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Abstract

By comparing Deligne complex and Aeppli-Bott-Chern complex, we construct a differential
cohomology H*(X,*,*) that plays the role of Harvey-Lawson spark group H*(X,x), and a
cohomology H 5 (X; Z(*,*)) that plays the role of Deligne cohomology Hj (X;Z(x)) for every
complex manifold X. They fit in the short exact sequence

=5 )
0 — HELL(X5 Z(p, q) — H*(X,p,q) = Z; (X, p.q) = 0

and H *(X,e,e) possess ring structure and refined Chern classes, acted by the complex conju-
gation, and if some primitive cohomology groups of X vanish, there is a Lefschetz isomorphism.
Furthermore, the ring structure of HY 5~ (X;Z(e,)) inherited from H*(X,e,e) is compatible
with the one of the analytic Deligne cohomology H*(X;Z(e)). We compute ﬁ*(X, *, %) for X
the Iwasawa manifold and its small deformations and get a refinement of the classification given
by Nakamura.

1 Introduction

The theory of differential characters was founded by Cheeger and Simons ([8, 2, 3]) around 1970.
It obtains intensive development in the last 20 years. Physicists realize that differential charac-
ters can be used in the mathematical formulation of generalized abelian gauge theories([9]), and
mathematicians found that they appear naturally in many mathematical problems ([13, 14]).
The interaction between physics and mathematics stimulates lot of development in both dis-
ciplines and the theory of differential characters is extended to various generalized differential
cohomologies. The article [6] of Bunke and Schick gives us a nice overview about differential
cohomologies, including differential K-theory, and their relation with physics, especially with
string theory.

There are various constructions of differential cohomologies ([4, 5, 13]). A particular simple
construction to us was given by Harvey and Lawson through their theory of spark complexes
([10, 11, 12, 13, 15, 20]) which unifies many known results. By applying their theory, they
constructed a d-analogue ([12, 10]) of differential characters for complex manifolds. The Harvey-
Lawson spark group H ¥(X,p) of level p of a complex manifold X contains the analytic Deligne
cohomology H%H(X ,Z(p)) as a subgroup and fits in the short exact sequence

0 — HEN(X, Z(p)) — H*(X,p) — ZE71(X,p) = 0

where Zg“(X ,p) is the subgroup of complex differential (k + 1)-forms with integral periods.
Deligne cohomology group Hf,H(X ;Z(p)) is usually defined by the hypercohomology group
HA*+1(X, Z(p)) of the Deligne complex of sheaves
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where QF is the sheaf of holomorphic k-forms. Recall that the Aeppli and Bott-Chern cohomol-
ogy ([19]) of a complex manifold X can be defined by the hypercohomology of the complex of
sheaves:

Bz:,q50—>C—>(’)@@—>Qle§§1_>...%Qp—l@ﬁpflﬁﬁp_%”%ﬁqﬂ_>0

where p > ¢ and ﬁk is the sheaf of anti-holomorphic k-forms. We have
HY(X;C) HPHatL (X, Bp i1 4+1) and HYL(X;C) 2 HPHI(X, B; )

By this similarity to the definition of Deligne cohomology, it is natural to ask the following
question

Question: Is there a differential cohomology that plays the role of the Harvey-Lawson spark
group H(X,p), and the hypercohomology groups of the complex of sheaves
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that play the role of Deligne cohomology?

This is the motivation of this paper. We answer this question affirmative by constructing
cohomology H*(X, p,q) and H 5~(X; Z(p, q)) for every complex manifold X, and integers p, ¢ >
0 that fit in the short exact sequence:

= )
0 — HELL(X5Z(p, q) — H¥(X,p,q) =5 Z; (X, p.q) = 0

The cohomology H* (X, e, @) possess a ring structure and refined Chern classes, acted by the
complex conjugation, and if some primitive cohomology groups of X vanish, there is a Lefschetz
isomorphism. Furthermore, the ring structure of H% 5~ (X;Z(e,e)) inherited from H*(X, e, e)
is compatible with the one of the analytic Deligne cohomology H®(X;Z(e)). We compute
H *(X,e,0) for X the Iwasawa manifold and its small deformations and get a refinement of the
classification given by Nakamura. Such finer classification is different from the one given by
Angella [1].

The paper is organized as follow. In section 2, we review Harvey and Lawson’s theory of spark
complexes and use it to construct H*(X,p,q). We show that the above mentioned sequence is
short exact, give a 3 x 3-grid that relates Griffiths intermediate Jacobian and Hodge group and
prove a Lefschetz property. In section 3, we establish a ring structure on H*(X; e, e). In section
4, we construct refined Chern classes for complex vector bundles and prove a Whitney product
formula. Furthermore, for holomorphic vector bundles, we show that their refined Chern classes
can be defined on HYz-(X;Z(e,e)) and the total refined Chern class defines a natural map
from holomorphic K-theory to H* (X;Z(e,0)). In section 5, we compute the ABC-cohomology
of the Iwasawa manifold and its small deformations, and give a refinement of the classification
given by Nakamura ([17]).
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2 Harvey-Lawson spark groups

We recall the construction of spark groups given by Harvey and Lawson in [12].

Definition 2.1. (Spark complezes) Suppose that F® = ®;50F", E®* = @®;50F, I* = &;>0l°
are cochain complexes and ¥V : I — F is a morphism of cochain complexes, E®* — F* is an
embedding with the following properties:



1. W(I*)n E¥ = {0} for all k >0,

2. W19 — FY is injective,

3. the embedding induces an isomorphism H*(E®) — H*(F*).
Then & = (F*, E*,I*) is called a spark complex.

Definition 2.2. (Spark groups) Given a spark complex & = (F*,E® I*), a spark of degree k
is a pair (a,r) € FF @ I*T1 which satisfies the spark equation

da = e — U(r) where e € EF+1,
dr = 0.

Let #*(F*,E® I*) be the collection of all sparks of degree k in (F* E*,I*). Two sparks
(a,7),(a’,7") of degree k are equivalent if there exists a pair (b,s) € F*~1 @ I* such that

r—r = —ds.

{ a—a =db+ U(s),

We write H*(.#) = S*(F*,E*,I°)/ ~ for the group of equivalence spark classes of degree k.

Let X be a complex manifold of complex dimension m. We write 55;;;1()( ) for the space of

(p, g)-forms with compact support on X. The space of currents of degree (p,q) on X is the

topological dual space D'P9(X) := {5, 7"}, We write
D*X.pq)= @ DIX)P D Dr(X)
i1+j1=k io+ja=k
i1<p Jjo<aq

and the counterpart of forms Eckpt (X, p,q) is defined similarly.

Define dy, , : D'*"1(X,p, q) = D'*(X,p,q) by
dp.q(a,b) = (mpda, mydb)

where
m: DM(X) > P DOI(X), @ DMX) - @ DI(X)
i1+i1=k igtjo=k
11<p 72<4q
are the natural projections. It is easy to see that df)’q = 0 and hence (D*(X,p,q),dp ) is a
cochain complex. Let I*(X) be the space of locally integral currents of degree k on X. Define

Uy q: I¥(X) = D'*(X,p,q) by
Wpq(r) = (Wp(r)vﬂé(r))

Proposition 2.3. Let X be a complex manifold of dimension m. For a € EPU(X),B €
Eopt " TUX), define a(B) = [y a AB. Then EPU(X) may be considered as a subspace of

D'P9(X). With maps and differentials defined above, the triple (D'*(X,p,q),E*(X,p,q),I*(X))
forms a spark complex.

Proof. Tt is well known that the inclusion map £*(X,p, ¢) < D"*(X,p, q) is a quasi-isomorphism
and ¥ : [9(X) — D'°(X,p,q) is injective. The fact that £*(X,p,q) N ¥(I*(X)) = {0} follows
from [12, Appendix BJ. O

Definition 2.4. For a complex manifold X, the k-th Harvey-Lawson spark group of level (p, q)
1s the spark group N N
H"(X,p,q) == H"(D*(X,p,q),£*(X,p, q), I*(X))



Proposition 2.5. On a complex manifold X, the complex conjugation on currents induced by
the complex structure of X induces a map H*(X,p,q) — H*(X,q,p) defined by

(a,b,7) — (b,a,r)

which is an isomorphism.

Proof. Note that m,(a) = 7,(a@) and 7/ (b) = m(b). If d, 4(a,b) = (e1,e2) — (mp(r), 7y (7)), then
dpq(a,b) = (myda, medb) = (€1,82) — (m,(7), 74(F)), s0 dgp(b,@) = (mqdb,mda) = (€2,21) —
(q(7), 7, (7)) this implies that [(b,a,7)] € H*(X,q,p). Since r is a locally integral current, it is
real, hence 7 = r. This map is well defined and applies it twice we get the minus identity which
shows that it is an isomorphism. O

From the general theory of spark complexes [12, Prop 1.8], we have the following 3 x 3
commutative grid.
Proposition 2.6. There is a 83X 3 commutative grid of exact sequences associated to the spark
complex (D'*(X,p,q),E*(X,p,q), I*(X))

0 0 0

Hk D/o ){7 , ~
0 H}“ED"EXQZ;; H,’E(X,p, qQ) — dp,qgk(XaI% Q) —0

O%Hk(G) %ﬁk()(,p#]) $Zﬁ+1(X7paq) —0

b2

0—— Kerk+1((\11p7q)*) —_— Hk+1(f°(X)) &;)*Hf"‘l(f/"()(,n Q)) —0

0 0 0

where Z;H'l(X,p, q) consists of pairs (e, e3) € EFTL(X, p,q) that are closed under the differential
dp.q and have integral periods, i.e., [(e1,e2)] = (Vp4)«(p) in HETY(D'*(X,p,q)) for some p €
HF(I*(X)). Furthermore, f[g(X,p, q) = kernel of 62, and G is the cone complex formed by
Upq: I°(X) = D"*(X,p,q).

2.1 Aeppli-Bott-Chern cohomology as a hypercohomology

Fix a complex manifold X. Let Qk,ﬁk be the sheaves of holomorphic k-forms and anti-
holomorphic k-forms on X respectively. Recall that the Aeppli and Bott-Chern cohomology
for a complex manifold X can be defined by the hypercohomology of the complex of sheaves: if

q2p,

q—1

B;)’q:OHC%OGB@*}Ql@ﬁlH"'HQpil@ﬁp_lg)ﬁp*).uﬁﬁ 4)0’

we have
HY(X;C) = HPHIt(X, By 4e1) and HRL(X;C) = HPT(X, By ).

Modifying accordingly we have the case for p > q.



Definition 2.7. Let Q*<P:*<9 be the complex of sheaves

000l & e 50 5. 507 S0
if p < q, and the complex of sheaves:

0a0-5a0 - 50 1a0" 505 5l 50

ifp>q

Similar to the definition of Deligne cohomology, we define Aeppli-Bott-Chern cohomology as
following.

Definition 2.8. The Aeppli-Bott-Chern cohomology H% 5(X;Z(p,q)) is defined to be the hy-
percohomology group HF (X, Z — Q*<P*<9). If without confusion, we will just call this cohomol-
ogy the ABC' cohomology.

Proposition 2.9. There is an isomorphism
Hpo(X: Z(p,q)) = B! (Cone(I*(X) "' D'*(X.p,0)))
where Cone(I*(X) rga D'*(X,p,q)) is the cone complex associated to the cochain morphism
\vaq : I.(X) - D/.(vaa q)
Proof. We prove only the case ¢ > p. There are acyclic resolutions
Z—I* and Q" @ Q" — D™ @ Do
Define ny, : I¥ — D'®:0 @ D'OF by

Mi(r) = (Ug,o(r), o,k (r))
where 11; ; : T k — D’ is the natural projection induced from the decomposition
"< p*= ¢ D"
itj=k
Then we have a commutating diagram of sheaves:

* 5 Dp*0eDO% - DeleDbt ..
1 T T
Z - Qa0 - Qe ..

Let D' = 0 if 5 or j equals to -1. Then we have a more uniform expression of the resolution
of sheaves

Qi @ﬁml N D/ni,,O P D/O,mi N D/n,,,l ) Dll’mi’ SN Dlni,j ® D/j,m,,

where
], ifi<p |4 ifi<gq
”l_{ 1, ifi>p m’_{ 1, ifi>p
Let F*J = D™ @ D™ then FF .= @
Proposition A.3], the hypercohomology

irjor F%9 and F¥(X) = D'*(X,p,q). By [12,

H*(X,Z — Q*<P*<1) = 51 (Cone(V,, , : I*(X) — F*(X))) = H* Y (Cone(¥,, : I*(X) — D'*(X,p,q)))
O



Corollary 2.10. There is a short exact sequence
-~ 5
0 — Hihe (X5 Z(p,q) = H*(X,p,q) = 277 (X,p,q) = 0

Proof. Consider the 3x3-grid in Proposition 2.6 associated to the spark complex . = (D"*(X,p, q),E*(X,p, q), I*(X)).
By result above, we may replace the cohomology of the cone complex in the middle row of the
3x3-grid by the ABC cohomology. O

Corollary 2.11. On a compler manifold X, the complex conjugation on currents induces an
isomorphism between H% 5 (X;Z(p,q)) and HX 5 (X;Z(q, p)).

Proof. This follows from Proposition 2.5 by considering H% 5~ (X;Z(p,q)) as a subgroup of
HY(X, p,q). O

Definition 2.12. On a compact Kahler manifold X, we define the total Griffiths’s p-th inter-
mediate Jacobian to be the group

TTp(X) = (FPHP~Y(X;C)/H*~ 1 (X;Z)) @(FPH>*1(X;C)/H ™ (X; 7))

where FPH?P~Y(X;C) = @ H“(X) is the Hodge filtration and FPH?P~1(X;C) is the

1+j=2p—1
izp

complex conjugation of FPH?*?~1(X;C).

Corollary 2.13. When p =q,k =2p—1, on a compact Kihler manifold X, the 3 x 3-grid has
the form

0

= )
0 — Hpo (X5 Z(p,p)) — H* (X, p,p) —— Z;"(X,p,p) ——=0

b2

(¥p,q)x

0 ——— Hdg"?(X) ——— H*"(X;Z) Hi"(X,p,p) ——0

0 0 0

where HdgPP(X) is the group of Hodge classes.

Let X be a complex manifold. Recall that (see [12, 10]) the Harvey-Lawson spark groups of
level p are the spark groups of the spark complex

(D"*(X,p),€%(X,p), I*(X))

where D'*(X,p) = @i -x D' (X), EF(X,p) = @iyi=r EH(X), and I*(X) — D'*(X,p) is the
i<p i<p
projection map. The Deligne cohomology group H _’g}ﬂ (X;Z(p)) sits in the short exact sequence

0 — HEPY(X;Z(p) — HY(X,p) 3 Z+(X,p) = 0



Proposition 2.14. 1. We have a morphism between spark complexes

I® Hl)/.()(apaQ) 2 5.(X7p7q)

L

I*—D"*(X,p) 2&*(X,p)

where the middle map is given by the natural projection. This morphism induces a mor-
phism between short exact sequences:

0 HIIZBC(X7Z(paQ))Hﬁk_l(X7paq)HZ}€(X7p7q)HO

| | l

0 ——— HE(X:Z(p) —— H* (X, p) —— Z}(X,p) —>0
2. For X a complex manifold, there is a commutative diagram

| |

H*(X,p) —— H*(X; Z)
given by natural projections which induces a commutative diagram

HY 5o (X5 Z(p, q)) — HE (X Z(q))

| i

HE(X, Z(p) — H*(X3Z)

3. For X a compact Kihler manifold, k = p+ q — 1, if H**Y(X;Z) is a free abelian group,
then
Hk(vaa q) = ((C/Z)t @ Hk+1(X7 Z) @ dp-,qgk(X7pa Q)

where t = dimcH*(X; C).

4. For X a complex manifold, there is a commutative diagram:

(X, p+1,q+1) —2 = ZMY X p+1,q+1)

where the right vertical arrow is given by (e1,e2) — ([ei], [e2]), the bottom horizontal
arrow is induced by the projection I1; ; : I*1(X) — D' (X), and H’1(X) is the image
of the homomorphism I1(; ;). : H**1(X;Z) — Hi"j(X) where qu’j(X) is the (i,7) Aeppli
cohomology of X .

Proof. 1. This follows directly from definition.



2. The morphisms are
[(a’7 b’ T)] - [(ba T)]

L
[(a,)] [7]

3. In acompact Kihler manifold, k = p+q¢—1, H¥(X;Q*<P*<9) = @ H™*(X)P P H™(X) =
r+s=k r+s=k

r<p s<q

H*(X;C). Note that H*(£*(X,p,q)) = HF(X;Q*<P*<9). Now consider the 3 x 3-grid
associated to the spark complex . = (D'*(X,p,q),E*(X,p,q), [*(X)). Since H**1(X;7Z)
is a free abelian group, the middle column of the 3 x 3-grid splits. Since d,, ,E*(X, p, q)
is a vector space, the top row of the 3 x 3-grid also splits. Thus we have ok (X,p,q) =

ke (X,p,
W ® HY(X;7) @ dy ,£%(X, p, q) and the result follows.

4. Recall that the Aeppli cohomology is defined as Hj;’j (X) = %. For (e1,es) €
Z¥(X,p+1,q+1), mpp1de; = 0. By comparing the types of both sides, we get (el +
9eb~ 1) ... = 0. This implies that 9de} """ = 0 for i = 1,2,..,p. Similarly,
00eh 1 = 0for j =1,2,...,q. So ([e1], [ea]) € EBkaL{‘7 (X)) @kHX](X). Note that

itj= itj=
i<p+1 j<a+1

if da = 0, then 0o’ = 0 where o = D itimkt oI and 11, ;(dB) = 0B~ + 9pHi—1
for =3 %3, This implies that I, ), is well defined. The commutativity of this
diagram is clear. Since 07 is surjective, the right vertical homomorphism has image as

indicated.
O

2.2 Lefschetz property

Let X be a Kéahler manifold with Kéhler form w. The Lefschetz operator L : D'*(X) —
D'**2(X) is defined by L(a) = w A a. Let us recall that when in addition X is compact, the
Lefschetz decomposition of forms induces a decomposition on currents. We summarize several
properties that we need in the following: suppose that the dimension of X is n.

1. D'*(X) = Disio L Pk=21( X)) where P*(X) = {a € D'*(X)|L"**'a = 0} is the primitive
part, igp = max{i — n,0}, the Lefschetz operator L"~* : D'*(X) — D"*"~*(X) is an
isomorphism, and 7 : D"*(X) — D'*+2J(X) is injective if j < n — i.

2. Ifa=Y,,; La; € D"*(X) is the Lefschetz decomposition of a where i = maz{i —n,0},
a; € P*?(X), define Ta = )., Li"'a; where iy = max{i —n,1}, then T"* is the
inverse of L"~% : D'*(X) — D"?"~k(X) and T" % o L" ™% = id}_; : D'*(X) — D'*(X) if
k<n.

Proposition 2.15. Suppose that p+q = k—1 and k < n, then the map L™ induces monomor-
phisms

L F BN X p, Q) — H M (X n—g.n = pi Q)
and
L' H po(X: 2(p,0): Q) — HipH (X Z(n — g, —p); Q)

where Q indicates the original groups tensored with Q over Q. Furthermore, these monomor-
phisms are isomorphisms if the primitive cohomology PH*~1(X;Q) = 0.



Proof. Note that Ld = dL, Td = dT and L, = mp4; L7, ]Liwl’] = 7r;+iILi. The maps are well de-
fined and injective by the properties of Lefschetz decomposition mentioned above. Note that for
[(a/,b',r")] € H>"*+1(X n—q,n—p; Q), we have [(T" Fa’, T *b/, T *r')] € H*1(X,p, ¢; Q),
and L"=F[(T"=*a/, T"=F , T *")] = [(&/ —an—k—1,0' —bp_p—1,7")] wherea’ = Y",o , Lia;, b/ =
> isn_x_1 Lib; are the Lefschetz decomposition of @’ and ¥'. Thus if PH*"1(X;Q) = 0, then
Gp—f—1 = dc,by_g—1 = de, and [(ap—k—1,bn—k—1,0)] = 0 in ﬁ[kil(X,p, q; Q). By restriction,
the same holds for Aeppli-Bott-Chern cohomology with Q-coefficients. O

3 Ring structure on Hz.(X;Z(x*, %))

Let X be a complex manifold of complex dimension m.

Definition 3.1. Let (D'*(X))? = D'*(X) @ D'*(X), (EF(X))? = &F(X) @ EF(X), and ¥ :
I*(X) — (D*(X))? be defined by v — (r,7). Then ((D'*(X))?, (£*(X))%,I*(X)) is a spark
complex. Let R R

Hps (X) = H*((D"*(X))?, (€°(X))*, I*(X))

To define a ring structure on fII'DQ (X), we need a modified version of [11, Thm D.1]. If (a,r)
is a spark and da = e — r, we write dia = e,dsa = r.

Lemma 3.2. For given o € ﬁgz (X),B € ﬁéz (X) with k+£ < 2m and (a1, a2,r) € a, there is
representative (b, bh,s") € B such that if d(a1,a2) = (e1,e2) — (r,7), d(b},bh) = (€1,¢2) — (s, 9),
then a; Aby, a1 As',r Aby,r A s, az Aby,as A s',r Aby are well defined and r A s’ is rectifiable.

Proof. Let us recall the construction in [11, Thm D.1]. For [(a, R)] € H*(X),[(b,S)] € H*(X)
with k + ¢ < 2m, db =1 — S, there is a current b’ := fe,. b+ x + 1 where x is a smooth ¢-form,
7 is a smooth d-closed ¢-form, for which a A b ,a A dab’, RAY and R A dab' are well defined,
the last one is rectifiable and (¥, f¢.S) is equivalent to (b, S). The functions fe : X — X
are diffeomorphisms close to identity parametrized by points & € RY for some N. Note that
db' =) — fe.S and dob’ = fe,.S. Now we fix two representatives (a1, as,7) € «, (b1,be,s) € .
Since [(a1,7)], [(az,r)] € H*(X),[(b1,5)],[(b2,s)] € HY(X), by the construction above, we may
choose & € RY such that a; A fexbi, a1 A feus, 7 A feubi, 7 A fews,ao A feiba, an A feas, 7 A feubo
are all simultaneously well defined and r A fe.s is rectifiable.

As in the Harvey-Lawson-Zweck’s construction, there exist some smooth forms x1, 71, X2, 72
and

1= feb +xa +m, by = feab + x2 + 2

such that (b, fexs) and (b, fews) are equivalent to (b1, s) and (ba, s) respectively in HY(X). So
by definition, (b7, 5, fexs) € B and the products mentioned in the statement of the Lemma are
well defined and r A fe.s is rectifiable. O

If da = ¢ — R,db =1 — S and the product is well defined for these two sparks, we write
axb:=aA+ (~1)FTRAD
We denote by ~ for the equivalence of two sparks.

Lemma 3.3. If (a1,a2,7) ~ (a},ab, 1), (b1,ba,s) ~ (b,b5,s") are sparks of the spark complex
(D"*(X))%, (£%(X))%,I*(X)) and the equivalences are given by

a'l—alzdﬂl—f—ﬁ, bll—blzd’ﬁl-l-f,
aé—agzd@—f—R, , bé—bgzdﬁg—FT,
v —r=—dR s —s=—dTl

respectively. Then there exist



integral current R = R+ doy such that R A s is well defined and rectifiable;
current uy = Uy — o1 + dog such that uy A s',duy As’ are well defined;
current ug = Us — 01 + dos such that us A ', dus A s’ are well defined;

integral current T = T+ doy such that ay AT, a1 NdT', aa AT, as ANdT, T ANr are well
defined and T N r is rectifiable.

e v o~

for some currents o1, 09,03 and o4. Furthermore, we may rewrite the equivalences of sparks as
following:

ajy —a; =du; + R, by — by =dvy + T,
aéfagidUQ+R, ; bé*bgid’UQﬁ*T,
v —r=—dR s’ —s=—dT

where v1 = V] — 04,V3 = Vg — 04.

Proof. This follows from Federer’s slicing theory by making a small perturbation of ]A%, Uy, Uz, T
respectively (see [11, Theorem A.2]). O

Proposition 3.4. Suppose that (a1,aq,r) ~ (ay,ab, "), (b1,ba,s) ~ (b, b5,s") are equivalent
sparks, (a1,as,7) meets (by,ba,s) and (a},adh, ") meets (by,bh,s") properly respectively. Then

(@) % b, ay x by, 1" Ns") ~ (a1 xby,as *ba, 7 A\ S).

Proof. By Lemma above, we may assume that

a’l—alzdul—I—R, b/l—blzd’l)l—ﬁ-T,
ab —as =dusg + R, ,{ by —by=dvy+T,
r —r=—dR s —s=—dT

where a1 AT, a2 AT, a1 ANdT, a3 NdT, RA s, T Ar are well defined and the last two currents are
rectifiable. Suppose that

dalzel—T, dblzfl—s,
da) = ey — 1/, by = f1 — ¢,
dag =ey—r, 7] dby = fo—s,
dal, = eg — 1’ dby = fa — 5

Then
ay x b —ayxby =a) A+ (=D ey AV —a; As— (1) lep Ay

=(a1 +du; + R)As —ay As+ (=1)* ey A (dvy +T)
=ay A (=dT) +dus As' + RAS +d(ey Avy) + (=) ley AT
=(—1)*"day AT —ay ANdT +d(uy As' +e1 Avy) + (=) TP AT+ RAS
=d((-1)*ay AT +us As' +er Avy) + (=) e AT+ RAS

Similarly,

abx by —agxby = d((=1)* L ag AT +us A5’ +ea Avg) + (=) AT+ RA S

and we have
Ad(—)* ' AT+ RAS)=rAs—1 A&

This completes the proof. O]
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Definition 3.5. Suppose that o € ﬁ 2(X), B € ﬁ[éz (X) with k+¢ < 2m. For any representa-
tive (a1,as,7) € a, choose Tepresentatwe (b, bh,8") € B according to Lemma 8.2, we define

ax*f:=[(a; *by,as *by,r Ns')] € ﬁgt“l(x)

By Proposition above, this product is well defined. A direct computation shows that it is
graded-commutative. This gives us the following result.

Proposition 3.6. ﬁbz (X) is a graded-commutative ring.

To define a product on HY 5 (X;Z(p, q)), we first define a product on }AI‘(XJ), q) and then
reduce the product to H% 5. (X;Z(p,q)). Note that d,m, = m,d and d,m, = m,d.

Let (mp, g, id)y flgz (X)— ﬁk(X,p, q) be the map defined by

[(a,b,7)] = [(mp(a), mg (D), 7)]
We first make an observation.
Lemma 3.7. Ker(m,,m,id)y = {a € ﬁgQ(X)B(a, b,0) € a,a,b smooth ,my(a) = 0,7, (b) =
0}.
Proof. Suppose (a,b,r) € a € Ker(my, y,id). Then there is (a', V', s) € € D'*1(X,p,q)®I*(X)
such that (7,(a), 7, (b)) = dpq(a’,b") + (mp(s), 7y (s )) and r = —ds. Let @ = a — da’ — U(s),b =

)
b—db —U(s) and ¥ = r + ds = 0, then (a,b) — (@,b) = d(a’,¥') + ¥(s). So (@,b,0) € a. The
other direction is clear. O

Theorem 3.8. The map (mp, 7rq, id)y is a surjective group homomorphism and the kernel of the

map (my, 7y, id) is an ideal of HD2 (X).

Proof. Suppose a € Ker(my,n,,id)x, 3 € I?EQ (X), choose representatives (a, b,0) € a such that
mp(a) = 0,7,(b) = 0, and (a’,b',7") € B such that the product is well defined. If D(a’,V’) =
(e1,e2) — (',7"), then

axf = [(aner+(—=D)FTL0AT  bxeg+(—1)FFLOAT , 0Ar")] = [(aAer, bAey,0)] € Ker(my, 7y, id)k

So the kernel is an ideal of I/{fl’jz (X).

To show the surjectivity, we pick [(a,b,7)] € H*(X,p,q). Then by definition, dpq(a,b) =
(e1,€2) — ¥, ,(r) and dr = 0. From the isomorphism H**1(D’*(X)?) = HkT1(£%(X)?), there is
(ag,bo) € D’k+1(X) (eo, fo) € E¥FTL(X)? such that d(ag, bo) = (eo, fo) — (r,7). So dp 4(ao,bo) =
(7rp, ) (€0, fo) — \I/p,q(r) and this implies d}, 4((a,b) — (a0, bo)) = (e1,e2) — (mp, 7,) (€0, fo). By
(13, Lemma 1.5}, (a,b) — (a0, bo) = (91,92) + dp,q(h1, h2) Where (g1,92) € E¥(X,p,q), (h1,hs) €
D'*=Y(X,p,q). Let (a,b) = (ao,bo) (91,92)+d(h1, h2). Then d(a,b) = (eo, fo)+d(g1, g2)—¥(r).
This implies that [(a,b,r)] € H}SQ( ). Note that (7,7, )(a, b) = (mp, ) (a0, bo) + (g1, 92) +
(7p, g )d(h1, he) = (mp, my)(a,b) = (a,b). This proves the surjectivity. O

Definition 3.9. Fiz p,q. Let I, , = @igo(wp,wg,id)k. Then by Theorem 3.8, the kernel of

II, 4 is an ideal of PAI]'DQ (X) and 11, , is surjective. So we have a group isomorphism
H*(X,p,q) = Hp(X)/Kerll, 4
The right hand side has a natural ring structure and we define the ring structure of H* (X,p,9)

by this isomorphism.
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For a € HYEL (X q)) and B € HYH o (X;Z(p, q)) where k 4 £ < 2m, we consider them

Z(p,
as elements in ﬁk(X, ,q) and HZ(X p,q) respectively. A direct computation shows that « x 3
is in HYE'A2(X;Z(p,q)). This shows that H%zo(X;Z(p,q)) inherits a ring structure from

H*(X,p,q).

Corollary 3.10. The ring structure on the Harvey-Lawson spark group e (X,p,q) induces a
ring structure on the ABC cohomology H 5 (X;Z(p,q)).

If we consider the collection of all ABC' cohomology ®k,p,q H*(X;Z(p,q)), there is also a
ring structure on it.
Definition 3.11. Define a product HX 5 (X;Z(p, q)) x H o (X;Z(0',¢')) — Hﬁ‘géc(X; Z(p+
Pa+4q)) by N
(Oé, ﬂ) = (71-17'1‘10’7 7r1;+q’a Zd) ((AJZ * 6)
where & € ﬁg;l(X), Be ﬁé_zl(X) are lifts of a and 8 respectively.
To verify that this product is well defined, we refer the reader to the proof of [10, Theorem

6.6] where a similar verification for Deligne cohomology was done. The following result is also
clear from the definition.

Corollary 3.12. The natural map ., , HY oo (X5 Z(p, q)) — D, HE (X;Z(p)) induced from
the projection [(a1,as,7)] — [(a1,7)] is a ring homomorphism.

4 K-theory and refined Chern classes

By a result of Cheeger and Simons [8], each smooth complex vector bundle with unitary connec-
tion V over a smooth manifold X is assigned differential cohomology class ¢ (E, V) € H2*=1(X)
for each k& > 0. Such classes are called refined Chern classes as they satisfy 01 (cx(E,V)) =
cx (V) the Chern-Weil form, and 6 (¢x(E, V)) = cx(E) the Chern class of E. They also proved
a Whitney product formula

AE®E . NaV)=2E,V)«e(E,V)

where ¢ is the Cheeger-Simons total refined Chern class. In this section, we are going to de-
fine refined Chern classes in ABC cohomology and prove some results analogous to the clas-
sical counterparts. The model we use for H®(X) is the spark group of the spark complex

(D"*(X),€(X), I*(X)).
Definition 4.1. Let X be a complex manifold and E be a complex vector bundles over X
with unitary connection V. Suppose that ¢,.(E,V) = [(a,7)] € H**Y(X). Then [(a,a,r)] €
ﬁ%kz_l(X). We define
//C\\k(Evv) = [(a’a7 ’I“)]
and R R R
fu(B, V) = (my, 7}, id) (er(E,V)) € H* (X, k, k)

We first observe that the product in H *(X) commutes with the complex conjugation.

Lemma 4.2. For o € H*(X), 8 € H'(X),

B

Proof. Choose representatives (a, R) € «, (b,.S) € 5 such that the product (a, R) * (b, S) is well
defined. Write da = ¢ — R,db = ¢ — S. Then (a, R) % (b,S) = (a A+ (=1)*T' RAb, RA S) and
we have (a, R) * (b,S) = (@, R) x (b,S) = (@A + (1) *RAD, RAS) = (a,R) * (b,S). This

gives us the desire formula. O




Theorem 4.3. Let E and F be two complex vector bundles on a complex manifold X with
unitary connections V and V' respectively. There is a Whitney product formula

1.

~

AE@®F,VaV')=cE,V)*dFV).

fEo Ve V)= f(BV)xf(FV)

Proof. The first result follows from the Whitney product formula proved by Cheeger and Simons
and the Lemma above. For the second result, note that by the definition of the product * of
D, H*(X,p,q) and the result above, we have

F(BE&F,V& V) = (m,ah,id)(C(Ee PV &V)) = > (m,mp,id)(@(E, V) * & (F, V")
i+ji=k
= > HEV) [V

i+j=k
This gives us the desire formula. O

Remark 4.4. If F is a hermitian bundle and V is the canonical connection associated to
the hermitian metric of E, then the Chern-Weil form ¢, (QV) is of type (k,k) and hence
51(f(E,V)) =0. This implies that fi.(E,V) € H3% o (X;Z(k, k)).

Proposition 4.5. Let E be a hermitian vector bundle over a complex manifold X and V be the
canonical connection associated to the hermitian metrics of E.

1. The class f(E,V) € H3 o (X;Z(k,k)) is independent of the choice of hermitian metric
on E.

2. Under the canonical map from H3% o (X; Z(k, k) — HZF(X;Z(k)), the class . is sent to
dk where dk is the Harvey-Lawson’s refined Chern class.

Proof. Suppose that ¢ (E, V1) = [(a1,m1)] € H* 1(X),6(E,V2) = [(as,m2)] € H* 1(X).
By [12, Proposition 12.1], Harvey and Lawson showed that their refined Chern classes in
Deligne cohomology are independent of the choice of hermitian metrics on F, hence [(7ra1,7)] =
[(mrao, )] € H2F(X;Z(k)). This means that there exist b € D'*(X, k), s € I*(X) such that

TRy — Trag = Trdb + 7k (8),
ry — 19 = —ds,

Note that Tza = 7mj.a and d is a real operator. By taking the complex conjugation of the first
equation, we get B

a1 — myag = Tpdb + ()
Together with equations above, this means that fk(E, Vi) = [(mpar, 1,61, m1)] = [(Trag, 7,82, 2)] =
fx(E,V2). The class fi is sent to dj, follows directly from the definition. O

Definition 4.6. If E is a hermitian vector bundle of rank k on a complex manifold X, since
refined Chern classes of E are independent of hermitian metrics on E, we write fi(E) for

fk(E, V) where V is the canonical connection associated to a hermitian metric of E, and write
the total refined Chern class to be

FE) =14 JiI(E)+ -+ Ju(E @HABC (X5 2Z(i, 1))
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Theorem 4.7. For any short exact sequence
0—)E1—>E2—>E3—>0

of holomorphic vector bundles over X, we have

~ o~

f(By) = f(Ey) * f(Es)
Proof. Similar to the proof of Theorem 4.3. O

Corollary 4.8. If X is a complex manifold and K, (X) is the Grothendieck group of holomor-
phic vector bundles on X, then the total refined Chern class defines a natural map

Fi Kpoa(X) = @HiiBC(X§Z(iai))
i>0

5 ABC-cohomology of the Iwasawa manifold and its small
deformations

In this section, we compute the ABC-cohomology of the Iwasawa manifold and its small defor-
mations. The Dolbeault cohomology of the Iwasawa manifold and its small deformations were
computed by Nakamura in [17] and the Bott-Chern and Aeppli cohomology were computed by
Angella in [1]. We use an expression of a system of local holomorphic coordinates given in [1]
and recall some results that are used in our computation.

Let
1 2t 23
H(3;C) := 0 1 22 |:22%22€C) cGL(3;C)
0 0 1

be the 3-dimensional Heisenberg group over C and consider the action on the left of H(3; Z[i]) :=
H(3; C) N GL(3;Z]i]) on H(3;C). The compact quotient

I3 == H(3; Z[4])\H(3; C)

is call the Iwasawa manifold whose H(3; C)-left-invariant complex structure .J; is the one inher-
ited by the standard complex structure on C3.
We recall a theorem of Nakamura [17].

Theorem 5.1. There exists a locally complete complex-analytic family of complex structures
{X¢ = (I3, Jt) }eea(o,e), deformations of I3, depending on

t = (ti1, t12, to1, t2a, t31, t32) € A(0,€) C C°

where A(0, €) is a disc centered at 0 € C® with a small radius € and Xo = I3.

There is a set of holomorphic coordinates &, &2, &5 for X¢ depending on t and the local
coordinates of Xy. Since we do not need their precise expressions, we refer the reader to [1,
Theorem 3.1]. Let

op 1= d&q, o7 = d& and @} = dE&] — 21 dEF — (to1Z" + t927°)dEq

Complex numbers 0471, 013, 097, 093 and 012 depending only on t are defined through the following
equation

dg} = 01208 N 9? + 0170E ABL+ 01308 NBE + 0102 N BL + 0az0? A PR
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Let
D(t) := det( b ti )

to1 o2
and -
S = ( 011 %22 %12 %21 >
011 923 012 021
Recall that Nakamura classified the small deformations of I3 into 3 classes: (i), (i), (iii),
and Angella further subdivided class (ii) into (ii.a) and (ii.b), class (iii) into (iii.a) and (iii.b) by
using the Bott-Chern cohomology of Xi. The classification is given in the following list.
class (i) : t11 = t1a = tog = tog = 0;
class (ii) : D(t) =0 and (t117t127t21,t22) 7é (0, O, 0,0),
subclass (ii.a) : D(t) =0 and rkS=1;
subclass (ii.b) : D(t) = 0 and rkS=2;
class (iii) : D(t) # 0;
subclass (iii.a) :D(t) # 0 and rkS=1;
subclass (iii.b) :D(t) # 0 and rkS=2;
The set {pf, 97,03} is a co-frame of (1,0)-forms on X;. The structure equations for t in
class (i) are
dpg =0
dei =0
dpi = —p5 N3

The structure equations for t in class (i¢) and (i4i) are

det =0

de? =0

dp} = o208 N oF + 01708 NPy + 01308 ATy + 0010} AP + 09508 A Pt

The first step towards our computation of the ABC cohomology of X is to compute the

cohomology group H*(£'*(Xy,p)) for all k,p where £*(X¢,p) = 7,(£°(X¢)). To do this, we
reduce the computation to the corresponding cohomology of its Lie algebra G. Similar reduction
for Bott-Chern cohomology is given in [1, Theorem 3.7]. The hypothesis of the following result
is satisfied by the Iwasawa manifold and its small deformations.

Proposition 5.2. Let X = I'\G be a solvmanifold endowed with a G-left-invariant complex
structure J, and G be the Lie algebra naturally associated with G. Denote by E’Qk(X,p) =
W;(Slgf(X)) where EX is the vector space of all G-left-invariant k-forms on X. If the De Rham
cohomology, 0-cohomology and Bott-Chern cohomology of X can be computed by the complex
of G-left-invariant forms, then the inclusion of the subcompler i : £5(X,p) — £*(X,p) is a
quasi-isomorphism, which means that the induced homomorphism

i HY 8 (X,p)) — HE(E™(X,p))
is an isomorphism for all k,p € Z.

Proof. For [o] € H*(£'*(X,p)), write @ = a0 4. + o PTLP=1 Then from dj,or = 0, we get
a system of equations

0ok =0 = 00ar0 =0,
0aF0 4+ k11l =0 = 9ok 11 =0

Oak—at2.4=2 4 pok-p+lr=1 — ) = §ook—P+Lr—1 —
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Since by our assumption, the d-cohomology and Bott-Chern cohomology of X can be computed
by G-left-invariant forms, so there exist 8%7 € S’gk(X,p) for 7 =0,1,....k — 1 such that a®° —
R0 = gyk=1.0 i — Bid = 9oni~1I—1 for j = 1,...,k — 1. Let B = BF0 4 ... 4 pk—p+lr—1 ¢
EF(X,p). Then a—p = d(v*~1048nF~ 11 ...+ 9n*~PP=2). This shows that i, is surjective.
If [w] € H*(E5 (X, p)) and i, [w] = 0, we have w = d;,p for some p € £’*1(X, p). Comparing the
degrees of both sides of this equation, we have

whO kP22 d(pk—LO 4+t pk—p+17p—2)’
wh=ptlp=1 — gpk—pp—1

By our assumption, the De Rham cohomology and 0-cohomology of X can be computed by
G-left-invariant forms, there are G-left-invariant n and 7 such that w®0 4 ... 4 Wk=P+2r=2 —
dn,wFP+HLP=l = 97, Then w = dn + Ot = dj,(n+ 7) and n + 7 € E5 (X, p). This shows that
the homomorphism i, is injective. O

The second step is to show that the integral cohomology groups of the Iwasawa manifold is
torsion-free. We combine results developed in [7, 16] for this goal. The main tool we use is the
following theorem [7, Theorem 3]. For ¢ € N, let Z{q} = Z[}, -~ , %]

Theorem 5.3. For any nilmanifold N, H*(N;Z{q}) and H*(FL(N);Z{q}) are isomorphic
rings where FL(N) denotes the formal group Lie algebra of the fundamental group G := m1(N)
and q > d(N), where d(N) is equal to the finite sum

d(N) =1+ |G1/Ga| +2|G2/Gs| + 3|G3/Gul + - - - + k|Gr /G| + -+
and G1 D Ga D G3 D -+ is a descending series of G (see [T, pg T4]).

If N is the Iwasawa manifold, after some computation, we get d(N) = 1 and all cohomology
groups H*(FL(N);Z) are torsion-free. This implies that the integral cohomology groups of
Iwasawa manifold are torsion-free. Since it is diffeomorphic to its small deformations, we have
the following result.

Corollary 5.4. All integral cohomology groups of the Iwasawa manifold and its small deforma-
tions are torsion-free.

Lemma 5.5. Let X be a compler manifold. Suppose that H*(X;7Z) is torsion-free. Then
rkH} (E'*(X,p,q)) = dimc(mps, 7, )D where D := {([a], [o])|[a] € H*(E*(X))} is the diagonal
of H*(£*(X)) @ H"(E*(X)).

Proof. The inclusion i : £¥(X) < D'*(X) is a quasi-isomorphism, and with the inclusion
j: I*(X) < D'*(X), we have a group homomorphism ¢, := i toj, : H*(I*(X)) — H*(&£*(X)).
Let {1, ..., o} be a basis of H*(I*(X)). Since H*(X;Z) is torsion-free, the map ¢, is injective,
and hence the rank of the image Im(¢, ¢,) is n. Let Dg be the real vector subspace of D obtained
by taking linear combination of {(s,¢.)(¢;,¢;)|j = 1,...,n} with real coefficients. Then from
the fact dimg Dg < n and Im(4,, ¢,) C Dg, we get n = dimg Dg = dim¢D.

We have the following commutative diagram

7R (X)) =22 (e, 0,) s D s D
\ i(ﬂ-p*’ﬂ-‘/l*) (T(p*ﬂ'(;*) i(ﬂp*vﬂ';*)
H?(S'(X7p7 q)) — (7(;0*’77(/1*)<DR> — (ﬂ-p*’ﬂ-zlz*)(p)

and tkH¥(E*(X,p,q)) < dimg (s, T, ) (DR). - Since (Tps, o) { (Le, 6) (@5, 05)|7 = 1,...,n} is
a generating set over Z for H¥(E*(X,p,q)), over R for (Tpx, Tgs ) DR Tespectively, we have
rkH(£%(X, p,q)) > dimg(mp., 7, )(Dg). Therefore rkHF (£*(X,p,q)) = dimg(mps, 7, )(Dg) =
dimg (7« , 77, ) (D). O
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Lemma 5.6. If X is a complex manifold and H*(X;7Z) is torsion-free, we may write
Hlipo (X3 Z(p,q)) 2 2" & (C/Z)° & C©

where A = rkH*(X;Z)—rkH¥(D'*(X,p,q)), B = rkafl(D"(X,p, q)) and C = dimH*=Y(D"*(X,p,q))—
rkHy 1 (D'*(X,p,q)).

Proof. Note that since H*(X;Z) is torsion-free for all k > 0, by the 3 x 3-grid (Proposition 2.6),
we have

HEH (D™ (X, p, q))

- ~ 749 (C/2)P o C®
Hi~H(D"*(X,p,q))

HY 5o (X3 Z(p,q) 2 Ker" (T, )« &

as required. O
We list the procedure of our computation of H% 5~ (X¢; Z(p, q)) in the following where Xy is

a small deformation of I5.

Step 1 : Find a basis 91, ..., ¥, consisting of left-invariant forms of H*(£8(X¢)).

Step 2 : Compute the dimension of the space generated by (mp«, 7y, ) (15, %;) for j = 1,...,s.
This gives the dimension of H¥(E*(X¢,p,q)).

Step 3 : Compute the dimension of H* (€5 (X¢,q)). Thisis equal to the dimension of H*(E*(X4,q))
and we get the dimension of the group H*(Xy,p, q).

Step 4 : Calculate the integers A, B, C as given in Lemma 5.6.
The following table records the complex dimension of H*(£'*(I3,p)).

PNE[1][2]3[4]5
1 [2[2[1]0]0
2 [5]9]8[3]0
3 48] 973
4 [4[8[10(8 4

The following table records the complex dimension of H*(£°(I3,p,q)) and the rank of
HY(&*(I3,p,q)). Note that H*(E*(I3,p,q)) = H*(E*(I3,p)) & H*(E"*(I3,¢)) and the complex
conjugation induces an isomorphism between H¥(£°(I3,p)) and H*(£'*(I3,p)). Furthermore,
Hk((‘:.(ﬂg’p, Q)) = Hk((c".(]l37 qap))

Hk(g.(ﬂi%p? q)) H}C(E.(Hg,p, Q))
(p,g\k | 1] 2 3 4 1512 3 4 5
1,1 |44 2 0Jof414] 2 0 0
1.2 | 7 |11 9 3(0(4[8]6 2 0
(1,3) 6 | 10 10 71314188 6 2
(1,4) 6 | 10 11 8 |41 4]8]10 8 4
(2,2) (1018 16 6 |0[4]8|10 1 0
(2,3) 9 |17 17 1034|810 8 2
(2,4) 9 | 17 18 1144|8110 8 4
(3.3) | 8 |16 18 14(6][4]8]10 8 1
(3,4) 8 |16 19 157148110 8 4
4,4) |8 |16 20 16(8 48|10 8 1

In the following table, we compute H% 5. (I5;Z(p,q)). Each triple in the entries denotes
(A, B,C) where A, B,C are given in Lemma 5.6.
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(po\e| 1 [ 2 | 3 [ 4 | 5 | 6 |
(1,1) [(0,1,0) ] (4,4,0) | (8,4,0) | (8,2,0) | (4,0,0) ] (0,0,0)
(1,2) [(0,1,0) [ (0,4,3) | (4,8,3) | (6,6,3) [(4,2,1)(0,0,0)
(1,3) [(0,1,0)[(0,4,2) | (2,8,2) | (2,8,2) | (2,6,1)](0,2,1)
(1,4) [(0,1,2)[(0,4,2) | (0,8,2) | (0,10,1) | (0,8,0) | (0,4,0)
(2,2) |(0,1,0)](0,4,6) | (0,8,10) | (4,10,6) | (4,4,2) | (0,0,0)
(2,3) |(0,1,0) | (0,4,5) | (0,8,9) | (0,10,7) | (2,8,2) | (0,2,1)
(2,4) |(0,1,0)](0,4,5) | (0,8,8) | (0,10,8) | (0,8,3) | (0,4,0)
(3,3) |(0,1,0) | (0,4,4) | (0,8,8) | (0,10,8) | (0,8,6) | (0,4,2)
(3,4) |(0,1,0)[(0,4,4) | (0,8,8) | (0,10,9) | (0,8,7) | (0,4,3)
(4,4) [(0,1,0) [ (0,4,4) | (0,8,8) | (0,10,10) | (0,8,8) | (0,4,4)

Now we turn to a much more involved computation of the ABC cohomology of Xj.
The following table records the complex dimension of H*(£*(X4,p)).

k12 3 1 5

122 1 0 0

2 |47 [iftkT=L1,6 |if rk[=1,2 | 0
if tkT=2,5 | if rkT=2,1

3 [4]8 9 6 2

4 [4(8 10 8 1

Note that H*(E*(Xs,p,q)) = H*(E* (X4, p)) © H¥(E'* (X4, q)) and the complex conjugation
induces an isomorphism between H*(£*(X4, p)) and H*(£'*(X4, p)). Furthermore, H*(£* (X4, p, q)) =

HF(£*(X4,q,p)). Let N(T) denote the number of nonzero entries of T’ where T' = Zlf Z?
21 093
H*(E* (X4, p,9)) HF(E* (X1, 1, 9))

(p,\k | 1] 2 3 4 51112 3 4 5
1,1 |44 2 0 0442 0 0
(1,2) | 6|9 | ifrkI=1,7 | ifrkl=1,2 |0 4]7] 6 k=12 0

if tkT=2,6 | if tkT=2,1 | 0 if tkT=2,1
1,3) | 610 10 6 2[4[8] 10 i rkT=1,5 2
if tkT=2, 4
1,4 [6]10 11 8 14810 8 1
(2,2) |8 [14| iftkT=1,12 | ifrkT=1,4 |0 4|7 |10 |iftkI=1 and N(I) =13 | 0
if tkT=2,10 if rkT=2,2 if rkT=1 and N(T) > 2,4
if rkT=2,2
(2,3) | 8|15 if rkT=1,15 if rkT=1,8 |2 4|8 10 if rkT=1,6 2
if rkT=2,14 | if rkT=2,7 if rkT=2, 4
(2,4) | 8|15 if rkT=1, 16 if rkT=1,10 |4 || 4|8 10 8 4
if rkT=2,15 if rkT=2,9
(3,3) 8|16 13 2 i[4[8]10 i rkT=1,6 1
if rkT=2, 4
(3,4) | 8|16 19 14 61(4|8|10 8 4
4,4 [8]16 20 16 S48 10 8 1

In the following table, we compute H% 5~ (Xt;Z(p,q)). Each triple in the entries denotes
(A, B,C) where A, B,C are defined in Lemma 5.6.
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Nk 1 2 3 4 5 6
(1,1) |(0,1,0) | (4,4,0) | (8,4,0) (8,2,0) (4,0,0) | (0,0,0)
(1,2) [(0,1,0) | (1,4,2) | (4,7,2) if tkT=1, (6,6, 1) (4,2,0) | (0,0,0)
if tkT=2, (7,6,0) (4,1,0) | (0,0,0)
(1,3) [(0,1,0) | (0,4,2) | (0,8,2) if tkT=1, (1, 10, 0) (2,7,1) [ (0,2,0)
if rkT=2, (2,10,0) (2,6,2) | (0,2,0)
(1,4) |(0,1,2) [ (0,4,2) | (0,8,2) (0,10,1) (0,8,0) | (0,4,0)
(2,2) [(0,1,0) | (4,4,4) | (0,7,7) | if tkT=1 and N(T) = 1, (5,10,2) | (4,3,1) | (0,0,0)
if tkT=1 and N(T) > 2, (4,10,2) | (4,4,0) | (0,0,0)
if tkT=2, (6, 10, 0) (4,2,0) | (0,0,0)
(2,3) [(0,1,0) | (0,4,4) | (0,8,7) if TkT=1, (2,10, 5) (2,6,2) | (0,2,0)
if tkT=2, (4,10, 4) (2,4,3) | (0,2,0)
(2,4) |(0,1,0) | (0,4,4) | (0,8,7) if tkT=1, (0, 10, 6) (0,8,2) | (0,4,0)
if rkT=2, (0, 10, 5) (0,8,1) | (0,4,0)
(3,3) |(0,1,0) | (0,4,4) | (0,8,8) if tkT=1, (2, 10, 8) (0,6,6) | (0,4,0)
if rkT=2, (4, 10, 8) (0,4,8) | (0,4,0)
(3,4) |(0,1,0) | (0,4,4) | (0,8,8) (0,10,9) (0,8,6) | (0,4,2)
(4,4) [(0,1,0) | (0,4,4) | (0,8,8) (0,10, 10) (0,8,8) | (0,4,4)

Note that for t in class (iii), the rank of T is always 2. So the ABC cohomology of such Xt

does not give a finer classification than Nakamura’s classification. But for t in class (ii), the
ABC cohomology may be different for 7" with different rank. We summarize our observation in
the following. This refinement is not same as Angella’s refinement of Nakamura’s classification.

Corollary 5.7. We may subdivide class (ii) into 3 subclasses:
subclass ii.1 : rank T=1 and N(T) = 1;
subclass ii.2 : rank T=1 and N(T) > 2;

subclass iii.3 : rank T =2.
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