Fu-Tsun Wei

 

The effect of 1%

 

\((1.01)^n\) approaches to infinity, however, \((0.99)^n\) tends to zero. Thus making \(1\%\) more (or less) effort every day leads to a huge difference.

Affiliation: Department of Mathematics, National Tsing Hua University

Address: No. 101, Sec. 2, Guangfu Rd., Hsinchu 300, Taiwan

Telephone: 886-3-5715131 (ext 33119)

Email: ftwei@math.nthu.edu.tw

Office: Room 715

____________________________________________________________________________________________________________________

    Visits, trips, and Conferences:

  • 3-4 October 2020, AMS Eastern Sectional Meeting, Online.
  • 5-6 December 2020, TMS Annual Meeting, Fu-Jen Catholic University, Taipei, Taiwan.
     

Research Interests:   Number Theory

  • Arithmetic of curves over function fields
  • Special values of L-functions over function fields
  • Arithmetic of Drinfeld modules
   

Publications:

  1. Fu-Tsun Wei & Jing Yu, On the independence of Heegner points in the function field case, Journal of Number Theory 130 (2010) 2542-2560.
  2. Fu-Tsun Wei & Jing Yu, Theta series and function field analogue of Gross formula, Documenta Mathematica 16 (2011) 723-765.
  3. Fu-Tsun Wei & Chia-Fu Yu, Mass formula of division algebras over global function fields, Journal of Number Theory 132 (2012) 1170-1184.
  4. Fu-Tsun Wei, On metaplectic forms over function fields, Mathematische Annalen Volume 355 Issue 1 (2013) 235-258.
  5. Fu-Tsun Wei, On Rankin triple product L-functions over function fields: central critical values, Mathematische Zeitschrift Volume 276 Issue 3-4 (2014) 925-951.
  6. Fu-Tsun Wei & Chia-Fu Yu, Class numbers of central simple algebras over global function fields, International Mathematics Research Notices No. 11 (2015) 3525-3575.
  7. Chih-Yun Chuang & Ting-Fung Lee & Fu-Tsun Wei & Jing Yu, Brandt matrices and theta series over global function fields, Memoirs of the American Mathematical Society Volume 237 Number 1117 (2015).
  8. Mihran Papikian & Fu-Tsun Wei, The Eisenstein ideal and Jacquet-Langlands isogeny over function fields, Documenta Mathematica 20 (2015) 551-629.
  9. Fu-Tsun Wei, On the Siegel-Weil formula over function fields, The Asian Journal of Mathematics Volume 19 Number 3 (2015) 487-526.
  10. Mihran Papikian & Fu-Tsun Wei, On the Eisenstein ideal over function fields, Journal of Number Theory (Special issue in honor of Winnie Li) 161 (2016) 384-434.
  11. Chih-Yun Chuang & Fu-Tsun Wei & Jing Yu, On central critical values of Rankin-type L-functions over global function fields, Proceedings of London Mathematical Society (3) 114 (2017) 333-373 DOI: 10.1112/plms.12009.
  12. Fu-Tsun Wei, Kronecker limit formula over global function fields, American Journal of Mathematics vol. 139 no. 4 (2017) 1047-1084.
  13. Mihran Papikian & Fu-Tsun Wei, The rational torsion subgroups of Drinfeld modular Jacobians and Eisenstein pseudo-harmonic cochains, Mathematische Zeitschrift 287 no. 1-2 (2017) 521-546 (DOI: 10.1007/s00209-016-1835-2).
  14. Fu-Tsun Wei, Green's functions on Mumford curves, Mathmatische Annalen vol. 370 Issue 3-4 (2018) 1571-1605 (online version: http://rdcu.be/tIBd).
  15. Chih-Yun Chuang & Fu-Tsun Wei, Waldspurger formula over function fields, Transcations of the American Mathematical Society 371 (2019) 173-198.
  16. Fu-Tsun Wei & Takao Yamazaki, Generalized Jacobians of modular and Drinfeld modular curves, Forum Mathematicum 31(3) (2019) 647-659.
  17. Fu-Tsun Wei, On the derivative of Siegel-Eisenstein series over function fields, Journal of London Mathematical Society (2) 100 (2019) 518-544.
  18. Fu-Tsun Wei, On Kronecker terms over global function fields, Inventiones Mathematicae 220 (2020) 847-907 (online version: https://rdcu.be/b30G7).
  19. Cécile Armana and Fu-Tsun Wei, On Sturm-type bounds for modular forms over function fields, Journal of Number Theory (2020) https://doi.org/10.1016/j.jnt.2020.07.003.
 

Preprints:

  1. Mihran Papikian and Fu-Tsun Wei, Drinfeld discriminant function and Fourier expansion of harmonic cochains, submitted.
  2. Jia-Wei Guo and Fu-Tsun Wei, On class number relations and intersections over function fields, preprint.