to the inverse Galois problem which asks if every finite
group can be realized as a Galois group over the field of rational numbers. After a century since
Hilbert used his famous irreducibility theorem ([9, Theorem 1.23]) to realize the symmetric group
Sn over Q, this problem is still open. Many partial results are known, for example, Shafarevich
used tools from number theory to show that every solvable finite group can be realized over Q.
We refer the reader to the book ([5]) for more results. We define semi-topological Galois groups of
Weierstrass polynomials and ask a what we call the topological inverse Galois problem(Question
4.1): Does every finite group appear as the semi-topological Galois group of some Weierstrass poly-
nomial with coefficients of Q-polynomials restricted to some subset of C? We solve this problem in
Theorem 4.2.

The paper is organized as follows: in section 2, we construct splitting coverings of Weierstrass
polynomials f and show that such coverings are the smallest among covering spaces that f splits.
We define semi-topological Galois groups of Weierstrass polynomials and study their properties.
In section 3, we apply Chase-Harrison-Rosenberg Theorem to get a Galois correspondence be-
tween covering spaces and separable subrings. We use this result to prove one of the main results
(Corollary 3.12) in this paper that the group of covering transformations of a splitting covering is
isomorphic to semi-topological Galois group. In section 4, we solve the topological inverse Galois
problem(Theorem 4.2) and obtain a criterion for realizing groups over Q(Theorem 4.4). To exem-
plify the relation to the original inverse Galois problem, we apply our methods to realize symmetric
and cyclic groups over Q.
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Throughout this article, unless otherwise stated, X,Y, Z will denote topological spaces which are
Hausdorff, path-connected, locally path-connected and semi-locally simply connected.

2. Splitting coverings

2.1. Weierstrass polynomials. Let C(X) be the ring of all continuous functions from X to C
and fx(z) = an(x)z

n+an−1(x)z
n−1+ · · ·+a0(x) be an element in C(X)[z], the polynomial ring with

coefficients in C(X). In general, there may not exist a continuous function α : X → C such that
fx(α(x)) = 0 for all x ∈ X. For example, on the unit sphere S1, there is no continuous function in
C(S1) which satisfies the equation z2 − x = 0.

Definition 2.1. A polynomial fx(z) = zn + an−1(x)z
n−1 + · · · + a0(x) ∈ C(X)[z] is called a

Weierstrass polynomial of degree n on X if for each x ∈ X, fx has distinct n roots. For such f ,
the set E = {(x, z) ∈ X × C : fx(z) = 0} is called the solution space of f . A root (or solution)
of f is a continuous function α : X → C such that fx(α(x)) = 0 for all x ∈ X.

From [3, Theorem 4.2, pg 141], we know that the solution space of a Weierstrass polynomial under
the first projection is a covering space over X, and the solution space of a Weierstrass polynomial is
connected if and only if the Weierstrass polynomial is irreducible. Since a Weierstrass polynomial
f ∈ C(X)[z] may no have solutions in X, it is natural to ask if we can find solutions of f in some
covering spaces over X. This is analogous to finding roots of a polynomial in some field extensions
in Galois theory. We will soon see that the universal cover of X plays the role of algebraic closure.

Definition 2.2. Let λ : Y → X be a continuous map. The pullback λ∗ : C(X)→ C(Y ) is defined
by λ∗(γ) := γ ◦ λ which induces a ring homomorphism λ∗ : C(X)[z]→ C(Y )[z] by

λ∗(anz
n + an−1z

n−1 + · · ·+ a0) := (an ◦ λ)zn + (an−1 ◦ λ)zn−1 + · · ·+ (a0 ◦ λ).

The following result is used throughout this paper, we quote here for the convenience of the
reader.

Theorem 2.3. ([6, Lemma 79.1]) Suppose that p : (E, e0) → (X,x0) is a covering map and

f : (Y, y0) → (X,x0) is a continuous map. The map f can be lifted to a map f̃ : (Y, y0) → (E, e0)
if and only if f∗(π1(Y, y0)) ⊂ p∗(π1(E, e0)). Furthermore, if such a lifting exists, it is unique.

Proposition 2.4. If f is a Weierstrass polynomial of degree n and Y
p→ X is a connected covering

space, then any two roots of p∗f are either equal everywhere or equal nowhere; in particular, p∗f
has at most n roots.

Proof. Suppose that α, β are roots of p∗f . Let A = {y ∈ Y | α(y) = β(y)} which is closed in Y . Let
E be the solution space of f , and pr1, pr2 be the first and second projection respectively. For y ∈ A,
there is a neighborhood U of p(y) such that pr−1

1 (U) =
⨿n

i=1 Ui is a trivial covering over U and for
x ∈ U , each Ui contains a root of fx(z). We may take a smaller neighborhood if necessary such
that pr2(U1), · · · , pr2(Un) lie in some disjoint open subsets V1, · · · , Vn of C respectively. Assume
that α(y) ∈ V1. Then the set W := α−1(V1) ∩ β−1(V1) ∩ p−1(U) is an open neighborhood of y in
Y and from the property of U , W ⊂ A. Hence A is open in Y . Consequently, A is empty or whole
Y . In other words, two roots of p∗f are either equal everywhere or equal nowhere; thus, p∗f has
at most n roots. �

Definition 2.5. Let f ∈ C(X)[z] be a Weierstrass polynomial of degree n on X and p : E → X
be a covering map. We say that f splits in E if p∗f has n distinct roots in E and a continuous
function α ∈ C(E) is a root of f in E if α is a root of p∗f . The Weierstrass polynomial f is said
to be irreducible if it is irreducible as an element in the ring C(X)[z].
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Theorem 2.6. (Algebraic closure) Let f be a Weierstrass polynomial on X of degree n. Then f

splits in X̃ where p : (X̃, x̃0)→ (X,x0) is the universal covering of X.

Proof. Let E1, · · · , Ek be all path-connected components of the solution space π : E → X of f .
Then for each i, πi := π|Ei : Ei → X is a covering space of X. Let (πi)

−1(x0) = {ei,1, · · · , ei,ri}.
From Theorem 2.3, for each ei,j , there exists a unique lifting, p̃i,j : (X̃, x̃0)→ (Ei, ei,j) of p. Define
αi,j := qi ◦ p̃i,j which are roots of p∗f where qi : Ei → C is the projection to the second factor. We
have the following commutative diagram

X̃

p

��

p̃i,j ��@
@@

@@
@@

@
αi,j

))TTT
TTTT

TTTT
TTTT

TTTT
TT

Ei

πi~~}}
}}
}}
}

qi // C

X

Note that if (i, j) ̸= (i
′
, j

′
), then qi(ei,j) ̸= qi′ (ei′ ,j′ ). Hence αi,j(x̃0) ̸= αi

′
,j

′ (x̃0). Since r1 + r2 +

· · ·+ rk = n, the maps αi,j , j = 1, · · · , ri, i = 1, · · · , k are all the roots of p∗f . �

2.2. The existence and uniqueness of splitting coverings. Let Y
p→ X be a covering space

of X. We denote the group of covering transformations by A(Y/X), that is,

A(Y/X) = {Φ : Y → Y | Φ is a homeomorphism such that pΦ = p}.

Definition 2.7. We say that a covering Y
p→ X is a Galois covering over X if A(Y/X) acts on

a fibre of X transitively (hence all fibres).

The following result is a fundamental property of Galois coverings.

Theorem 2.8. ([6, Corollary 81.3]) Let Y be a covering space over X. Then Y is a Galois covering
over X if and only if p∗π1(Y, y0)�π1(X,x0). In particular, the universal covering of X is a Galois
covering.

Definition 2.9. Let Y
p→ X be a covering space and x ∈ X. The cardinality of p−1(x) is called

the degree of Y over X, denoted by [Y : X]. If H is a subgroup of G, we denote |G/H| by [G : H].

The following result is clear.

Lemma 2.10. If Z
q→ Y and Y

p→ X are two covering spaces with finite fibres, then Z
pq→ X is a

covering and [Z : X] = [Z : Y ][Y : X].

Lemma 2.11. If Y
p→ X is a Galois covering, then A(Y/X) has order [Y : X].

Proof. Let G = A(Y/X). Since Y is Galois over X, the quotient space π : Y → Y/G is a covering

equivalent to Y
p→ X. Hence the number of each fibre is |G|. �

Lemma 2.12. Let (Z, z0)
q→ (Y, y0) and (Y, y0)

p→ (X,x0) be two covering spaces. If Z
pq→ X is

Galois, then Z
q→ Y is Galois.

Proof. Since Z is Galois over X, (pq)∗π1(Z, z0) � π1(X,x0). Also note that (pq)∗π1(Z, z0) <
p∗π1(Y, y0). Hence (pq)∗π1(Z, z0) � p∗π1(Y, y0) which implies q∗π1(Z, z0) � π1(Y, y0). Therefore,

Z
q→ Y is Galois. �

Definition 2.13. Let f be a Weierstrass polynomial of degree n on X and Y
p→ X be a covering

space where Y is path-connected. We say that Y is a splitting covering of f if
3



(1) f splits in Y ,

(2) Y is the smallest among such coverings, that is, if Y
′ p

′

→ X is a covering space that f splits,

then there exists a covering map π : Y
′ → Y such that p′ = p ◦ π.

Construction of a splitting covering of f : Let h0 be an irreducible component of f in C(X)[z]. Let

E1
p1→ X be the solution space of h0 and π1 : E1 → C be the projection to the second component.

Then (p∗1f)(z) = (z − π1)g1(z) in (p∗1C(X))[z]. Inductively, assume that for i < n, we have

(p∗i f)(z) = (z − q∗i · · · q∗2π1) · · · (z − q∗i πi−1)(z − πi)gi(z)

in (p∗i C(X))[z], where

Ei
qi //

pi

**VVVV
VVVV

VVVV
VVVV

VVVV
VVVV

VV Ei−1
qi−1 // · · ·

q2 // E1

p1
��
X

and πj : Ej → C is the projection to the last component for j = 1, · · · , i. Note that gi is a
Weierstrass polynomial on Ei. For i + 1, let hi be an irreducible component of gi in (p∗i C(X))[z],

Ei+1
qi+1−→ Ei be the solution space of hi, pi+1 = p1q2 · · · qi+1 and πi+1 : Ei+1 → C be the projection

to the last component. Hence

(p∗i+1f)(z) = (z − q∗i+1 · · · q∗2π1) · · · (z − q∗i+1πi)(z − πi+1)gi+1(z)

in (p∗i+1C(X))[z]. By induction, we have Ef := En
q:=pn−→ X and

(q∗f)(z) = (z − α1) · · · (z − αn−1)(z − αn)

in (q∗C(X))[z] where αj := q∗n · · · q∗j+1πj , j = 1, · · · , n. Hence Ef is connected, and f splits in Ef .

Note that an element in Ef is of the form (· · · (((x, z1), z2) · · · , zn). We identify it as (x, z1, · · · , zn).
Then αj is the projection to the (j + 1)-th component, q is the projection to the first component
and Ef ⊂ Sf where

Sf := {(x, z1, · · · , zn) ∈ X × Cn : fx(zi) = 0, i = 1, · · · , n, and zi ̸= zj if i ̸= j}.

Theorem 2.14. Let f be a Weierstrass polynomial of degree n on X. Then

(1) Ef
q→ X is a splitting covering.

(2) Splitting covering is unique up to covering isomorphisms.

(3) Ef
q→ X is a Galois covering.

Proof. (1) Let Y
p→ X be a covering space such that f splits in Y with roots β1, · · · , βn.

Let x0 ∈ X, (x0, z0,1, · · · , z0,n) ∈ Ef and y0 be any element in p−1(x0). After reordering
β1, · · · , βn if necessary, we may assume that β1(y0) = z0,1, · · · , βn(y0) = z0,n. Define π :
Y → Ef by π(y) = (p(y), β1(y), · · · , βn(y)). Then p = q◦π. For any e = (x, z1, · · · , zn) ∈ Ef

there exists a path-connected open neighborhood U of x in X such that q−1(U) =
⨿

i Ui,
p−1(U) =

⨿
j Vj , all Ui and Vj are open in Ef and Y respectively, and q|Ui and p|Vj are

homeomorphisms. Since Vj is path-connected and p = q ◦ π, π(Vj) ⊂ Ui for some i. Hence
π|Vj = (q|Ui)

−1◦(p|Vj ) is a homeomorphism. Therefore, if π(Y )∩Ui ̸= ∅, then π(Vj)∩Ui ̸= ∅
for some j, and hence Ui = π(Vj) ⊂ π(Y ). In other words, either Ui ⊂ π(Y ) or Ui ⊂ π(Y )c.
Therefore, π(Y ) is open and closed in Ef . Since (x0, z0,1, · · · , z0,n) ∈ π(Y ) and Ef is

connected, π is surjective. So Y
π→ Ef is a covering space.
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(2) Let x0 ∈ X and e0 ∈ q−1(x0). Suppose that Y
p→ X is also a splitting covering. Then

by the proof of part one, there exists a covering map π : Ef → Y and a covering map
π′ : Y → Ef such that the diagram

Ef
π //

q
  A

AA
AA

AA
Y

π′
kk

p����
��
��
��

X

commutes, and π′(π(e0)) = e0. By Theorem 2.3, π ◦ π′
= idY , π

′ ◦ π = idEf
. Hence the

coverings Y
p→ X and Ef

q→ X are isomorphic.
(3) Let x0 ∈ X and e0, e1 ∈ q−1(x0). By the argument in the first part, we have π0 : (Ef , e0)→

(Ef , e1) and π1 : (Ef , e1) → (Ef , e0) such that q = q ◦ πi, i = 0, 1. By Theorem 2.3,
π1 ◦ π0 = π0 ◦ π1 = idEf

, and hence π0 ∈ A(Ef/X). Therefore, A(Ef/X) acts transitively

on q−1(x0).
�

Recall that in Galois theory, the splitting field of a separable polynomial is Galois over the
base field. The above result makes a parallel correspondence between splitting fields and splitting
coverings.

Proposition 2.15. Let f be an irreducible Weierstrass polynomial of degree n on X with solution

space E
π→ X. Suppose that p : Y → E is a covering space and q : Y → X is a Galois covering of

X where q = π ◦ p. Then f splits in Y .

Proof. Let x0 ∈ X, π−1(x0) = {e1, · · · , en} and y0 ∈ p−1(e1). Assume that γi is a path from e1 to ei
in E. Since q∗π1(Y, y0) = π∗p∗π1(Y, y0) ⊂ π∗π1(E, e1) and by Theorem 2.8, q∗π1(Y, y0) ▹ π1(X,x0),
we have

q∗π1(Y, y0) = [π∗γi]q∗π1(Y, y0)[π∗γi]
−1 ⊂ [π∗γi]π∗π1(E, e1)[π∗γi]

−1 = π∗π1(E, ei).

By Theorem 2.3, the map q can be lifted to a map pi : (Y, y0) → (E, ei) such that the following
diagram

(Y, y0)

q

��

pi $$JJ
JJ

JJ
JJ

J

**VVV
VVVV

VVVV
VVVV

VVVV
VVVV

VV

(E, ei)

πzzttt
tt
tt
tt

pr2
// C

(X,x0)

is commutative. Therefore, pr2 ◦ p1, · · · , pr2 ◦ pn, are all the roots of q∗f where pr2 : E → C is the
projection to the second factor. �
Corollary 2.16. Let f be an irreducible Weierstrass polynomial of degree n on X and E

π→ X be

its solution space. Suppose that E
π→ X is a Galois covering. Then E

π→ X is a splitting covering
of f .

Proof. From the above result, f splits in E. Let Y
p→ X be a covering space such that f splits in

Y . Let α1, · · · , αn be the n roots of p∗f . Define q : Y → E by q(y) = (p(y), α1(y)). Then p = π ◦ q.
For any e ∈ E, there is a neighborhood U of π(e) such that U is evenly covered by p and q (see
[6, pg 336]). Let V be the unique path-connected component of π−1(U) that contains e. Then V
is clearly evenly covered by p and hence Y is a covering space over E. This shows that E is the
splitting covering of f . �
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2.3. Another construction of splitting coverings. Recall that any symmetric polynomial in
n variables can be written as a unique polynomial in the elementary symmetric polynomials,
s0, · · · , sn−1 where

n∏
i=1

(z − zi) = zn +
n−1∑
i=0

(−1)n−isi(z1, · · · , zn)zi.

Hence there is a unique polynomial in n variables δ(a0, · · · , an−1) such that

δ(−sn−1(z1, · · · , zn), · · · , (−1)n−isi(z1, · · · , zn), · · · , (−1)ns0(z1, · · · , zn)) =
∏

16i<j6n

(zi − zj).

The polynomial δ(a0, · · · , an−1) is called the discriminant polynomial. Define Bn := Cn−Z(δ)
where Z(δ) is the set of zeros of δ.

Lemma 2.17. (1) Let

S := {(a0, · · · , an−1, z1, · · · , zn) ∈ Bn × Cn : zn +

n−1∑
i=0

aiz
i =

n∏
i=1

(z − zi)}

and π be the projection to Bn. Then π : S → Bn is an n!-fold covering space.
(2) Let fx(z) = zn+

∑n−1
i=0 aiz

i ∈ C(X)[z] be a Weierstrass polynomial of degree n on X and let
Sf := {(x, z1, · · · , zn) ∈ X × Cn : fx(zi) = 0, i = 1, · · · , n, and zi ̸= zj if i ̸= j}. Then
q̃ : Sf → X is an n!-fold covering where q̃ is the projection to X.

Proof. (1) It is proved in [3, pg 88, Lemma 2.2] that the space

En = {(a0, · · · , an, z) ∈ Bn × C|zn +

n−1∑
i=0

aiz
i = 0}

is an n-fold covering over Bn under the natural projection. Since there are n! permutations
on coordinates of (z1, · · · , zn), similar argument shows that S is an n!-fold covering space
over Bn.

(2) Let fx(z) = zn +
∑n−1

i=0 aiz
i and a : X → Bn be defined by a(x) := (a0(x), · · · , an−1(x)).

Then we get the induced fibre bundle

a∗(S)
a∗ //

π∗

��

S

π

��
X

a // Bn.

Define a′ : Sf → a∗(S) by a′(x, z1, · · · , zn) := (x, a(x), z1, · · · , zn). Then a′ is a homeomor-
phism and q̃ = π∗ ◦ a′. Hence q̃ : Sf → X is an n!-fold covering space.

�
Proposition 2.18. Let E′ be a connected component of Sf and q := q̃|E′. Then E′ q→ X is a
splitting covering of f .

Proof. By the previous lemma, E′ q→ X is a covering space. Moreover, f splits into α1, · · · , αn in
E′ where αi : E

′ → C is the projection to the (i+1)-th component, i = 1, · · · , n. The result follows
as in the proof of Theorem 2.14. �

Observe that S
π→ Bn is a Galois covering since the map (a, z1, · · · , zn) 7→ (a, zσ(1), · · · , zσ(n)) is

a covering transformation for each σ ∈ Sn where a ∈ Bn. Consequently, S
π→ Bn becomes a locally

trivial principal A(S/Bn)-bundle where we consider A(S/Bn) with discrete topology.
The following result follows directly from [4, pg 51, Theorem 9.9].
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Proposition 2.19. Let fx(z) = zn +
∑n−1

i=0 ai(x)z
i and gx(z) = zn +

∑n−1
i=0 bi(x)z

i be two Weier-
strass polynomials on a Hausdorff and paracompact space X and a, b : X → Bn be continuous
functions defined by

a(x) = (a0(x), · · · , an−1(x)), b(x) = (b0(x), · · · , bn−1(x)).

Let Ea
qa→ X and Eb

qb→ X be the splitting covers of f and g respectively. If a and b are homotopic

as maps from X to Bn, then Ea
qa→ X and Eb

qb→ X are equivalent covering spaces.

2.4. Semi-topological Galois groups. All rings are assumed to be commutative rings with iden-
tity if not mentioned explicitly.

Definition 2.20. Let T̄ be a ring and T be a subring of T̄ . We write AutT (T̄ ) for the group of all
ring automorphisms ϕ : T̄ → T̄ such that ϕ(t) = t for all t ∈ T . Let f be a Weierstrass polynomial
on X, and p : Ef → X be the splitting covering of f . Denote R = q∗C(X) = {γ ◦ q : γ ∈ C(X)}
which is a subring of C(Ef ). The semi-topological Galois group of f is defined to be the group
Gf := AutR(R[α1, · · · , αn]) where α1, · · · , αn : Ef → C are the roots of p∗f .

The following result is an observation that the semi-topological Galois group of f is invariant
under extensions over Ef .

Proposition 2.21. Let Ef
q→ X be the splitting covering of f and α1, · · · , αn : Ef → C be the

roots of q∗f . If Y
p→ X is a covering and f splits into α′

1, · · · , α′
n : Y → C. Then there exists

an isomorphism Φ : q∗C(X)[α1, · · · , αn] → p∗C(X)[α′
1, · · · , α′

n] such that Φ(q∗C(X)) = p∗C(X),
Φ({α1, · · · , αn}) = {α′

1, · · · , α′
n}, and hence, Gf

∼= Autp∗C(X)p
∗C(X)[α′

1, · · · , α′
n].

Proof. By the definition of splitting coverings, there is a covering map π : Y → Ef such that
p = q◦π. Observe that π∗α1, · · · , π∗αn are all the roots of p∗f since (p∗f)(π∗αi) = (π∗q∗f)(π∗αi) =
π∗((q∗f)(αi)) = 0 and π∗α1, · · · , π∗αn are distinct. Therefore, Φ := π∗ : q∗C(X)[α1, · · · , αn] →
p∗C(X)[α′

1, · · · , α′
n] is an isomorphism which carries q∗C(X) onto p∗C(X) and {α1, · · · , αn} to

{α′
1, · · · , α′

n}. As a result, we obtain an isomorphism Ψ : Gf → Autp∗C(X)p
∗C(X)[α′

1, · · · , α′
n]

which is defined by Ψ(ϕ)(g) = (π∗)ϕ((π∗)−1g). �
Example 2.22. Let fx(z) = zn − x for x ∈ S1 ⊂ C where n ∈ N. Then f is a Weierstrass
polynomial, and its solution space E is an n-fold covering of S1. Let p : R → S1 be defined by
p(s) = e2πsi which is the universal covering space of S1. (p∗f)s(z) = zn − e2πsi, where s ∈ R. It is

easy to see that roots of p∗f are αj(s) = e
2πi(s+j−1)

n , j = 1, · · · , n. Note that for j = 1, · · · , n − 1,

e
2πi
n αj = αj+1, and the constant function e

2πi
n is an element in R = p∗C(S1). Therefore, for

ϕ ∈ Gf , e
2πi
n ϕ(αj) = ϕ(e

2πi
n αj) = ϕ(αj+1). Hence ϕ is uniquely determined by ϕ(α1). Let σ :

R[α1, · · · , αn]→ R[α1, · · · , αn] be defined by σ(γ̃)(s) := γ̃(s+1) where s ∈ R and γ̃ ∈ R[α1, · · · , αn]
is considered as a function on R. Then for p∗γ ∈ R, σ(p∗γ)(s) = γ(p(s+ 1)) = γ(p(s)) = (p∗γ)(s)
Hence σ|R = idR. For j = 1, · · · , n−1, σ(αj) = αj+1, σ(αn) = α1. Therefore σ ∈ Gf . Furthermore,
for j = 0, 1, · · · , n − 1, σj(α1) = α1+j, and σn = id. From the above observations, we have
Gf
∼=< σ >∼= Zn.

Proposition 2.23. (Functoriality) Suppose that λ : Y → X is a covering map and f1 is a Weier-
strass polynomial of degree n on X. Let f2 = λ∗f1.

(1) There is a covering map λ̃ : Ef2 → Ef1 such that the following diagram commutes:

Ef2
λ̃ //

q

��

Ef1

p

��
Y

λ // X
7



where p : Ef1 → X, q : Ef2 → Y are the splitting coverings of f1 and f2 respectively.

(2) If α1, · · · , αn : Ef1 → C are all the roots of p∗f1, then λ̃∗α1, · · · , λ̃∗αn are all the roots of
q∗f2.

(3) λ̃∗ : p∗C(X)[α1, · · · , αn]→ q∗C(Y )[λ̃∗α1, · · · , λ̃∗αn] is injective.

(4) The map λ̃ induces a group monomorphism λ̂ : Gf2 → Gf1 defined by λ̂(ϕ)(α) = (λ̃∗)−1ϕ(α◦
λ̃).

Proof. (1) Since f2 splits in Ef2 and q∗f2 = q∗λ∗f1 = (λ ◦ q)∗f1, hence f1 also splits in Ef2 . By

the definition of splitting covering, there is a covering map λ̃ : Ef2 → Ef1 which makes the
diagram commutes.

(2) This follows from a direct computation: (q∗f2)y((λ̃
∗αj)(y)) = ((λ ◦ q)∗f1)y(αj(λ̃(y))) =

((p ◦ λ̃)∗f1)y(αj(λ̃(y))) = (p∗f1)λ̃(y)(αj(λ̃(y))) = 0.

(3) Since λ̃ is surjective, λ̃∗ : C(Ef1)→ C(Ef2) is injective. For g ∈ C(X), λ̃∗(p∗g) = (p ◦ λ̃)∗g =

(λ ◦ q)∗g = q∗(λ∗g) ∈ q∗C(Y ). Thus the restriction of λ̃∗ to p∗C(X)[α1, · · · , αn] is also
injective.

(4) Observe that for ϕ ∈ Gf2 , ϕ fixes λ̃∗p∗C(X) ⊂ q∗C(X); hence, ϕ(λ̃∗(p∗C(X)[α1, · · · , αn])) ⊂
λ̃∗(p∗C(X)[α1, · · · , αn]). Therefore, λ̂ is well defined. It is a direct checking that λ̂ is a
group monomorphism.

�
Proposition 2.24. Let f be a Weierstrass polynomial of degree n on X and split in Y where Y

q→ X
is a covering. Let α1, · · · , αn be the roots of q∗f in Y . Suppose that T is a subring of q∗C(X) and
G = AutTT [α1, · · · , αn]. Then we have the following group homomorphism ωY,T : A(Y/X) → G
defined by

ωY,T (Φ)(β)(y) := (Φ−1)∗(β)(y) := β(Φ−1(y))

where Φ ∈ A(Y/X), β ∈ T [α1, · · · , αn] and y ∈ Y . Furthermore, for the splitting covering q : Ef →
X of f , the group homomorphism ωf = ωEf ,q∗C(X) : A(Ef/X)→ G is injective.

Proof. For Φ ∈ A(Y/X), it is easy to check that (Φ−1)∗ : T [α1, · · · , αn] → T [α1, · · · , αn] is a ring
automorphism. From the fact that (Φ−1)∗|T = idT , we have (Φ−1)∗ ∈ AutTT [α1, · · · , αn]. Hence
ωY,T is a group homomorphism. Let Ef be the splitting covering constructed in the section 2.3
and αi be the projection to the (i + 1)-th component, i = 1, · · · , n. Suppose that Φ ∈ ker(ω)
and write Φ : Ef → Ef as Φ(x, z1, · · · , zn) = (Φ1(x, z1, · · · , zn), · · · ,Φn+1(x, z1, · · · , zn)). Since
(Φ−1)∗(αi) = αi, αi ◦ Φ = αi for i = 1, · · · , n. Therefore

Φi+1(x, z1, · · · , zn) = αi(Φ(x, z1, · · · , zn)) = αi(x, z1, · · · , zn) = zi,

and

Φ1(x, z1, · · · , zn) = q(Φ(x, z1, · · · , zn)) = q(x, z1, · · · , zn) = x.

Hence Φ = idEf
and the result follows. �

3. Galois correspondence

3.1. Correspondences between commutative rings and groups. For a Weierstrass polyno-
mial f in X, we have two groups associated to f , namely, A(Ef/X) and Gf . We will show that
these two groups are actually isomorphic. In order to do that, we use the Galois correspondence
of commutative rings proved by Chase, Harrison and Rosenberg ([1]). All rings are supposed to
be commutative rings with identity and connected, that is, have no idempotent other than 0 and
1 unless otherwise stated. For the convenience of the reader, we recall the following definition ([1],
[2]).
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Definition 3.1. (1) A commutative R-algebra S is separable if S is a projective Se-module
where Se = S ⊗R S

0 is the enveloping algebra of S.
(2) Let R be a subring of S and G be a finite subgroup of AutR(S). Then S is said to be

G-Galois over R if R = SG := {x ∈ S : σ(x) = x, ∀σ ∈ G}, and there exist elements
x1, · · · , xn; y1, · · · , yn of S such that

n∑
i=1

xiσ(yi) = δe,σ, ∀σ ∈ G,

where e is the identity in G and

δe,σ =

{
1 , if σ = e
0 , if σ ̸= e.

Theorem 3.2. (Chase-Harrison-Rosenberg)([1, Theorem 2.3]) Let S be G-Galois over R. Then
there is a one-to-one lattice-inverting correspondence between subgroups of G and separable R-
subalgebras of S. If T is a separable R-subalgebra of S, then the corresponding subgroup is HT =
{σ ∈ G : σ(t) = t, ∀t ∈ T}. If H is a subgroup of G, then the corresponding separable R-subalgebra
is SH = {x ∈ S : σ(x) = x, ∀σ ∈ H}.

The following notation will be used throughout this section.

Definition 3.3. Let A = {(i1, · · · , in−1) ∈ Nn−1 : ik = 0, · · · , n − k, k = 1, · · · , n − 1} be a
set of (n − 1)-tuples. We define a partial order on A by comparing entries from the back, more
precisely, if I = (i1, · · · , in−1), J = (j1, · · · , jn−1) ∈ A, we say that I ≺ J if there is a number ℓ
such that in−k = jn−k for k = 1, · · · , ℓ − 1 but in−ℓ < jn−ℓ. Let α1, · · · , αn be some symbols and

σi := (i i+ 1 · · · n) ∈ Sn (note that the order of σi is n− i+ 1). We denote αI := αi1
1 α

i2
2 · · ·α

in−1

n−1

and σI := σi11 σ
i2
2 · · ·σ

in−1

n−1 where I = (i1, · · · , in−1) ∈ A. Let Vn be the following n!× n! matrix:

Vn := (σIi(αIj ))i,j=1,··· ,n!.

Example 3.4. For n = 3, αI0 = 1, αI1 = α1, α
I2 = α2

1, α
I3 = α2, α

I4 = α1α2, α
I5 = α2

1α2,
σI0 = id, σI1 = (1 2 3), σI2 = (1 3 2), σI3 = (2 3), σI4 = (1 2), σI5 = (1 3), and

V3 =


1 α1 α2

1 α2 α1α2 α2
1α2

1 α2 α2
2 α3 α2α3 α2

2α3

1 α3 α2
3 α1 α3α1 α2

3α1

1 α1 α2
1 α3 α1α3 α2

1α3

1 α2 α2
2 α1 α2α1 α2

2α1

1 α3 α2
3 α2 α3α2 α2

3α2


with det(V3) = −[(α2 − α1)(α3 − α1)(α3 − α2)]

3.

Lemma 3.5. The n-th symmetric group

Sn = {σI : I ∈ A}.

Proof. Let Bl = {σ(0,··· ,0,in−l+1,··· ,in−1) : 0 ≤ ik ≤ n − k, for k = n − l + 1, · · · , n − 1} where
l = 2, · · · , n and P{n− l + 1, · · · , n} := {σ ∈ Sn : σ(j) = j, ∀j = 1, · · · , n− l}. We claim that

Bl = P{n− l + 1, · · · , n}
The cases l = 1 is obvious. Assume that Bl−1 = P{n−l+2, · · · , n}. Then Bl−1 is a subgroup of Sn.
For τ, ρ ∈ Sn, τBl−1 = ρBl−1 if and only if τρ−1 ∈ Bl−1. Also note that if 0 6 p, q 6 l − 1, p ̸= q,

then (σpn−l+1)(σ
q
n−l+1)

−1 = σp−q
n−l+1 is a cycle of length l, where σn−l+1 is defined in Definition 3.3.

But elements in Bl−1 have length at most l − 1, thus

(σpn−l+1)(σ
q
n−l+1)

−1 ∈ Sn −Bl−1.
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Therefore Bl =
⨿l−1

p=0 σ
p
n−l+1Bl−1 and

|Bl| = l|Bl−1| = l|P{n− l + 2, · · · , n}| = l!.

Moreover, from the definition, we have Bl ⊆P{n− l+1, · · · , n}, and |P{n− l+1, · · · , n}| = l! =
|Bl|. This implies that Bl = P{n− l + 1, · · · , n}. Thus, by induction,

Sn = P{1, · · · , n} = Bn = {σI |I ∈ A}.

�

Lemma 3.6. Let T be an integral domain. Suppose that α1, · · · , αn ∈ T are distinct. Then for
each n ∈ N, det(Vn) ̸= 0.

Proof. Let Ck = (σIi(αIj ))i,j=1,··· , n!
(n−k)!

for k = 1, · · · , n − 1. Then Vn = Cn−1 and det(C1) =∏
16i<j6n(αj − αi) ̸= 0. Our strategy is to get a recursive formula for det(Ck+1) in terms of

det(Ck).
Let Ck,l = (σIi(αIj ))i=1,··· , n!

(n−k)!
,j=l n!

(n−k)!
+1,··· ,(l+1) n!

(n−k)!
, for l = 0, · · · , (n− k − 1). Moreover, for

γ ∈ Sn , we define

Ck,lγ := (σIi(γ(αIj )))i=1,··· , n!
(n−k)!

,j=l n!
(n−k)!

+1,··· ,(l+1) n!
(n−k)!

.

Then for ik+1 = 0, · · · , n− k − 1, Ii = (i1, · · · , ik, 0, · · · , 0),

σIi(σ
ik+1

k+1 (α
Ij )) = (σ(i1,··· ,ik,0,··· ,0) ◦ σik+1

k+1 )(α
Ij ) = σ(i1,··· ,ik,ik+1,0,··· ,0)(αIj )

which implies that

Ck,lσ
ik+1

k+1 = (σIi(σ
ik+1

k+1 (α
Ij )))i=1,··· , n!

(n−k)!
,j=l n!

(n−k)!
+1,··· ,(l+1) n!

(n−k)!

= (σIi(αIj ))i=(ik+1)
n!

(n−k)!
+1,··· ,(ik+1+1) n!

(n−k)!
,j=l n!

(n−k)!
+1,··· ,(l+1) n!

(n−k)!
.

Hence, by definition, we can divide Ck+1 into blocks in the following way:

Ck+1 =


Ck,0 Ck,1 . . . Ck,(n−k−1)

Ck,0σk+1 Ck,1σk+1 . . . Ck,(n−k−1)σk+1
...

...
. . .

...

Ck,0σ
n−k−1
k+1 Ck,1σ

n−k−1
k+1 . . . Ck,(n−k−1)σ

n−k−1
k+1

 .

For j = l n!
(n−k)! + 1, · · · , (l + 1) n!

(n−k)! ,

αIj = αj1
1 · · ·α

jk
k α

l
k+1.

Therefore, for p = 0, 1, · · · , n− k − 1,

σpk+1(α
Ij ) = αj1

1 · · ·α
jk
k α

l
k+p+1.

Multiplying the first row of Ck+1 by (−1) and added to each other row, we have

det(Ck+1) = det


Ck,0 Ck,1 . . . Ck,(n−k−1)

0 Ck,1σk+1 − Ck,1 . . . Ck,(n−k−1)σk+1 − Ck,(n−k−1)
...

...
. . .

...

0 Ck,1σ
n−k−1
k+1 − Ck,1 . . . Ck,(n−k−1)σ

n−k−1
k+1 − Ck,(n−k−1)


If l ̸= 0, for i = 1, · · · , n!

(n−k)! , j = l n!
(n−k)! + 1, · · · , (l + 1) n!

(n−k)! ,
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Ck,lσ
p
k+1 − Ck,l = (σIi(σpk+1(α

Ij )− αIj ))i,j = (σIi(αj1
1 · · ·α

jk
k )σIi(αl

k+p+1 − αl
k+1))i,j

= (σIi(αIj )σIi(

l−1∑
q=0

αl−1−q
k+1 αq

k+p+1)σ
Ii(αk+p+1 − αk+1))i,j .

If l = 0, Ck,0σ
p
k+1 − Ck,0 = 0.

Note that σIi(αk+p+1−αk+1) is a common factor of entries of (p+1)-row for p = 0, 1, · · · , n−k−1.
We get a matrix D from dividing the common factor of the minor obtained by deleting the first
row and first column, and we have

det(Ck+1) = det(Ck)det(D)(

n−k−1∏
p=1

n!
(n−k)!∏
i=1

σIi(αk+p+1 − αk+1)).

To calculate the determinant of D, we introduce the matrix

Dm = (Em
r,s)r,s=1,··· ,n−k−m

where
Em

r,s = (σIi(αIj )σIi(
∑

q0+···+qm=s−1

αq1
k+1α

q2
k+2 · · ·α

qm
k+mα

q0
k+r+m))i,j=1,··· , n!

(n−k)!

Note that D1 = D, Em
r,1 = Ck for r = 1, · · · , n− k −m, and Dn−k−1 = Em

1,1 = Ck.
Then

det(Dm) = det


Em

1,1 Em
1,2 . . . Em

1,n−k−m

Em
2,1 Em

2,2 . . . Em
2,n−k−m

...
...

. . .
...

Em
n−k−m,1 Em

n−k−m,2 . . . Em
n−k−m,n−k−m



= det


Ck Em

1,2 . . . Em
1,n−k−m

0 Em
2,2 − Em

1,2 . . . Em
2,n−k−m − Em

1,n−k−m
...

...
. . .

...
0 Em

n−k−m,2 − Em
1,2 . . . Em

n−k−m,n−k−m − Em
1,n−k−m


and for r, s ≥ 2, we have the matrix

Em
r,s − Em

1,s = (σIi(αIj )σIi(
∑

q0+···+qm=s−1

αq1
k+1α

q2
k+2 · · ·α

qm
k+m(αq0

k+r+m − α
q0
k+1+m))

= (σIi(αIj )σIi(
∑

q0+···+qm=s−1

αq1
k+1α

q2
k+2 · · ·α

qm
k+m(

∑
a+b=q0−1

αa
k+m+1α

b
k+r+m)σIi(αk+r+m − αk+1+m)))

= (σIi(αIj )σIi(
∑

q0+···+qm+1=s−2

αq1
k+1α

q2
k+2 · · ·α

qm
k+mα

qm+1

k+m+1α
q0
k+(r−1)+(m+1))σ

Ii(αk+r+m − αk+1+m))

= (Em+1
r−1,s−1σ

Ii(αk+r+m − αk+1+m)).

So we get a recursive formula

det(Dm) = det(Ck)det(Dm+1)(

n−k−m∏
r=2

n!
(n−k)!∏
i=1

σIi(αk+r+m − αk+m+1)).

Since Dn−k−1 = Ck, by this formula, we have det(D1) ̸= 0. Therefore from the formula relates
Ck+1 and Ck and the fact that det(D) = det(D1), we see that det(Ck+1) ̸= 0. In particular,
det(Vn) = det(Cn−1) ̸= 0. �
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Definition 3.7. Suppose that f is a Weierstrass polynomial in X and p : Y → X is a covering
where f splits with roots α1, · · · , αn. Define V : Y →Mn(C), the set of all n×n complex matrices,
by

V (y) := (σIi(αIj (y)))i,j=1,··· ,n!
and ∆ : Y → C by

∆(y) := det(V (y))

Lemma 3.8. Let Y
p→ X be a Galois covering. Suppose that λ : Y → C is a continuous map

satisfying λ ◦ Φ = λ, for all Φ ∈ A(Y/X). Then λ ∈ p∗C(X).

Proof. Let x0 ∈ X and y1, y2 ∈ p−1(x0). Since the group A(Y/X) act transitively on p−1(x0), there
is Φ ∈ A(Y/X) such that y2 = Φ(y1). By the property of λ we have λ(y1) = λ ◦ Φ(y1) = λ(y2)
which implies that λ takes constant value on each fibre. Since p is a quotient map, by [6, Theorem
22.2], λ ∈ p∗C(X). �
Lemma 3.9. Let f be a Weierstrass polynomial on X with roots α1, · · · , αn in the splitting covering
q : Ef → X. Let R = q∗C(X) and T be a subring of R containing coefficients of q∗f and satisfies
the following properties:

(1) T [α1, · · · , αn] ∩R = T ,

(2)
1

∆
∈ T [α1, · · · , αn].

Then

(1) T [α1, · · · , αn] is G-Galois over T where G = AutTT [α1, · · · , αn].
(2) The group homomorphism ωY,T : A(Y/X)→ G = AutTT [α1, · · · , αn] is surjective.

Proof. (1) We have

T ⊂ T [α1, · · · , αn]
G ⊂ T [α1, · · · , αn]

ωY,T (A(Y/X)).

Since Ef is Galois and by Lemma 3.8, we have T ⊂ T [α1, · · · , αn]
G ⊂ T [α1, · · · , αn]∩R = T .

This means that T is the subring fixed by G.

From
1

∆
∈ T [α1, · · · , αn], we may define

y1(t)
y2(t)
...

yn!(t)

 := (V (t))−1


1
0
...
0

 for t ∈ Y,

and then

V (t)


y1(t)
y2(t)
...

yn!(t)

 =


1
0
...
0

 .

By Lemma 3.5,
n!∑
i=1

σ(αIi)yi = δe,σ, σ ∈ Sn.

Since T contains all coefficients of q∗f , G merely permutes α1, · · · , αn. Therefore,

n!∑
i=1

σ(αIi)yi = δe,σ, σ ∈ G.

By definition, T [α1, · · · , αn] is G-Galois over T .
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(2) Since Y is a Galois covering over X, from Lemma 3.8,

T ⊂ T [α1, · · · , αn]
G ⊂ T [α1, · · · , αn]

ωY,T (A(Y/X)) ⊂ R ∩ T [α1, · · · , αn] = T

which implies

T [α1, · · · , αn]
G = T [α1, · · · , αn]

ωY,T (A(Y/X)).

Therefore, by part one and Chase-Harrison-Rosenberg Theorem, ωY,T (A(Y/X)) = G.
�

Theorem 3.10. Let f be a Weierstrass polynomial on X with roots α1, · · · , αn in the splitting
covering q : Ef → X of f . Let R = q∗C(X). Then R[α1, · · · , αn] contains ∆−1. Consequently,
R[α1, · · · , αn] is Gf -Galois over R and the group homomorphisms ωEf

: A(Ef/X)→ Gf is surjec-
tive.

Proof. Since ωY,R(A(Y/X)) < Gf , Lemma 3.8 implies

R ⊂ R[α1, · · · , αn]
Gf ⊂ R[α1, · · · , αn]

ωY,R(A(Y/X)) ⊂ R.

Hence R[α1, · · · , αn]
Gf = R. By definition, ∆ ∈ R[α1, · · · , αn], and for each σ ∈ Gf ,

σ(∆) = det((σ ◦ σIi(αIj ))i,j=1,··· ,n!) = sign(σ)∆.

Therefore, ∆2 ∈ R[α1, · · · , αn]
Gf = R. By Lemma 3.6, ∆(t) ̸= 0 for all t ∈ Ef . Hence 1

∆2 ∈ R, and
1
∆ = ∆

∆2 ∈ R[α1, · · · , αn]. By Lemma 3.9, R[α1, · · · , αn] is Gf -Galois over R. �

3.2. The fundamental theorem of Galois theory.

Theorem 3.11. Let f ∈ C(X)[z] be a Weierstrass polynomial of degree n on X with roots
α1, · · · , αn in the splitting covering q : (Ef , e0) → (X,x0) of f . Suppose that T is a subring of
R containing the coefficients of q∗f where R = q∗C(X) and

(1) T [α1, · · · , αn] ∩R = T,

(2)
1

∆
∈ T [α1, · · · , αn].

Then

(1) ω = ωEf ,T : A(Ef/X)→ G = AutTT [α1, · · · , αn] is an isomorphism.
(2) We have the following one-to-one correspondences between (based) covering spaces between

(Ef , e0)
q→ (X,x0), subgroups of A(Ef/X), subgroups of Gf , and separable subrings of

T [α1, · · · , αn] over T

(Ef , e0) ←→ < e > ←→ < e′ > ←→ T [α1, · · · , αn]
↓ ∧ ∧ ∪

(L, l0) ←→ H ←→ H ′ ←→ L′

↓ ∧ ∧ ∪
(M,m0) ←→ J ←→ J ′ ←→ M ′

↓ ∧ ∧ ∪
(X,x0) ←→ A(Ef/X) ←→ G ←→ T

which are given by the theory of covering spaces, ω, and Chase-Harrison-Rosenberg theorem,
that is, H = A(Ef/L), H

′ = ω(H), L′ = T [α1, · · · , αn]
H′
, and H ′ = GL′ = {ϕ ∈ G | ϕ|L′ =

idL′}. Moreover, [L :M ] = [J : H] = [J ′ : H ′].

Proof. By Proposition 2.24, ω is injective and by Lemma 3.9, ω is surjective. Therefore, ω is an
isomorphism.
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For the second part, since Ef is Galois over X, it is also Galois over L by Lemma 2.12. Hence
[Ef : L] = |A(Ef/L)| = |H|. Similarly, [Ef :M ] = |J |. Therefore,

[L :M ] = [Ef :M ]/[Ef : L] = |J |/|H| = [J : H].

�
Corollary 3.12. Let f be a Weierstrass polynomial of degree n on X with roots α1, · · · , αn in

the splitting covering Ef
q→ X of f . Then C(Ef ) = q∗C(X)[α1, · · · , αn]. In particular, the group

homomorphism ωEf
: A(Ef/X)→ Gf is an isomorphism.

Proof. Clearly, C(Ef ) ⊃ q∗C(X)[α1, · · · , αn]. Conversely, let H = A(Ef/X). Then H acts on
q∗C(X)[α1, · · · , αn] through the group monomorphism ω : A(Ef/X)→ Autq∗C(X)q

∗C(X)[α1, · · · , αn]

defined in Proposition 2.24. By Lemma 3.8, C(Ef )
H = (q∗C(X)[α1, · · · , αn])

H = q∗C(X). From
the proof of Lemma 3.9, there are x1, · · · , xn!, y1, · · · , yn! ∈ q∗C(X)[α1, · · · , αn] ⊂ C(Ef ) such that

n!∑
i=1

σ(xi)yi = δe,σ, σ ∈ H.

Therefore, C(Ef ) and q
∗C(X)[α1, · · · , αn] areH-Galois over q∗C(X). In particular, q∗C(X)[α1, · · · , αn]

is a separable q∗C(X)-subalgebra of C(Ef ). Furthermore,Hq∗C(X)[α1,··· ,αn] = {e} = HC(Ef ), so by the

Galois correspondence from the Chase-Harrison-Rosenberg Theorem, C(Ef ) = q∗C(X)[α1, · · · , αn].
�

In general not all covering spaces are equivalent to polynomial covering spaces but it is true for
spaces with free fundamental groups.

Theorem 3.13. ([3, Theorem 6.3, pg 110]) Suppose that π1(X) is a free group. Then every finite
covering map onto X is equivalent to a polynomial covering map.

It is natural to ask whether any connected Galois covering of finite degree is equivalent to the
splitting covering of a Weierstrass polynomial. The following result is an enhancement of theorem
above.

Proposition 3.14. Suppose that π1(X) is free. Then any finite connected Galois covering of X is
equivalent to the splitting covering of some Weierstrass polynomial on X.

Proof. Let Y
p→ X be a finite connected Galois covering of X. Theorem 3.13 demonstrates that

there is a Weierstrass polynomial f on X such that its solution space is equivalent to Y
p→ X.

Moreover, by Corollary 2.16, the splitting covering Ef
q→ X is equivalent to Y

p→ X. �

Corollary 3.15. Suppose that π1(X) is free and Y
p→ X is a finite connected Galois covering of

X. Then A(Y/X) ∼= Autp∗C(X)C(Y ) and C(Y ) is A(Y/X)-Galois over p∗C(X).

Proof. By Proposition 3.14, there exists a Weierstrass polynomial f on X with splitting covering

Ef
q→ X equivalent to Y

p→ X, that is, there is a covering equivalence Φ : Y → Ef . Therefore, Φ
∗

gives an isomorphism from C(Ef ) to C(Y ) mapping q∗C(X) onto p∗C(X). As a result of Proposi-
tion 3.12, A(Y/X) ∼= A(Ef/X) ∼= Autp∗C(X)C(Y ) and C(Y ) is A(Y/X)-Galois over p∗C(X). �

4. Groups as Galois groups

4.1. Realization of groups as semi-topological Galois groups. It is natural in our setting to
ask the following inverse Galois problem:

Question (Topological inverse Galois problem) Does every finite group appear as the semi-topological
group of some Weierstrass polynomial with coefficients of Q-polynomials restricted to some subset
of C?
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In this section we will solve this problem and relate it to the original inverse Galois problem. Let
C+ be the set of complex numbers with real part greater than zero, and let

Fn = {(x1, x2, · · · , xn) ∈ (C+)n : xi ̸= xj , ∀i ̸= j}.

Then the n-th symmetric group Sn acts on Fn by permuting xi’s. Let Cn be the quotient space
Fn/Sn which is homeomorphic to the space Bn = Cn − Z(δ) where Z(δ) is the zero set of the
discriminant polynomial δ (see Section 2.3).

For a continuous function α : X → Cn, represent the class α(x) by [(α1(x), · · · , αn(x))] where αi’s
may not be continuous functions but the elementary symmetric polynomials formed by α1, · · · , αn

are continuous functions on X. So we have a Weierstrass polynomial fx(z) =
∏n

i=1(z−αi(x)). The
solution space E of f is an n-fold covering over X. We denote the set of all equivalence classes of
n-fold covering spaces obtained from such f by PC+n (X).

It is clear that two homotopic maps from X to Cn give the equivalent covering spaces ([3, pg
92, Corollary 3.3]) and it is know that Cn is an Eilenberg-Mac-Lane space of type (B(n), 1)([3, pg
98]), where B(n) is the Artin braid group which is the fundamental group of Cn. By [8, pg 428,
Theorem 11], there is a bijective correspondence

[X,Cn]→ Hom(π1(X), B(n))conj

defined by mapping the free homotopy class of a map α : X → Cn to the conjugacy class of the
induced homomorphism α∗ : π1(X)→ B(n). Therefore, we have a map,

Hom(π1(X), B(n))conj ∼= [X,Cn]→ PC+n .

The last arrow maps α to the solution space of fα which by definition is a surjection. Moreover,
if we denote π1(Fn) by H(n), then we have the braid group sequence ([3, pg 17])

1→ H(n)
ρn→ B(n)

τn→ Sn → 1,

and the following commutative diagrams(a similar diagram is in [3, pg 108])

Hom(π1(X),H(n))conj

ρn◦−
��

Hom(π1(X), B(n))conj

τn◦−
��

// PC+n (X)

inclusion
��

Hom(π1(X), Sn)
conj // Cn(X)

where Cn(X) denotes the set of equivalence classes of n-fold covering spaces onX,Hom(π1(X), Sn)
conj →

Cn(X) is given by the characteristic maps of covering spaces, and the horizonal maps are always
surjective (see [3, pg 99]). In particular, if the fundamental group of the base space X is a free
group, then the homomorphism τ◦ is surjective, so each n-fold covering space of X is equivalent to
the solution space of a Weierstrass polynomial of this type. The argument is similar to the one in
the proof of [3, pg 110, Theorem 6.3].

Lemma 4.1. Suppose that π1(X) is free. Then Cn(X) = PC+n .

The above result is used to prove the following main result of this paper.

Theorem 4.2. Let G be any finite group. Then there is a Weierstrass polynomial on a compact
subset of the complex plane with rational polynomials as coefficients such that G is isomorphic to
its semi-topological Galois group.
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Proof. Since G is finite, there exists a finitely generated free group F and a normal subgroup N
of F such that G = F/N . If F is generated by m elements, then we take m disjoint open discs
D1, · · · , Dm in a compact disk D in C such that π1(X) ∼= F where X = D − ∪mj=1Dj . By the

Galois correspondence of covering spaces, there is a connected covering space E′ q→ X such that
N ∼= q∗π1(E

′) and A(E′/X) ∼= F/N ∼= G. Since q∗π1(E
′) is normal in π1(X), by Theorem 2.8,

E′ q→ X is Galois. By Lemma 4.1, E′ is equivalent to the solution space E of some irreducible
Weierstrass polynomial f defined on X and for each x ∈ X, roots of fx(z) have images in C+.

Then E
p→ X is Galois, and by Corollary 2.16, E is the splitting covering of f . Let α1, · · · , αn be

the roots of f in E. Define

gx(z) =

n∏
i=1

(z − αi(x))(z − αi(x)) = z2n +

2n−1∑
j=0

aj(x)z
j ,

where “−” is the complex conjugation. Then the function g is a Weierstrass polynomial of degree
2n on X and all ai’s are real-valued functions. Since E is the splitting covering of f , it is also the
splitting covering of g.

Let a : X → B2n be the continuous function defined by a(x) = (a0(x), · · · , a2n−1(x)). Then
a(X) ⊂ B2n is compact where B2n = C2n − Z(δ) and δ is the discriminant polynomial. Since
Z(δ) is closed in C2n, the distance between a(X) and Z(δ) is a positive number ε = d(a(X), V (δ)).
Then by the Stone-Weierstrass theorem([7, Theorem 7.32]), there are ã0, · · · , ã2n−1 ∈ Q[x] such
that ∥ãj − aj∥ < ε/4n, j = 0, · · · , 2n − 1 where ||ãj − aj || = maxx∈X |ãj(x) − aj(x)|. Hence

||ã− a|| ≤
∑2n

i=1 ||ãj − aj || < ε/2.
Then for any x ∈ X,

d(ã(x), V (δ)) ≥ d(a(x), V (δ))− d(a(x), ã(x)) > ε− ε/2 = ε/2.

Therefore we have a map ã = (ã0, · · · , ã2n−1) : X → B2n and a Weierstrass polynomial g̃x(z) =

z2n+
∑2n−1

j=0 ãj(x)z
j . Let H(x, t) := (1− t)a(x)+ tã(x) for t ∈ [0, 1], x ∈ X. Then |a(x)−H(x, t)| =

t|a(x) − ã(x)| < tε/2 ≤ ε/2, so H : X × I → B2n is a homotopy between a and ã. Hence
Proposition 2.19 and Theorem 3.11 imply that Gg̃

∼= Gg
∼= G. �

4.2. Relation to inverse Galois problem. In the following, we fix X a path-connected subset of

C. Let Ef
q→ X be the splitting covering of a Weierstrass polynomial f on X, and let α1, · · · , αn :

Ef → C be all roots of f in Ef . We define

T := { q
∗g

q∗h
| g, h ∈ Q[x], h(x) ̸= 0, ∀x ∈ X}

and

W := { q
∗g

q∗h
| g, h ∈ Q[x], h ̸= 0} ∼= Q(x).

Lemma 4.3.

AutTT [α1, · · · , αn] ∼= AutWW [α1, · · · , αn].

Proof. Since T is a subring ofW , we have a restriction map r : AutWW [α1, · · · , αn]→ AutTT [α1, · · · , αn]

by sending φ to φ|T [α1,··· ,αn]. We use that notation αI := αi1
1 α

i2
2 · · ·αin

n where I = (i1, i2, · · · , in).
For ψ ∈ AutTT [α1, · · · , αn], define ψ̃ :W [α1, · · · , αn]→W [α1, · · · , αn] by

ψ̃(
∑
I

aI
bI
αI) =

1

B
ψ(

∑
I

aIBIα
I)
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where B =
∏

I bI , BI = B
bI

and aI , bI ∈ Q[x]. Then it straightforward to show that ψ̃ ∈
AutWW [α1, · · · , αn]. In consequence, we obtain a map Φ : AutTT [α1, · · · , αn]→ AutWW [α1, · · · , αn]

defined by Φ(ψ) = ψ̃ which is a group isomorphism. �
Theorem 4.4. Suppose that T [α1, · · · , αn] ∩ R = T where R = q∗C(X). Then Gf occurs as a
Galois group of a Galois extension of Q.

Proof. Since ∆2 ∈ R and ∆ ∈ T [α1, · · · , αn], ∆2 ∈ T by assumption. So ∆2 = q∗g
q∗h for some

g, h ∈ Q[x] and h(x) ̸= 0 for x ∈ X. By Lemma 3.6, 1
∆2 = q∗h

q∗g ∈ R, so g(x) ̸= 0 for all x ∈ X. This

implies 1
∆2 ∈ T . Then 1

∆ = ∆
∆2 ∈ T [α1, · · · , αn]. By Theorem 3.11, AutT (T [α1, · · · , αn]) ∼= Gf

Lemma 4.3 implies that AutW (W [α1, · · · , αn]) ∼= Gf . Moreover, W [α1, · · · , αn] is the splitting
field of f ∈W [z], and hence, W [α1, · · · , αn] is a Galois extension of W . Since W ∼= Q(x) and Q is
Hilbertian([9, pg 18, Theorem 1.23]), Gf occurs as a Galois group of certain Galois extension L of
Q as wished. �
Corollary 4.5. If T [α1, · · · , αn] = T [α] where α ∈ T [α1, · · · , αn] is a root of a polynomial h ∈ T [z]
of degree n, then Gf can be realized as a Galois group over Q.

Proof. For φ ∈ T [α]∩R, φ = a0+ a1α+ · · ·+ an−1α
n−1 for some a0, · · · , an−1 ∈ T . Let x ∈ X and

π−1(x) = {e1, · · · , en}. Then φ(x) = a0(x)+a1(x)α(ej)+ · · ·+an−1(x)α(ej)
n−1 for all j = 1, · · · , n.

Since Ef over X is Galois, for each ej , there is a unique gj ∈ Gf such that gj(e1) = ej . Applying all
gj to φ, their sum is nφ(x) = na0(x) + a1(x)

∑n
j=1(gj · α)(e1) + · · ·+ an−1(x)(

∑n
j=1 gj · αn−1)(e1).

Since
∑n

j=1(gj · αk)(e1) =
∑n

j=1 α
k(ej) and it is well known that

∑n
j=1 α

k(ej) can be expressed as

a polynomial of coefficients of h, so
∑n

j=1(gj · αk) ∈ T which implies that φ ∈ T . Hence by the
result above, we have our claim. �

In the following, we apply our method to realize symmetric groups and cyclic groups over Q.

Corollary 4.6. The n-th symmetric group Sn can be realized as a Galois group over Q.

Proof. By Theorem 4.2, there is a space X ⊂ C and a Weierstrass polynomial f ∈ C(X)[z] such
that Gf = Sn. Suppose that p : Ef → X is the splitting covering of f and f splits into α1, · · · , αn

in Ef . Let φ ∈ T [α1, · · · , αn] ∩ R. Then φ =
∑

I aIα
I where I = (i1, · · · , in), αI = αi1

1 α
i2
2 · · ·αin

n .

Since for any σ ∈ Gf , σφ = φ, we have (n!)φ =
∑

σ∈Sn
σφ =

∑
I aI

∑
σ∈Sn

σ(αI). Note that the

sum
∑

σ∈Sn
σ(αI) =

∑
σ∈Sn

αi1
σ(1)α

i2
σ(2) · · ·α

in
σ(n) which is a symmetric polynomial in α1, · · · , αn. So

by the fundamental theorem of symmetric polynomials, the sum can be expressed as a polynomial
with rational coefficients of elementary symmetric polynomials in α1, · · · , αn, which are just the
coefficients of p∗f , and hence

∑
σ∈Sn

σ(αI) ∈ T . This implies that φ ∈ T . So by Theorem 4.4, Sn
can be realized as a Galois group over Q. �
Corollary 4.7. Any cyclic group Zn can be realized as a Galois group over Q.

Proof. Let fx(z) = zn − x ∈ C(S1)[z] which is clearly an irreducible Weierstrass polynomial on S1.
By Example 2.22, Gf = Zn. Let p : Ef → S1 be the splitting covering of f and α1, · · · , αn be the
roots of f . Since α1(s) ̸= 0 for all s ∈ Ef , the function βi :=

αi
α1

is a continuous function on Ef .

From αj(s)
n = (p∗x)(s) = p(s) for any j = 1, · · · , n, we have βni (s) = 1 for all s ∈ Ef . Since Ef is

connected, βi is a constant function. By renumbering the roots if necessary, we may assume that

βj = e
2πi
n

(j−1) = βj−1
2 for j = 2, · · · , n. Let φ ∈ T [α1, · · · , αn] ∩ R where R = p∗C(S1) and write

φ =
∑

I aIα
I . We have αI = αi1

1 (β2α1)
i2(β22α1)

i3 · · · (βn−1
2 α1)

in = β
i2+2i3+···+(n1)in
2 αi1+i2+···+in

1 =

βcI2 α
∑

I
1 where cI =

∑n
j=2(j − 1)ij ,

∑
I = i1 + i2 + · · · + in for I = (i1, i2, · · · , in). Since Gf has

n elements, for a point x ∈ S1, p−1(x) = {y1, · · · , yn}. From φ ∈ R, nφ(y1) =
∑n

j=1 φ(yj) =
17



∑
I bI(x)(

∑n
j=1 α

I(yj)) where bI = p ◦ aI . By a property of covering transformations, there is

a unique σj ∈ Gf such that σj(y1) = yj . Then nφ(y1) =
∑

I bI(x)(
∑n

j=1 β
cI
2 α

∑
I

1 (σj(y1))) =∑
I bI(x)β

cI
2 (

∑n
j=1 α

∑
I

j (y1)) =
∑

I bI(x)β
cI
2 ((

∑n
j=1 β

∑
I

j )α
∑

I
1 (y1)) =

∑
I bI(x)β

cI
2 (

β
n
∑

I
2 −1
β2−1 )α

∑
I

1 (y1) =

b0(x) ∈ T where b0 = b(0,··· ,0). This implies that φ ∈ T and hence T [α1, · · · , αn] ∩ R = T . By
Theorem 4.4, Zn can be realized as a Galois group over Q. �
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