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Abstract

We reformulate the construction of Kontsevich’s completion and use Lawson homol-
ogy to define many new motivic invariants. We show that the dimensions of subspaces
generated by algebraic cycles of the cohomology groups of two K-equivalent varieties are
the same, which implies that several conjectures of algebraic cycles are K-statements.
We define stringy functions which enable us to ask stringy Grothendieck standard con-
jecture and stringy Hodge conjecture. We prove a projective bundle theorem in morphic
cohomology for trivial bundles over any normal quasi-projective varieties.

1. Introduction

With the insight from string theory, Batyrev first showed that two birational Calabi-
Yau manifolds have the same Betti numbers by using Weil’s conjecture (see [5]). Kontse-
vich pushed this result a step further by introducing the notion of motivic integration in
showing that two K-equivalent varieties have the same Hodge numbers. In this paper we
show further that the dimensions of subspaces generated by algebraic cycles of cohomol-
ogy groups of two K-equivalent varieties are the same. We found that to construct motivic
measure and motivic integration, we do not need the product structure of K0(V ar), the
Grothendieck group of algebraic varieties. It is sufficient to give K0(V ar) a L -module
structure where L is the polynomial ring generated by L = C, and then we can follow
Kontsevich’s construction to get an abelian group completion. This makes a huge differ-
ence since many invariants are not multiplicative, but they can be defined in our new
settings. The tools we need to use are the homotopy property and the blow-up formula
in Lawson homology. We first show that we can define invariants over the Grothendieck
group K0(SPV ) of smooth projective varieties, and then show that the isomorphism
given by Bittner ϕ : K0(V ar) → K0(SPV ) is an isomorphism of L -modules. Through
this isomorphism, invariants defined on smooth projective manifolds induce invariants
for quasi-projective varieties. These invariants induce invariants defined on the image of
some localization S−1K0(V ar) of K0(V ar) in the Kontsevich’s completion which enables
us to use motivic integration.

We review and modify some constructions of motivic measure and motivic integration
in Section 2, use the blow-up formula in Lawson homology and the natural transfor-
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mations from Lawson homology to singular homology to define some motivic invari-
ants in Section 3. This enables us to show that the generalized Hodge conjecture, the
Grothendieck standard conjecture, the Friedlander-Lawson conjecture, the Friedlander-
Mazur conjecture are K-statements. In Section 4 we define stringy functions which extend
many classical notions to varieties with singularities. One of our most interest stringy
functions defines the stringy version of the dimension of cohomology classes generated
by algebraic cycles for singular varieties. We are then able to ask stringy Grothendieck
standard conjecture and stringy Hodge conjecture. The stringy Grothendieck standard
conjecture is verified for normal projective toric varieties with Q-Gorenstein singulari-
ties. We conjecture that for mirror pairs (V,W ) of dimension n constructed by Batyrev
and Borisov, the relation of Hodge numbers hp,q(V ) = hn−p,q(W ) can be enhanced to a
relation of stringy φ-numbers.

In Section 5 we focus on varieties with finitely generated Lawson homology groups. We
show that motivic integration can be defined over these varieties, and we do the same
thing for higher Chow groups. Since one of the main tools we use in this paper is the
projective bundle theorem in Lawson homology, it is natural to ask if similar result holds
in morphic cohomology. Friedlander proved a projective bundle theorem ([12]) in morphic
cohomology for smooth quasi-projective varieties but since there is no Mayer-Vietoris
sequence in morphic cohomology at this moment, a proof of the result for general quasi-
projective varieties is difficult to get. In section 6, we are able to prove a projective bundle
theorem in morphic cohomology for trivial bundles over any normal quasi-projective
varieties without assuming smoothness. This seeming trivial result already applies almost
all techniques in Lawson homology and morphic cohomology.

2. Motivic integration

2·1. Arc spaces

Let SPV be the collection of all isomorphism classes of smooth projective varieties
and V ar be the collection of all quasi-projective varieties. Let K0(SPV ) = Z(SPV )/ ∼bl

be the free abelian group generated by elements in SPV quotient by the subgroup ∼bl

which is generated by elements of the form BlY X −X + Y −E(Y ) where Y is a smooth
subvariety of a smooth projective variety X, BlY X is the blow-up of X along Y and E(Y )
is the exceptional divisor of this blow-up. Let K0(V ar) = Z(V ar)/ ∼ be the Grothendieck
group of quasi-projective varieties. The subgroup ∼ is generated by elements of the form
X − (X\Y )− Y where Y is a locally closed subvariety of X.

Let L = C and let L = Z{Li|i ∈ Z≥0} be the free abelian group generated by Li for all
nonnegative integer i. L is a ring with the obvious multiplication. For [X] ∈ K0(SPV ),
we define L0 · [X] = [X] and

Li · [X] := [X × Pi]− [X × Pi−1]

for i > 0. Since

[(BlY X −X + Y − E(Y ))× Pi] = [BlY×Pi(X × Pi)−X × Pi + Y × Pi − E(Y × Pi)]

this multiplication is well defined on K0(SPV ), and it is easy to check that Li(Lj [X]) =
Li+j [X], the group K0(SPV ) becomes a L -module under this action. The group K0(V ar)
is naturally a L -module under the product of varieties.

Let S = {Li}i≥0 ⊂ L and let M = S−1K0(SPV ) = { a
Li |a ∈ K0(SPV ), i ∈ Z≥0},
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N = S−1K0(V ar) = { a
Li |a ∈ K0(V ar), i ∈ Z≥0} be the group obtained by taking the

localization of K0(SPV ),K0(V ar) respectively with respect to the multiplicative set S.
Define F kM, F kN to be the subgroups of M,N generated by elements of the form [X]

Li

where i− dimX ≥ k. Then we get a decreasing filtration

· · · ⊇ F kM⊇ F k+1M⊇ · · ·
of abelian subgroups of M and a decreasing filtration

· · · ⊇ F kN ⊇ F k+1N ⊇ · · ·
of abelian subgroups of N .

Suppose that we are given a decreasing filtration · · · ⊇ F k ⊇ F k+1 ⊇ · · · . A Cauchy
sequence with respect to this filtration is a sequence {ai} where ai ∈ F i for all i such
that for any n > 0, there is a N > 0 such ai − aj ∈ Fn for all i, j > N .

Definition 1. The Kontsevich group of smooth projective varieties is defined to be

M̂ := lim
←

M
F kM

the completion of M with respect to the filtration above. Similarly, we define the Kont-
sevich group of varieties to be

N̂ := lim
←

N
F kN

the completion of N with respect to the filtration of N .
We use also F •M, F •N to denote the filtrations in M̂, N̂ respectively induced by the

filtrations above. We denote M to be the image under the canonical map M→ M̂, and
N to be the image under the canonical map N → N̂ .

Definition 2. We give N̂ a L -module structure as following: for a Cauchy sequence
(a1, a2, ...) ∈ N̂ , define

L · (a1, a2, ....) := (La1,La2, ...)

which is again a Cauchy sequence. It is easy to see that the canonical map φ : N → N̂
defined by φ(a) = (a, a, ...) is a morphism of L -modules and N is a submodule of N̂ .
We define the L -module structure similarly for M̂.

Let us recall a result of Bittner [7]. For a better presentation of the proof see [23].

Theorem 1. There is a group isomorphism ϕ : K0(V ar) → K0(SPV ).

The isomorphism ϕ is given inductively on the dimension of varieties. Assume it is
defined for varieties of dimension less than n. If dimX = n, we consider two cases:

(i) If X is nonsingular, let X be a nonsingular compactification of X, then define

ϕ(X) := X − ϕ(X −X)

(ii) If X is singular, let X =
∐

i Si be a stratification of X, then define

ϕ(X) :=
∑

i

ϕ(Si)

Proposition 1.
(i) The isomorphism ϕ : K0(V ar) → K0(SPV ) induces an isomorphism ϕ : N →M

of L -modules.
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(ii) It induces an isomorphism of L -modules ϕ̂ : N̂ → M̂.
(iii) It induces an isomorphism of L -modules ϕ : N →M.

Proof.
(i) It suffices to prove ϕ(L ·X) = L · ϕ(X) for X nonsingular. It is easy to check for

X of dimension 1. We assume that it is true for varieties of dimension less than n.
Then for dimX = n, we have ϕ(L ·X) = X × C−ϕ(X × C−X ×C) = X ×P1−
ϕ((X−X)×C+X) = X×P1−X−ϕ((X−X)×C) = L·X−L·ϕ(X−X) = L·ϕ(X).

(ii) For [X]
Li ∈ M, we define ϕ̂( [X]

Li ) = ϕ(X)
Li . Hence ϕ̂(F kN ) ⊂ F kM, and we have

ϕ̂−1(F kM) ⊂ F kN . Therefore ϕ induces an isomorphism ϕ̂ : N̂ → M̂ on the
completions. This is obviously an isomorphism of L -modules since ϕ is an iso-
morphism of L -modules.

(iii) We have a commutative diagram

N ϕ //

²²

M

²²
N̂

ϕ̂ // M̂
where ϕ, ϕ̂ are L -module isomorphisms which implies that we have a L -module
isomorphism between N and M.

From this Proposition, once we have a group homomorphism from M to some group
G, we can use ϕ to define a group homomorphism from N to G which means that we
can define an invariant for all quasi-projective varieties.

2·2. Motivic integration

We give a brief review of the arc spaces of quasi-projective varieties here. For the
details, we refer to [4] and [9]. We work over the field of complex numbers. For a complex
algebraic variety X of dimension d, the space of n-arcs on X is defined to be

Ln(X) = MorC−schemes(Spec C [[t]]/(tn+1), X).

For m ≥ n, there are canonical morphisms θm
n : Lm(X) → Ln(X). Taking the projective

limit of these algebraic varieties Ln(X), we obtain the arc space L(X) of X. For every n

we have a natural morphism

πn : L(X) → Ln(X)

obtained by truncation. A subset A of L(X) is called cylindrical if A = π−1
n (C) for

some n and some constructible subset C of Ln(X). We say that A is stable at level n

if furthermore the restriction of πm+1(L(X)) → πm(L(X)) over πm(A) is a piecewise
Zariski fibration over πm(A) with fiber Cd for all m ≥ n. We call A stable if it is stable
at some level n. If X is smooth, then all cylindrical sets of L(X) are stable.

In the following, let us recall some constructions and results in motivic integration.
Even though we have almost all the constructions and results from classical motivic
integration, we note that we only consider K0(V ar),N , N̂ as L -modules, not rings.

Definition 3. If A is stable at level n, we define

µ̃(A) = [πn(A)]L−nd
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in N . Let

L(e)(X) := L(X)\π−1
e (πe(L(Xsing)))

where Xsing denote the singular locus of X and we view L(Xsing) as a subset of L(X).
For a cylindrical set A, it can be proved that A ∩ L(e)(X) is stable and we define

µ(A) = lim
e→∞

µ̃(A ∩ L(e)(X)) ∈ N̂

Define a norm || · || on N̂ by ||a|| := 2−n where n is the largest n such that a ∈ FnN .
Then
(i) for all a, b ∈ N̂ , ||a + b|| ≤ max(||a||, ||b||),
(ii) for any A,B cylindrical sets, we have ||µ(A ∪ B)|| ≤ max(||µ(A)||, ||µ(B)||) and

||µ(A)|| ≤ ||µ(B)|| when A ⊂ B.

Definition 4. We say that a subset A of L(X) is measurable if, for every positive
real number ε, there exists a sequence of cylindrical subsets Ai(ε), i ∈ N such that

(A∆A0(ε)) ⊂ ∪
i≥1

Ai(ε)

and ||µ(Ai(ε))|| ≤ ε for all i ≥ 1. We say that A is strongly measurable if moreover we
can take A0(ε) ⊂ A.

The following is the result A.6 from [10].

Theorem 2. If A is a measurable subset of L(X), then

µ(A) := lim
ε→0

µ(A0(ε))

exists in N̂ and is independent of the choice of the sequences Ai(ε), i ∈ N.

Definition 5. Let X be a quasi-projective variety of pure dimension d. We define the
motivic volume of X to be µ(L(X)) ∈ N̂ . It can be shown that

µ(L(X)) = lim
n→∞

[πn(L(X))]
Lnd

and it equals to [X] when X is nonsingular.

Definition 6. Let A ⊂ L(X) be measurable and α : A → Z ∪ {∞} a function with
measurable fibres α−1(n) for n ∈ Z. We define the motivic integral of α to be

∫

A

L−αdµ :=
∑

n∈Z
µ(α−1(n))L−n

in N̂ whenever the right hand side converges in N̂ , in which case we say that L−α is
integrable on A. If α is bounded from below, this is always the case (see [9]).

Definition 7. Let I be a sheaf of ideals on X. We define

ordtI : L(X) → N ∪ {∞}
by ordtI(γ) = min

g
{ordtg(γ)} where the minimum is taken over g ∈ I in a neighborhood

of π0(γ). For an effective Cartier divisor D, we define ordtD = ordtI where I is the ideal
sheaf associated to D.

The following result is from Theorem 2.7.1 of [22].
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Theorem 3. (Change of variables formula) Let X be a complex algebraic variety of
dimension d. Let h : Y → X be a proper birational morphism and Y a smooth variety.
Let A be a subset of L(X) such that A and h−1(A) are strongly measurable. Assume that
L−α is integrable on A. Then

∫

A

L−αdµ =
∫

h−1(A)

L−α◦h−ordth
∗(Ωd

X)dµ

where h∗(Ωd
X) is the pullback of the sheaf of regular differential d-forms of X and ordth

∗(Ωd
X) :=

ordtI(h∗(Ωd
X)) where I(h∗(Ωd

X)) is the ideal sheaf induced by h∗(Ωd
X) (see [9, 3. 3]).

For a divisor D =
∑r

i=1 aiDi on X and any subset J ⊂ {1, ..., r}, denote

DJ =

{ ∩
j∈J

Dj , if J 6= ∅
X, if J = ∅.

and D0
J := DJ − ∪i/∈JDi.

Even though we do not have [X × Y ] = [X][Y ] in N̂ for general varieties X, Y , we do
have [Y × C∗] = [Y × (C− 0)] = [Y × C]− [Y × 0] = L[Y ]− [Y ] = [Y ][C∗]. By a similar
calculation as in Theorem 6.28 of [4], we have the following result.

Theorem 4. Let X be a nonsingular algebraic varieties of dimension d and D =∑r
i=1 aiDi an effective divisor on X with only simple normal crossings. Then

∫

L(X)

L−ordtDdµ =
∑

J⊂{1,...,r}
[D0

J ] · (
∏

j∈J

L− 1
Laj+1 − 1

)

where J is any subset (including empty set) of {1, ..., r}.
Corollary 1. Let X be a variety of pure dimension d, and let h : Y → X be a

resolution of singularities of X such that the relative canonical divisor D =
∑r

i=1 aiDi =
KY − h∗KX of h has simple normal crossings. Furthermore, assume that the ideal sheaf
induced by h∗(Ωd

X) is invertible. Then

µ(L(X)) =
∑

J⊂{1,...,r}
[D0

J ] · (
∏

j∈J

L− 1
Laj+1 − 1

).

Hence µ(L(X)) belongs to M[( 1
Li−1 )i≥1]

We say that two smooth projective varieties X and Y are K-equivalent if there is a
smooth projective variety Z and birational morphisms ρ1 : Z → X and ρ2 : Z → Y

such that ρ∗1KX = ρ∗2KY in Z where KX ,KY are the canonical divisors on X and Y

respectively. As a simple consequence of the “change of variables formula”, we have the
following result.

Theorem 5. If two smooth projective varieties X, Y are K-equivalent, then [X] = [Y ]
in N [( 1

Li−1 )i≥1].

3. Lawson homology groups

For an overview of Lawson homology and morphic cohomology, we refer to [16, 14].
Recall that in Lawson homology we have the homotopy property LpHn(X × Ct) =
Lp−tHn−2t(X) for X a smooth projective variety.



Motivic integration and projective bundle theorem in morphic cohomology7

Definition 8. For a quasi-projective variety X and an integer p < 0, we define the
negative cycle group Zp(X) := Z0(X × C−p), and Hp(X) := HBM

0 (X × C−p). Then we
have LpHk(X) = L0Hk−2p(X ×C−p) = HBM

k−2p(X ×C−p). Throughout this paper we will
identify LrHk(X) with Lr+tHk+2t(X × Ct).

Recall that we have natural transformations Φ : LpHk(X) → Hk(X) from Lawson ho-
mology to singular homology (see [11], [14], [20]). The intersection theory of cycle spaces
was developed by Friedlander and Gabber in [13] in which they obtained a projective
bundle theorem for Lawson homology. We extend their result to negative cycle groups.

Proposition 2. Let E be an algebraic vector bundle of rank r + 1 over a quasi-
projective variety Y of dimension n and π : P (E) → Y the projective bundle associated
to E. We denote the tautological line bundle on P (E) by OP (E)(1) and first Chern class
by c1 (see [13]).

(i) (Friedlander-Gabber) If p ≥ r, then the map

Ψ ≡
r∑

j=0

c1(OP (E)(1))r−j ◦ π∗ :
r⊕

j=0

Zp−j(Y ) → Zp(P (E))

is a homotopy equivalent.
(ii) If 0 ≤ p < r, then the map

Ψ :
r⊕

j=0

Zp−j(Y ) −→ Zp(P (E))

is a homotopy equivalent where Ψ ≡ ∑p
j=0(π

∗
1)−1 ◦ c1(OP (E)×Cr−p(1))r−j ◦ π∗ ◦

π∗2 +
∑r

j=p+1(π
∗
1)−1 ◦ c1(OP (E)×Cr−p(1))r−j ◦ π∗ ◦ π∗3 , and π1 : P (E) × Cr−p →

P (E), π2 : Y × Cr−p → Y, π3 : Y × Cr−p → Y × Cj−p are the projections.
(iii) For any p, we have a commutative diagram:

Ψ :
⊕r

j=0 Lp−jHk−2j(Y ) //

Φ

²²

LpHk(P (E))

Φ

²²
Ψ′ :

⊕r
j=0 HBM

k−2j(Y ) // HBM
k (P (E))

where Ψ′ is the counterpart of Ψ in singular homology.

Proof. We prove (ii). We have two homotopy equivalences:
p⊕

j=0

Zp−j(Y )
π∗2−→

p⊕

j=0

Zr−j(Y × Cr−p),

and
r⊕

j=p+1

Z0(Y × Cj−p)
π∗3−→

r⊕

j=p+1

Zr−j(Y × Cr−p)

Combining them together, we get
r⊕

j=0

Zp−j(Y ) =
p⊕

j=0

Zp−j(Y )⊕
r⊕

j=p+1

Z0(Y × Cj−p) ∼=
r⊕

j=0

Zr−j(Y × Cr−p)

Consider Cr−p as a zero rank vector bundle over itself, then E × Cr−p is an algebraic
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vector bundle over Y × Cr−p of rank r + 1. We have P (E × Cr−p) = P (E) × Cr−p. By
(i), we have a homotopy equivalence

r∑

j=0

c1(OP (E)×Cr−p(1))r−j ◦ π∗ :
r⊕

j=0

Zr−j(Y × Cr−p) −→ Zr(P (E)× Cr−p)

Combining with the homotopy equivalence (π∗1)−1 : Zr(P (E) × Cr−p) → Zp(P (E)),
we are done. (iii) follows from the fact that all the maps in (i) and (ii) are induced from
algebraic maps and Φ is a natural transformation.

The following is the blow-up formula in Lawson homology from [19]. We state the
result for integral coefficients but we use the formula only in rational coefficients.

Proposition 3. Let X be a smooth projective variety and i′ : Y ↪→ X a smooth
subvariety of codimension r + 1. Let σ : BlY X → X be the blow-up of X along Y ,
π : E = σ−1(Y ) → Y the projection, and i : E → BlY X the inclusion map. For p ≥ 0
and k ≥ 2p,

(i) the map

Ip,k :
r⊕

j=1

Lp−jHk−2j(Y )⊕ LpHk(X) → LpHk(BlY X)

defined by

Ip,k(u1, ..., ur, u) =
r∑

j=1

i∗hr−jπ∗uj + σ∗u

is an isomorphism where h ∈ Lm−1H2(m−1)(E) is the class defined by a hyperplane
section of E.

(ii) There is a split short exact sequence

0 → LpHk(Y )
ψ1→ LpHk(E)⊕ LpHk(X)

ψ2→ LpHk(BlY X) → 0

where ψ1(x) = (hrπ∗x,−i′∗x), and ψ2(x) = (x̃, y) = i∗x̃ + σ∗y.

Definition 9. Suppose that X is a smooth projective variety. Let TpHk(X) := Φ(LpHk(X;Q)) ⊂
Hk(X;Q) be the image of the natural transformation Φ from Lawson homology to singular
homology and Tp,k = dimΦ(LpHk(X;Q)) be its dimension for k ≥ 2p ≥ 0.

Combine with the blow-up formula in singular homology (see [18], Chapter 4.6), and as
an immediate consequence of the Proposition above, we get the following crucial equality.

Proposition 4. Suppose that X is a smooth projective variety. Then we have

Tp,k(BlY X)− Tp,k(E(Y )) = Tp,k(X)− Tp,k(Y )

where BlY X is the blow-up of X along a smooth subvariety Y and E(Y ) is the exceptional
divisor.

Since K0(SPV ) = Z(SPV )/ ∼bl where ∼bl is the blow-up relation, we see that Tp,k

induces a group homomorphism from K0(SPV ) to Z.

Proposition 5. For a smooth projective variety X, define

Tp,k(X · Li) := Tp,k(X × Pi)− Tp,k(X × Pi−1)

for k ≥ 2p ≥ 0.
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(i) The map Tp,k induces a group homomorphism from M to Z.
(ii) The map Tp,k induces a group homomorphism from M[( 1

Li−1 )i≥1] to Z.

Proof.
(i) From the projective bundle theorem for trivial bundles and applying the natu-

ral transformations from Lawson homology to singular homology, we have the
following commutative diagram:

LpHk(X × Pi;Q)

Φ

²²

∼= LpHk(X × Pi−1;Q)⊕ Lp−iHk−2i(X;Q)

Φ

²²
Hk(X × Pi;Q) ∼= Hk(X × Pi−1;Q)⊕Hk−2i(X;Q)

Then Tp,k(X · Li) = Tp,k(X × Pi)− Tp,k(X × Pi−1) = Tp−i,k−2i(X).
For A

Li ∈M where A ∈ K0(SPV ), we define

Tp,k(
A

Li
) := Tp+i,k+2i(A)

Since Tp,k(A·Lj

Li+j ) = Tp+i+j,k+2(i+j)(A · Lj) = Tp+i,k+2i(A) = Tp,k( A
Li ), Tp,k is well

defined over M. Extending Tp,k by linearity, we get a group homomorphism from
M to Z.

(ii) The kernel of the canonical map φ : M→ M̂ is ∩nFnM. If A ∈ ∩nFnM, then
A =

∑
i bi

Bi

Lni
for some bi ∈ Z, Bi ∈ K0(SPV ) such that ni−dimBi ≥ 1. Therefore

Tp,k(A) =
∑

i biTp,k( Bi

Lni
) =

∑
i biTp+ni,k+2ni(Bi) = 0 since ni > dim Bi. Hence

Tp,k induces a group homomorphism from M = φ(M) ⊂ M̂ to Z.
Write 1

Li−1 =
∑∞

j=0 ajLj . For [X] ∈M, define

Tp,k(X(Li − 1)−1) :=
∞∑

j=0

ajTp,k(X · Lj)

which is a finite sum. Hence Tp,k extends to a group homomorphism fromM[( 1
Li−1 )i≥1]

to Z.

Proposition 6. For a smooth projective variety X of dimension m, let hp,q(X) be
the (p, q)-Hodge number of X and hm−p,m−q(X) be the dimension of the Poincaré dual
of Hp,q(X) in the homology group H2m−(p+q)(X;C). Then hp,q and hp,q induce group
homomorphisms from M[( 1

Li−1 )i≥1] to Z.

Proof. We show this for hp,q. The maps in the exact sequence

0 → Hn(X;C) → Hn(BlY X;C)⊕Hn(Y ;C) → Hn(E(Y );C) → 0

are easy to see to be morphisms of Hodge structures, hence we have

hp,q(BlY X)− hp,q(E(Y )) = hp,q(X)− hp,q(Y )

which implies that hp,q induces a group homomorphism from K0(SPV ) to Z.
Define

hp,q(X · Li) := hp,q(X × Pi)− hp,q(X × Pi−1).

From the isomorphism Hp,q(X × Pi) ∼= Hp,q(X × Pi−1)⊕Hp−i,q−i(X), we get

hp,q(X · Li) = hp−i,q−i(X)
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and then we extend hp,q as in the Proposition above.

We recall that the niveau filtration {NpH∗(X;Q)}p≥0 of H∗(X;Q) is defined by

NpHk(X;Q) = span { images i∗ : Hk(Y ;Q) → Hk(X;Q)|i : Y ↪→ X, dimY ≤ p}
The geometric filtration {GpH∗(X;Q)}p≥0 of H∗(X;Q) is defined by

GpHk(X;Q) = Nk−pHk(X;Q)

We define the homological Hodge filtration to be

FpHk(X;C) :=
⊕

t≤p

Ht,k−t(X)

and define the homological rational Hodge filtration to be

Fh
p Hk(X;Q) = largest sub-Hodge structure of FpHk(X;C) ∩Hk(X;Q)

The homological generalized Hodge conjecture says that for a smooth projective variety
X,

Fh
p Hk(X;Q) = NpHk(X;Q)

The Friedlander-Mazur conjecture (see [17]) says that

TpHk(X;Q) = GpHk(X;Q)

and the Friedlander-Lawson conjecture says that

LpHk(X;Q) → Hk(X;Q)

is surjective if k ≥ m + p where m is the dimension of X. This conjecture was proved by
the author in [25] by assuming the Grothendieck standard conjecture.

Definition 10. We say that a statement is a K-statement if it is true for a smooth
projective variety X, then it is true for all varieties which are K-equivalent to X.

We will show that all these conjectures are K-statements.

Proposition 7. Let Gj,n(X) := dimGjHn(X;Q), Fj,n(X) := dimFh
j Hn(X;Q). Then

Gj,n and Fj,n extend to M[( 1
Li−1 )i≥1].

Proof. By Lemma 2.3 of [3], we have a short exact sequence of pure Hodge structures:

0 → Hn(X;C) → Hn(BlY X;C)⊕Hn(Y ;C) → Hn(E(Y );C) → 0

which give us the following formula

Fj,n(BlY X) + Fj,n(Y ) = Fj,n(X) + Fj,n(E(Y )).

We define

Fj,n(X · Lk) := Fj,n(X × Pk)− Fj,n(X × Pk−1)

Since X ×Ck = X ×Pk −X ×Pk−1, from the mixed Hodge theory, there is a long exact
sequence of mixed Hodge structures:

· · · → Hn(X×Pk−1;C) → Hn(X×Pk;C) → HBM
n (X×Ck;C) → Hn−1(X×Pk−1;C) → · · ·
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but the map induced by inclusion Hi(X×Pk−1;C) → Hi(X×Pk;C) is always an injection,
and therefore we get an exact sequence:

0 → Hn(X × Pk−1;C) → Hn(X × Pk;C) → HBM
n (X × Ck;C) → 0

The isomorphism Hn−2k(X;C) ∼= HBM
n (X × Ck;C) is an isomorphism of Hodge struc-

tures of type (k, k), hence

Fj,n(X · Lk) = dim Fh
j HBM

n (X × Ck;Q) = dim Fh
j−kHn−2k(X;C) = Fj−k,n−2k(X)

Then extend as in the Proposition 5, we get a group homomorphism from M[( 1
Li−1 )i≥1]

to Z.
By a homological version of Lemma 2.4 of [3], we get

Gj,n(BlY X) + Gj,n(Y ) = Gj,n(X) + Gj,n(E(Y )).

Define

Gj,n(X · Lk) := Gj,n(X × Pk)−Gj,n(X × Pk−1).

Since a morphism of Hodge structures preserve niveau filtration, we have Gj,n(X ·Lk) =
Gj−k,n−2k(X). Then similar to the construction above, Gj,n extends to a group homo-
morphism from M[( 1

Li−1 )i≥1] to Z.

By composing with the isomorphism in Proposition 1(iii), we have the following crucial
result.

Theorem 6. The group homomorphisms Tp,k, hp,k, hp,k, Gp,k, Fp,k induce group ho-
momorphisms from N [( 1

Li−1 )i≥0] to Z. We will abusively use the same notations for the
induced homomorphisms.

Remark 1. For a quasi-projective variety X, we may define T ′p,k(X) to be the di-
mension of Φ(LpHk(X;Q)) ⊂ HBM

k (X;Q). Even though this definition makes sense, in
general it does not equal to Tp,k(X). For example T0,0(C∗) = T0,0(P1) − T0,0({0,∞}) =
1− 2 = −1 but T ′0,0(C∗) is a nonnegative integer.

We recall that the Lawson homology group LpH2p(X) = algebraic p-cycles quotient
by algebraic equivalence and the natural transformation Φ : LpH2p(X) → H2p(X) is
the cycle map. Hence Φ(LpH2p(X)) is the subspace of H2p(X) generated by algebraic
cycles. We recall that the Grothendieck standard conjecture A (GSCA) predicts that
for a smooth projective variety X of dimension m, Tp,2p(X) = Tm−p,2(m−p)(X) where
p ≤ [m

2 ].

Proposition 8. If BlY X is the blow-up of a smooth projective variety X at a smooth
center Y of codimension r + 1 and if the GSCA is true for Y , then the GSCA on BlY X

is equivalent to the GSCA on X.

Proof. Let the dimension of X be m and p ≤ [m
2 ]. Then the dimension of Y is m−r−1.

Let Ap(Y ) =
∑r

j=1 Tp−j,2(p−j)(Y ), Bp(X) = Tp,2p(X), Bp(BlY X) = Tp,2p(BlY X). We
have Ap(Y ) + Bp(X) = Bp(BlY X).

From the calculation Am−p(Y ) =
∑r

j=1 Tm−p−j,2(m−p−j)(Y ) =
∑r

j=1 Tp+j−r−1,2(p+j−r−1)(Y ) =∑r
j=1 Tp−j,2(p−j)(Y ) = Ap(Y ), we get Bp(X)−Bm−p(X) = Bp(BlY X)−Bm−p(BlY X)

which means that the GSCA holds on X if and only if it holds on BlY X.
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Corollary 2. If the GSCA holds for smooth projective varieties of dimension less
than m − 1, then the GSCA is a birational statement for smooth projective varieties of
dimension m.

Proof. By the Weak Factorization Theorem of birational maps (see [2]), we are able
to decompose a proper birational map as a sequence of blowing-ups and blowing-downs,
then we apply the result above.

Since we know that the GSCA is true for smooth varieties of dimension less than or
equal to 4, we have the following result.

Corollary 3. The GSCA is invariant under birational equivalence of smooth vari-
eties of dimension less than 7.

For a projective manifold X, let Nj,n(X) := dim NjHn(X;Q).

Proposition 9. If BlY X is the blow-up of a smooth projective variety X at a smooth
center Y of codimension r+1 and the generalized Hodge conjecture is true for Y , then the
generalized Hodge conjecture on BlY X is equivalent to the generalized Hodge conjecture
on X.

Proof. We have Nj,n(BlY X) = Nj,n(X) +
∑r

i=1 Nj−i,n−2i(Y ) and Fj,n(BlY X) =
Fj,n(X) +

∑r
i=1 Fj−i,n−2i(Y ). By the assumption that the generalized Hodge conjecture

is true for Y , we have Nj,n(BlY X)− Fj,n(BlY X) = Nj,n(X)− Fj,n(X). This completes
the proof.

Again by using the Weak Factorization Theorem of birational maps, we get the fol-
lowing result. We do not know who is the first to have this result, but a proof without
using the Weak Factorization Theorem can be found in [1].

Corollary 4. If the Hodge conjecture is true for dimension less than m − 1, then
the Hodge conjecture is a birational statement for smooth varieties of dimension m. In
particular it is a birational statement for dimension less than 6.

Since two K-equivalent varieties have the same image in N , any group homomorphism
defined previously gives the same value at them. Then the following result is an immediate
consequence.

Theorem 7. The Friedlander-Mazur conjecture, the Friedlander-Lawson conjecture,
the Grothendieck standard conjecture and the generalized Hodge conjecture are K-statements.

For the case of generalized Hodge conjecture, this result was proved by Arapura and
Kang in [3]. By a result of Wang (see [27], Corollary 1.10), two birational smooth minimal
models are K-equivalent, hence in particular we have the following result.

Corollary 5. If any conjecture in Theorem 7 is true for a smooth minimal model,
then it is true for any smooth minimal model which is birational to it.

4. Stringy functions

Definition 11. A motivic invariant is a group homomorphism from N [( 1
Li−1 )i≥1] to

Z.
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We have seen several motivic invariants: Tj,n, Gj,n, Fj,n, hp,q and hp,q. One of the most
important properties of these invariants is that they satisfy φj,n(X×Lk) = φj−ak,n−bk(X)
for some numbers a, b. This enables us to associate a stringy φ-function to φ. Before we
consider the general case, let us exemplify this by Batyrev’s stringy E-function.

Example 1. Let us recall some definitions from [4]. For a variety X of dimension m,
let

ep,q(X) :=
∑

0≤k≤2m

(−1)khp,q(Hk
c (X;C))

where hp,q(Hk
c (X;C)) is the (p, q)-Deligne-Hodge number of the cohomology groups with

compact support of X. For a projective manifold, the number ep,q is same as the Hodge
number (−1)p+qhp,q. The E-polynomial E(X; u, v) ∈ Z[u, v] is defined to be

E(X; u, v) :=
∑
p,q

ep,q(X)upvq.

This is a finite sum and E(X × Lk; u, v) = (uv)kE(X;u, v). Therefore by defining
E(L−1; u, v) = (uv)−1, we are able to extend E to a group homomorphism E : N [( 1

Li−1 )i≥1] →
Z[[u, v, (uv)−1]].

If X is a normal irreducible algebraic variety with at worst log-terminal singularities,
and ρ : Y → X is a resolution of singularities such that the relative canonical divisor
D =

∑r
i=1 aiDi has simple normal crossings. Then the stringy E-function of X is defined

to be

Est(X; u, v) :=
∑

J⊂I

E(D0
J ; u, v)

∏

j∈J

uv − 1
(uv)aj+1 − 1

where I = {1, ..., r}. If X is a projective variety with at worst Gorenstein canonical
singularities and Est(X; u, v) =

∑
p,q ap,qu

pvq is a polynomial, we define the stringy
Hodge numbers of X to be

hp,q
st (X) := (−1)p+qap,q.

Now we come to the general case.

Definition 12. We say that a family of motivic invariants φ = {φj,n|j, n ∈ Z} is of
type (a, b) ∈ Z × Z if φj,n(X × Lk) = φj−ak,n−bk(X) for any j, n and any varieties X.
And we say that φ is bounded if φj,n(X) vanishes for |j|, |n| large enough, depending on
X.

For example T = {Tj,n|j, n ∈ Z} is of type (1, 2) and h = {hp,q|p, q ∈ Z} is of type
(1, 1) where Tj,n, hp,q are defined to be zero if any j, n, p, q is negative.

Definition 13. Suppose that φ = {φj,n|j, n ∈ Z} is a family of bounded motivic
invariants of type (a, b), then define

φ(X;u, v) :=
∑

j,n

φj,n(X)ujvn

and

φ(L−1; u, v) := (uavb)−1,
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we get a group homomorphism

φ : N [(
1

Li − 1
)i≥1] → Z[[u, v, (uavb)−1]].

If X is a normal irreducible algebraic variety with at worst log-terminal singularities,
and ρ : Y → X is a resolution of singularities such that the relative canonical divisor
D =

∑r
i=1 aiDi has simple normal crossings. Then the stringy φ-function associated to

φ is defined to be

φst(X; u, v) :=
∑

J⊂I

φ(D0
J ;u, v)

∏

j∈J

uavb − 1
(uavb)aj+1 − 1

where I = {1, ..., r}. If X is projective with at worst canonical singularities and φst(X; u, v) =∑
p,q ap,qu

pvq is a polynomial, we define the (p, q)-stringy φ-numbers of X to be

φst
p,q(X) := (−1)p+qap,q

Proposition 10. The stringy φ-numbers of X defined above are independent of res-
olution of singularities.

Proof. Let ρ1 : X1 → X, ρ2 : X2 → X be two resolution of singularities. Take another
resolution of singularities α : Y → X which dominates ρ1, ρ2, i.e., we have the following
commutative diagram:

Y
α1

~~||
||

||
||

α

²²

α2

ÃÃB
BB

BB
BB

B

X1

ρ1 ÃÃB
BB

BB
BB

B X2

ρ2~~||
||

||
||

X

Let KX1 = ρ∗1KX +D1,KX2 = ρ∗2KX +D2 and D = KY −α∗KX . Then α∗1D1 +KY |X1 =
α∗1D1+KY −α∗1KX1 = KY −α∗KX = α∗2D2+KY |X2 . Therefore by the change of variables
formula,
∫

L(X1)

L−ordtD1 =
∫

L(Y )

L−ordt(α
∗
1D1+KY |X1 ) =

∫

L(Y )

L−ordt(α
∗
2D2+KY |X2 ) =

∫

L(X2)

L−ordtD2

Taking φst on both sides, this shows that φst is independent of resolution of singularities.

With all these definitions, we are able to ask the stringy version of some conjectures.

Conjecture 1. Suppose that X is a m-dimensional normal irreducible projective va-
riety with at worst canonical singularities. Let T st

p , T st
p,q, G

st
p,q, F

st
p,q be the (p, q)-stringy

numbers associated to the families T = {Tp,2p|p ∈ Z}, T ′ = {Tp,q|p, q ∈ Z}, G =
{Gp,q|p, q ∈ Z}, F = {Fp,q|p, q ∈ Z} respectively, and assume that all these numbers
of X are defined.

(i) (Stringy GSCA) Is T st
p,2p(X) = T st

m−p,2(m−p)(X)?
(ii) (Stringy morphic conjecture) Is T st

p,q(X) = T st
m−p,2m−q(X)?

(iii) (Stringy generalized Hodge conjecture) Is Gst
p,q(X) = F st

p,q(X)?
(iv) (Stringy Hodge conjecture) Is T st

p,2p(X) = F st
p,2p(X)?
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By [4, Theorem 3.7], for a projective Q-Gorenstein variety X of dimension d with at
worst log-terminal singularities, Batyrev’s stringy E-function satisfies the equality:

Est(X; u, v) = (uv)dEst(X;u−1, v−1)

this follows basically from the strong Lefschetz theorem. Similar calculation shows that
Gst(X; u, v) = (uv2)dGst(X; u−1, v−1) and

F st(X;u, v) = (uv2)dF st(X;u−1, v−1)

which follows from the fact that the Lefschetz isomorphism is an isomorphism of Hodge
structures. These facts are some special cases of the following conjecture.

Conjecture 2. (Generalized stringy GSCA) Let X be as above. If φ is a family of
bounded motivic invariants of type (a, b), then φst(X;u, v) = (uavb)dφst(X; u−1, v−1).

If X is smooth projective and φ = T = {Tp,2p|p ∈ Z}, this is just the GSCA.
We verify this conjecture for normal projective Q-Gorenstein toric varieties.

Theorem 8. Suppose that X is a normal projective Q-Gorenstein toric varieties, then
the generalized stringy GSCA holds.

Proof. Let d be the dimension of X and φ = {φi,j} be a family of bounded mo-
tivic invariants of type (a, b). By [4, Theorem 3.7], the stringy E-function of X sat-
isfies the following relation: Est(X; u, v) = (uv)dEst(X; u−1, v−1). And by [4, Theo-
rem 4.3], Est(X; u, v) =

∑
σ∈∑ ∑

n∈σ0∩N(uv)−ϕ(n) where X is defined by the fan
∑

on the lattice N, and ϕ is a supporting function of X. Comparing the equality of the
E-function, we get (−1)d

∑
σ∈∑ ∑

n∈σ0∩N (uv)ϕ(n) =
∑

σ∈∑ ∑
n∈σ0∩N(uv)−ϕ(n). Now

follow exactly the same calculation as in [4, Theorem 4.3], the stringy function satis-
fies the equality: φst(X; u, v) = (uavb − 1)d

∑
σ∈∑ ∑

n∈σ0∩N(uv)−ϕ(n) = (−1)d(uavb −
1)d

∑
σ∈∑ ∑

n∈σ0∩N(uv)ϕ(n) = (uavb)dφst(X;u−1, v−1).

Proposition 11. For a toric variety XN,Σ of dimension m,
(i)

hp,q(XN,Σ) =

{∑m
k=0 dm−k(−1)k−p

(
k

k−p

)
, if p = q and 0 ≤ p ≤ m,

0, otherwise.

where dk is the number of cones of dimension k in Σ.
(ii) the number ep,q(XN,Σ) is equal to hp,q(XN,Σ).
(iii) Tp,2p(XN,Σ) = Tp,k(XN,σ) = Np,k(XN,Σ) = Fp,k(XN,Σ) = hp,p(XN,Σ) for k ≥ 2p.

In particular, the Friedlander-Lawson conjecture, the Friedlander-Mazur conjec-
ture, the generalized Hodge conjecture, the Grothendieck standard conjecture are
true for smooth toric varieties.

Proof.
(i) The action of the torus T ∼ (C∗)m on XN,Σ induces a stratification of XN,Σ into

orbits of the torus action Oτ
∼= (C∗)m−dimτ , one for each cone τ ∈ Σ. Then we

have

[XN,Σ] =
m∑

k=0

dm−k[L− 1]k
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in K0(SPV ) . Since [L− 1]k =
∑k

i=0

(
k
i

)
(−1)kLk−i, we have

hp,q([L− 1]k) =

{(
k

k−p

)
(−1)k−p, if p = q and 0 ≤ p ≤ k

0, otherwise

and substitute into the formula

hp,q([XN,Σ]) =
m∑

k=0

dm−khp,q([L− 1]k),

then we get the result.
(ii) It was calculated by Batyrev (see [4]) that E(XN,Σ;u, v) =

∑m
k=0 dm−k(uv −

1)k. Then we make a simple comparison to the coefficients of E(XN,σ) with the
corresponding hp,q(XN,Σ).

(iii) We note that Tp,2p(Lk) = hp,p(Lk) for any p, k, this implies the equality of
Tp,2p(XN,Σ) = hp,p(XN,Σ). The number hp,q(XN,Σ) = 0 if p 6= q, this implies that
Tp,2p(XN,Σ) = Tp,k(XN,σ) = Np,k(XN,Σ) = Fp,k(XN,Σ) = hp,p(XN,Σ) for k ≥ 2p.
For smooth toric varieties, Tp,2p(XN,Σ) = hp,p(XN,Σ) means that the homology
group H2p(XN,Σ;Q) is generated by algebraic cycles hence all the conjectures are
trivially true.

In their paper [6], Batyrev and Borisov proved the mirror duality conjecture for stringy
Hodge numbers of Calabi-Yau complete intersections in Gorenstein Fano toric varieties,
i.e., for a mirror pair (V, W ) of such varieties of dimension n, their stringy E-functions
satisfies the relation

Est(V ;u, v) = (−u)nEst(W ;u−1, v)

which in particular gives the rotation of the Hodge diamond: hp,q(V ) = hn−p,q(W ).
We wonder if similar relation is true for the stringy T -function associated to the family
T = {Tj,n|j, n ∈ Z}. We form our conjecture below.

Conjecture 3. If (V,W ) is a mirror pair from Batyrev-Borisov’s construction, then

T st(V ; u, v) = (−u)nT st(W ; u−1, v).

5. Lawson-Deligne-Hodge polynomials

5·1. Varieties with finitely generated Lawson homology groups

Let V arFL be the collection of all quasi-projective varieties X such that the dimension
of LrHn(X;Q) is finite for all nonnegative integers n, r. Let X,Y ∈ V arFL and Y be a
locally closed subvariety of X. From the localization sequence of Lawson homology,

· · · → LrHn+1(X;Q) → LrHn+1(X − Y ;Q) → LrHn(Y ;Q) → LrHn(X;Q) → · · ·
we see that X − Y is also in V arFL. Hence we may form the Grothendieck group
K0(V arFL) of V arFL. The ring L = Z{Li|i ∈ Z≥0} acts on K0(V arFL) and we
consider K0(V arFL) as a L -module under this action. Let S = {Li}i≥0 ⊂ L and
FLN = S−1K0(V arFL) be the localization of K0(V arFL) with respect to the multi-
plicative set S. Let F kFLN be the subgroup of FLN generated by elements of the form
[X]
Li where i− dimX ≥ k. Then we have a decreasing filtration

· · · ⊃ F kFLN ⊃ F k+1FLN ⊃ · · ·
of FLN .
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Definition 14. We definite the FL-Kontsevich group to be the completion

FLN̂ := lim
←

N
F kFLN

with respect to the filtration defined above.

Let X be a smooth projective variety of dimension n and D an effective divisor on X

with simple normal crossings. We use the notation D0
J as defined in 4.

Definition 15. We say that a subset A ⊂ L(X) is FL-cylindrical if A = π−1
k (C) for

some C ⊂ Lk(X), C ∈ V arFL. For such set A, define

µ̃(A) := [C]L−kn.

Let C be the collection of all countable disjoint unions of FL-cylindrical sets
∐

i∈NAi

for which µ̃(Ai) → 0 in FLN̂ . An element in C is called a FL-measurable set. We definite
the FL-motivic measure to be µ : C → FLN̂ by

µ(
∐

i∈N
Ai) =

∑

i∈N
µ̃(Ai)

in FLN̂ . A function α : L(X) → Z ∪ {∞} is FL-integrable if α−1(n) is FL-measurable
for each n ∈ Z ∪ {∞}.

Proposition 12. Let X be a smooth projective variety of dimension n and D =∑r
i=1 aiDi be an effective divisor with simple normal crossings on X. If all D0

J are in
V arFL, then L−ordtD is FL-integrable, and µ((L−ordtD)−1(∞)) = 0. We define the
motivic integral of the pair (X, D) to be

∫

L(X)

L−ordtDdµ :=
∑

s∈Z≥0

µ((L−ordtD)−1(s))

in FLN̂ .

This calculation is same as in the proof of [8, Lemma 2.13] and [8, Theorem 2.15].
The following result gives a simpler way to see if D0

J ∈ V arFL.

Proposition 13. D0
J ∈ V arFL for all J ⊂ {1, ..., r} if and only if DJ ∈ V arFL for

all J ⊂ {1, ..., r}.

Proof. Let R = {1, ..., r}. We prove by induction on the length of subsets of R. DR =
D0

R ∈ V arFL. We assume that for J ⊂ R with |J | > k, DJ ∈ V arFL. If |J | = k, we
have

D0
J = DJ − ∪i/∈JDi = DJ − ∪i/∈JDi ∩DJ = DJ −

⋃

I⊃J
|I|=k+1

DI

Note that for two algebraic varieties A,B ∈ V arFL, if A ∩ B ∈ V arFL, then A ∪ B ∈
V arFL. Hence it suffices to prove that

⋃
I⊃J

|I|=k+1
DI ∈ V arFL. This follows once we claim

that for any subsets I1, ..., It of R where each |Ii| > k, the union ∪t
i=1DIi ∈ V arFL. We

use induction again to prove this statement. When t = 1, DI1 ∈ V arFL is by the
hypothesis of the first induction. We assume that this statement is true for t = n. Then
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for t = n + 1, we have

(
n⋃

i=1

DIi) ∩DIn+1 =
n⋃

i=1

(DIi ∩DIn+1) =
n⋃

i=1

DIi∪In+1 ∈ V arFL

By induction hypothesis, ∪n
i=1DIi

, DIn+1 are in V arFL, hence ∪n+1
i=1 DIi

∈ V arFL. For
another direction, a similar argument works.

We recall a definition from [9].

Definition 16. Let X, Y and F be algebraic varieties, and A ⊂ X, B ⊂ Y be con-
structible subsets of X and Y respectively. We say that a map p : A → B is a piecewise
trivial fibration with fiber F , if there exists a finite partition of B in subsets S which are
locally closed in Y such that p−1(S) is locally closed in X and isomorphic, as a variety,
to S × F , with p corresponding under the isomorphism to the projection S × F → S.

By the homotopy property of Lawson homology, we have LtHn(X×Ck) = Lt−kHn−2k(X)
which implies the following Lemma.

Lemma 1. For a trivial bundle X × Ck over X, X × Ck ∈ V arFL if and only X ∈
V arFL.

Proposition 14. Let X,Y and F be algebraic varieties, and A ⊂ X,B ⊂ Y be con-
structible subsets of X and Y respectively. If p : A → B is a piecewise trivial fibration
with fibre Ck, then A ∈ V arFL if and only if B ∈ V arFL.

Proof. Consider B = B1

∐
B2. Then A = p−1(B1)

∐
p−1(B2) where p−1(B1) ∼= B1 ×

Ck, p−1(B2) ∼= B2 × Ck. From the localization sequences

· · · // LpHn(p−1(B1)) //

∼=
²²

LpHn(A) //

²²

LpHn(p−1(B2)) //

∼=
²²

· · ·

· · · // Lp−kHn−2k(B1) // Lp−kHn−2k(B) // Lp−kHn−2k(B2) // · · ·

we see that LpHn(A) ∼= Lp−kHn−2k(B). Hence A ∈ V arFL if and only if B ∈ V arFL.
The general case follows by an induction on the number of components of the partition
of B.

Theorem 9. (The change of variables formula) Suppose that X,Y are smooth pro-
jective varieties of dimension d and h : Y → X is a birational morphism with effective
relative canonical divisor D =

∑r
j=1 ajDj which has simple normal crossings. Assume

that X, Y,D0
J are in V arFL for any J ⊂ {1, ..., r}, then

[X] =
∫

L(Y )

L−ordtDdµ

Proof. Let Ck = (L−ordtD)−1(k) for k ∈ Z.
We claim that µ(h∞(Ck)) ∈ FLN̂ and

µ(Ck) = µ(h∞(Ck)) · Lk.
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We have a commutative diagram:

Ck ⊂ L(Y )
h∞ //

πt

²²

h∞(Ck) ⊂ L(X)

πt

²²
B′

t ⊂ Lt(Y )
ht // Bt ⊂ Lt(X)

where B′
t = πt(Ck), Bt = πt(h∞(Ck)) are constructible sets. By the calculation in Propo-

sition 12, we see that

B′
t
∼=

∐

J⊂{1,...,r}

∐

(m1,...,mr)∈MJ,k

D0
J · Ltn−∑

j∈J mj · (L− 1)|J|

and by a local calculation in [9], Lemma 3.4(b), the restriction of ht to B′
t is a piecewise

trivial fibration with fiber Ck over Bt, and from this calculation we see that

Bt
∼=

∐

J⊂{1,...,r}

∐

(m1,...,mr)∈MJ,k

D0
J · Ltn−∑

j∈J mj−k · (L− 1)|J|

hence [Bt] ∈ FLN and [B′
t] = [Bt]Lk. Therefore h∞(Ck) = π−1

t (Bt) is FL-measurable
and µ(Ck) = µ(h∞(Ck)) · Lk.

Since

L(X) =
∐

k∈Z≥0∪∞
h∞(Ck),

we have [X] =
∑

k∈Z≥0
µ(h∞(Ck)) =

∑
k∈Z≥0

µ(Ck)L−k =
∫
L(Y )

L−ordtDdµ.

Definition 17. Two smooth projective varieties X1, X2 ∈ V arFL are said to be
FLK-equivalent if there exists a smooth projective variety Y ∈ V arFL and two bira-
tional morphisms ρ1 : Y → X1, ρ2 : Y → X2 such that ρ∗1KX1 = ρ∗2KX2 and the effective
divisor D = KY − ρ∗1KX1 =

∑r
i=1 aiDi has simple normal crossings and D0

J ∈ V arFL

for any J ⊂ {1, ..., r}.
Directly from the change of variables formula, we get the following result.

Corollary 6. If two smooth projective varieties X1, X2 ∈ V arFL are FLK-equivalent,
then [X1] = [X2] in FLN̂ .

We recall that each Lawson homology group LrHn(X;Q) has an inductive limit of
mixed Hodge structure (see [17]). And by a result of Walker (see [26]), the localization
sequence of Lawson homology groups is a sequence of inductive limit of mixed Hodge
structures. Since we are considering finite Lawson homology groups, an inductive limit
of mixed Hodge structure is just a mixed Hodge structure.

Fix n ∈ Z≥0. For X ∈ V arFL, let hp,q(LnHi(X;C)) be the dimension of the (p, q)-
type Hodge component in LnHi(X;C). We define the Lawson-Deligne-Hodge polynomial
of X ∈ V arFL to be

FnE(X) :=
∑
p,q

FnEp,q(X)upvq

where

FnEp,q(X) :=
∑

i≥2n

(−1)ihp,q(LnHi(X;C))
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And we define the FrL-Euler characteristic of X to be

FrL(X) =
∑

k

(−1)kdimLrHk(X;Q)

From the localization sequence of Lawson homology, it is not difficult to see that FrL,FnE

induces a group homomorphism from FLN , the image of FLN in FLN̂ , to Z and Z[u, v]
respectively.

Corollary 7. Two FLK-equivalent smooth projective varieties have the same Lawson-
Deligne-Hodge polynomial and the FrL-Euler characteristic for any r ≥ 0.

5·2. Higher Chow groups

In the previous section, we use only the properties of localization sequences of Lawson
homology, the homotopy property and the projective bundle theorem. Since there are
analogous theorems for higher Chow groups, we can play the same game for higher Chow
groups. Let V arCH be the collection of all quasi-projective X whose higher Chow groups
CHr(X, n) are all finitely generated for any r, n. Then from the localization sequence of
higher Chow groups:

· · · → CHq−d(Z, p) → CHq(X, p) → CHq(U, p) → CHq−d(Z, p− 1) → · · ·
where Z ⊂ X is a closed subvariety of codimension d and U is its complement. Hence if
X, Z are in V arCH, then U is in V arCH. Then we can form the Grothendieck group
K0(V arCH) of V arCH. Similar to what we have done for Lawson homology, we have
some analogous results. We form CHN , CHN̂ and CHN as their analogs in Lawson
homology.

Definition 18. Two smooth projective varieties X1, X2 ∈ V arCH are said to be
CHK-equivalent if there exists a smooth projective variety Y ∈ V arCH and two bira-
tional morphisms ρ1 : Y → X1, ρ2 : Y → X2 such that ρ∗1KX1 = ρ∗2KX2 and the effective
canonical relative divisor D = KY − ρ∗1KX1 =

∑r
i=1 aiDi has simple normal crossings

and D0
J ∈ V arCH for any J ⊂ {1, ..., r}.

Theorem 10. Suppose that X1, X2 ∈ V arCH are two smooth projective varieties
which are CHK-equivalent. Then [X1] = [X2] in CHN .

6. Projective bundle theorem

In [12], Friedlander proved a projective bundle theorem in morphic cohomology for
smooth normal quasi-projective varieties. In this section we prove a projective bundle
theorem of trivial bundles for all normal quasi-projective varieties without assuming
smoothness. Since we do not have a Mayer-Vietoris sequence in morphic cohomology, the
proof is much more complicated than its counterpart in Lawson homology. We are not
sure if our approach may work for general bundles.

Definition 19. Suppose that X is a normal quasi-projective variety and W,Y are pro-
jective varieties. Let Zk(W )(Y ) be the subgroup of Zk+m(W × Y ) consisting of algebraic
cycles equidimensional over Y where m is the dimension of Y and k is the dimension
of a fibre. The Chow variety Cr,d(W × Y ) of r-dimensional algebraic cycles of degree d

of W × Y is a projective variety and M or(X, Cr,d(W × Y )), the collection of all alge-
braic morphisms from X to Cr,d(W × Y ), is enrolled with the topology of convergence
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with bounded degree (see [16]). We define M or(X, Cr,d(W )(Y )) to be the subspace of
M or(X, Cr,d(W × Y )) consisting of morphisms f such that f(x) ∈ Cr,d(W )(Y ) for all
x ∈ X where Cr,d(W )(Y ) is the collection of all algebraic r-cycles of degree d of Y ×W

equidimensional over Y . Let

M or(X, Cr(W )(Y )) :=
∐

d≥0

M or(X, Cr,d(W )(Y ))

which is a topological monoid and let

M or(X, Zr(W )(Y )) := [M or(X, Cr(W )(Y ))]+

be its naive group completion. The inclusion map i : M or(X, Cr(W )(Y )) ↪→ M or(X, Cr+m(W×
Y )) induces a continuous homomorphism

D ′ : M or(X, Zk(W )(Y )) → M or(X,Zk+m(W × Y ))

Friedlander and Lawson proved a moving lemma in [15] which has numerous good
properties including moving algebraic cycles algebraically. Their moving lemma has been
used by them to prove a duality theorem between Lawson homology and morphic co-
homology, and by Friedlander and Voevodsky to prove a duality theorem for motivic
cohomology and homology. Here we need the algebraicity of the maps in their moving
lemma when we consider algebraic cycles with bounded degree.

Lemma 2. Let Y be a projective variety. From the Friedlander-Lawson moving lemma
(see [15]), we have a map Ψ̃t = (Ψ1,t, Ψ2,t) : Cr(Y ) → Cr(Y )× Cr(Y ) for t ∈ I where I

is the unit interval [0, 1] and Cr(Y ) =
∐

d≥0 Cr,d(Y ) is the Chow monoid of r-cycles of
Y . The restriction of the maps

Ψ1,t, Ψ2,t : Cr,d(Y ) → Cr,d′(Y )

are algebraic morphisms.

Theorem 11. Suppose that X is a normal quasi-projective variety and W,Y are
smooth projective varieties. Then the map

D ′ : M or(X, Zr(W )(Y )) → M or(X,Zr+m(W × Y ))

is a homotopy equivalence.

Proof. Let Ψ̃t = (Ψ1,t, Ψ2,t) be the map from Friedlander-Lawson moving lemma
where t ∈ I. By abuse of notation, we define a map Ψt : M or(X,Zr(W )(Y )) →
M or(X, Zr(W )(Y )) by

Ψt(f) := Ψ1,t(f)−Ψ2,t(f)

and Ψi,t(f)(x) := Ψi,t(f(x)) for x ∈ X, i = 1, 2.
Let

Kd :=
∐

d1+d2≤d

M or(X, Cr,d1(W × Y ))×M or(X, Cr,d2(W × Y ))/ ∼,

K ′
d :=

∐

d1+d2≤d

M or(X, Cr,d1(W )(Y ))×M or(X, Cr,d2(W )(Y ))/ ∼

where (f1, g1) ∼ (f2, g2) if and only if f1 + g2 = f2 + g1.
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The topology of M or(X, Zr+m(W × Y )) is same as the weak topology defined by the
filtration

K0 ⊂ K1 ⊂ K2 ⊂ · · · = M or(X, Zr+m(W × Y ))

and the topology of M or(X, Zr(W )(Y )) is same as the weak topology defined by the
filtration

K ′
0 ⊂ K ′

1 ⊂ K ′
2 ⊂ · · · = M or(X,Zr+m(W )(Y ))

From [24, Lemma 2.3], these two filtrations are locally compact. Let φe,t, φ
′
e,t be the re-

striction of Ψ1,t,Ψ2,t to Ke and K ′
e respectively. Let λe : Ke×{1} → M or(X,Zr(W )(X))

be φe,1. Then we have the following diagrams:

K ′
e × I

φ′e //

D′×Id

²²

M or(X, Zr(W )(Y ))

D′

²²
Ke × I

φe // M or(X,Zr+m(W × Y ))

K ′
e × {1} ↪→ K ′

e × I

D′

²²

φ′e // M or(X,Zr(W )(Y ))

D′

²²
Ke × {1} ↪→ Ke × I

λe

44iiiiiiiiiiiiiiii
φe // M or(X, Zr+m(W × Y ))

Then by [16, Lemma 5.2], D ′ is a weak homotopy equivalence. Since M or(X,Zr(W )(Y ))
and M or(X,Zr+m(W × Y )) have the homotopy type of a CW-complex, by Whitehead
theorem, D ′ is a homotopy equivalence.

Proposition 15. Suppose that X is a normal quasi-projective variety and W,Y are
projective varieties. Then M or(X × Y, Zr(W )) is isomorphic as a topological group to
M or(X, Zr(W )(Y )).

Proof. There is a natural bijection

ψ : M or(X × Y, Cr(W )) → M or(X, Cr(W )(Y ))

defined by ψ(f)(x)(y) := f(x, y). These two spaces are obviously homeomorphic under
the topology of convergence with bounded degree and ψ is monoid isomorphism. Hence
we complete the proof.

Consider the topology of convergence with bounded degree, we have the following fact.

Lemma 3. For a normal quasi-projective variety X and a projective variety Y , let
M or(X, Zr1(Y )×· · ·×Zrk

(Y )) be the topological naive group completion of M or(X, Cr1(Y )×
Cr2(Y )× · · · × Crk

(Y )). Then there is an isomorphism of topological groups:

M or(X, Zr1(Y )×Zr2(Y )×· · ·×Zrk
(Y )) ∼= M or(X,Zr1(Y ))×M or(X, Zr2(Y ))×· · ·×M or(X, Zrk

(Y ))

Definition 20. For normal quasi-projective varieties X, U , if U = Y −Z where Y, Z

are projective varieties and Z is a subvariety of Y , then we define

M or(X, Zi(U)) :=
M or(X, Zi(Y ))
M or(X, Zi(Z))



Motivic integration and projective bundle theorem in morphic cohomology23

Proposition 16. (localization sequence) For X, U, Y, Z as above. There is a localiza-
tion sequence:

· · · → πkM or(X,Zi(Z)) → πkM or(X, Zi(Y )) → πkM or(X, Zi(U)) → πk−1M or(X,Zi(Z)) → · · ·
Definition 21. For a normal quasi-projective variety X and a projective variety Y ,

we define

M or(X, Zt(Y )) :=
M or(X, Z0(Pt)(Y ))

M or(X,Z0(Pt−1)(Y ))

with the quotient topology.

Theorem 12. For X a normal quasi-projective variety and Y a smooth projective
variety,

(i) M or(X, Zr(Y × At)) is homotopy equivalent to M or(X,Zr−t(Y )) if r ≥ t.
(ii) (Duality) M or(X, Zt(Y )) is homotopy equivalent to M or(X, Zn−t(Y )).

Proof.
(i) By [12, Proposition 3.7], the suspension Σ/∗ : M or(X,Zr(Y )) → M or(X, Zr+1(Σ/Y ))

is a homotopy equivalence. Let L be the restriction of the hyperplane line bundle
O(1) of PN to Y and observe that L = Σ/Y − {∞}. Hence M or(X,Zr(Y )) is ho-
motopy equivalent to M or(X,Zr+1(L)). Now the result follows from an induction
on dimension of Y and the localization sequence.

(ii) Consider the following commutative diagram:

M or(X, Z0(Pt−1)(Y )) //

D

²²

M or(X, Z0(Pt)(Y )) //

D

²²

M or(X, Zt(Y ))

²²
M or(X, Zn(Y × Pn−1)) // M or(X, Zn(Y × Pt)) // M or(X, Zn(Y × At))

where Zt(Y ) = Z0(Pt)(Y )
Z0(Pt−1)(Y ) . From the induced long exact sequence of homotopy

groups and the result above, we see that M or(X,Zt(Y )) is homotopy equivalent
to M or(X,Zn(Y × At)) ∼= M or(X, Zn−t(Y )).

Theorem 13. For a projective variety Y , there is a splitting

ξ : M or(X, Z0(Pt)(Y )) → M or(X, Zt(Y ))×M or(X, Zt−1(Y ))× · · · ×M or(X, Z0(Y ))

which is a homotopy equivalence.

Proof. By the construction in the proof of the splitting theorem of Lawson and Fried-
lander ([14, Theorem 2.10]), there is a projection map

p : Z0(Pt)(Y ) → Z0(Pt)(Y )× Z0(Pt−1)(Y )× · · · × Z0(P0)(Y )

Write p = (pt, pt−1, ..., p0) and for f ∈ M or(X,Z0(Pt)(Y )), define

pi(f)(x) := pi(f(x))

Then we get a map

ξt : M or(X,Z0(Pt)(Y )) → M or(X, Zt(Y ))×M or(X,Zt−1(Y ))×· · ·×M or(X, Z0(Y ))

defined by

ξt(f) = (pt(f)+M or(X, Z0(Pt−1)(Y )), pt−1(f)+M or(X, Z0(Pt−2)(Y )), ..., p0(f)+M or(X, Z0(P0)(Y ))
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We are going to show this map is a homotopy equivalence. We prove by induction on
t. When t = 0, this follows from definition. Assume that we have the splitting for t− 1.
Consider the following commutative diagram

M or(X, Z0(Pt−1)(Y ))

²²

ξt−1
// M or(X,Zt−1(Y ))× · · · ×M or(X, Z0(Y ))

²²
M or(X, Z0(Pt)(Y ))

²²

ξt

// M or(X,Zt(Y ))×M or(X, Zt−1(Y ))× · · · ×M or(X,Z0(Y ))

²²
M or(X, Zt(Y )) = // M or(X, Zt(Y ))

Follow from the long exact sequences of homotopy groups induced from the vertical rows,
we see that ξt is a weak homotopy equivalence. Since all spaces have the homotopy type
of a CW-complex, by the Whitehead theorem, ξt is a homotopy equivalence.

Combining the splitting and the duality theorem, we get the following splitting.

Corollary 8. For a normal quasi-projective variety X and Y a smooth projective of
dimension n, if t ≤ n, there is a splitting

ξ′ : M or(X, Z0(Pt)(Y )) ∼= M or(X,Zn−t(Y ))×M or(X, Zn−t+1(Y ))×· · ·×M or(X,Zn(Y ))

which is a homotopy equivalence.

Theorem 14. For a normal quasi-projective variety X, there is a homotopy equiva-
lence η : Zt(X × Pe) ∼= ⊕t

i=0 Zt−i(X) for e ≥ t.

Proof. By Lawson suspension theorem (see [12, Proposition 3.7]), there is a homo-
topy equivalent Σ/∗ : M or(X, Ze−t+i(Pe)) ∼= M or(X,Z0(Pt−i)), We have a homotopy
equivalence

η : M or(X×Pe, Z0(Pt))
ψ−→ M or(X, Z0(Pt)(Pe))

ξ−→
t⊕

i=0

M or(X, Zt−i(Pe)) D−→
t⊕

i=0

M or(X, Z0(Pt−i))

Consider the following commutative diagram:

M or(X × Pe, Z0(Pt−1))

η

²²

// M or(X × Pe, Z0(Pt))

η

²²

// Zt(X × Pe)

η

²²⊕t−1
i=0 M or(X, Z0(Pt−1−i)) // ⊕t

i=0 M or(X,Z0(Pt−i)) // ⊕t
i=0 Zt−i(X)

From the long exact sequences of homotopy groups induced by the horizontal rows, we
see that η is a weak homotopy equivalence. But all these spaces have the homotopy type
of CW-complexes, hence η is a homotopy equivalence.

The morphic cohomology groups are known only for very few cases of smooth vari-
eties, and almost nothing about singular varieties. As an application of above result, we
calculate the morphic cohomology groups of two singular surfaces.

Example 2. One of the main tools we use is [14, Theorem 9.1] which says that there
is a fibration Z1(X) → Pic(X) with homotopy fibre K(Z, 2) for projective variety X.
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(i) Let C1 : y2Z = x2(x + z) be the curve in P2 which has a node at [0 : 0 : 1]. The
Picard group of C1 is Pic(C1) ∼= C∗ × Z. Therefore we know that L1Hk(C1 × P1)
is 0 for k > 2. We list other cases in the following table.

k πkPic(C1) πkZ1(C1) πkZ0(C1) L1Hk(C1 × P1)

0 Z Z Z Z

1 Z Z 0 Z

2 0 Z 0 Z⊕ Z
(ii) Let C2 : y2z = x3 be the curve in P2 which has a cusp at (0 : 0 : 1). The Picard

group of C2 is Pic(C2) ∼= C × Z. Hence L1Hk(C2 × P1) is 0 for k > 2. We list
other cases in the following table.

k πkPic(C2) πkZ1(C2) πkZ0(C2) L1Hk(C2 × P1)

0 Z Z Z Z

1 0 0 0 0

2 0 Z 0 Z⊕ Z
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