
Real Analysis Sample Exam, November 6, 2007

Show detailed argument to each problem.

1. A ”totally unlucky” number is one that contains no sevens in any decimal expansion. Compute
the Lebesgue measure of the totally unlucky numbers in [0, 1] .

solution:

Among the numbers 0.1...., 0.2...., · · ·, 0.9...., the lucky numbers has measure s = 1
10
. Among

the numbers 0.11...., 0.12...., · · ·, 0.19...., the lucky numbers has measure 1
10
· s. Based on this

observation, all of the lucky numbers has measure

s+ (1− s) s+ [1− s− (1− s) s] s+ [1− {s+ (1− s) s+ [1− s− (1− s) s] s}] s+ · · ·
= s+ (1− s) s+ (1− s)2 s+ (1− s)3 s+ · · ·
=

s

1− (1− s)
= 1.

Hence the totally unlucky numbers has measure zero. We are lucky!!! ¤

2. Let f : [a, b] → R be a finite increasing function. Show that f is a measurable function on
[a, b]. For any p ∈ (a, b) , evaluate the following limits:

lim
h→0+

1

h

Z
[p,p+h]

f (Lebesgue integral)

and

lim
h→0+

1

h

Z
[p−h,p]

f (Lebesgue integral).

solution:

If f : [a, b]→ R is an increasing function, the number of x ∈ [a, b] such that f is discontinuous at
x is at most countable (see Rudin, p.96). Hence f is continuous a.e. on [a, b] and so measurable.
We also know that both f (p+) and f (p−) exist for any p ∈ (a, b) . For fixed p ∈ (a, b) , there

exists a number A such that for any ε > 0 there exists δ > 0 so that if x ∈ (p, p+ δ) then
|f (x)−A| < ε. Hence

1

h

Z
[p,p+h]

(A− ε)−A ≤
µ
1

h

Z
[p,p+h]

f

¶
−A ≤ 1

h

Z
[p,p+h]

(A+ ε)−A

for all 0 < h < δ. Therefore limh→0+
1
h

R
[p,p+h]

f = A = f (p+) . Similarly we have limh→0+
1
h

R
[p−h,p]

f =

f (p−) . ¤

3. Let En ⊂ R be a sequence of measurable sets. Let

A = {x ∈ R : x ∈ En for infinitely many n} .

Is the set measurable or not? Give your reasons.

solution:

We actually have

A =
∞\
j=1

Ã ∞[
k=j

Ek

!
.

Hence the set A is measurable ¤
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4. Give an example of a measurable function h : E ⊂ R→ R such that for some measurable set
B ⊂ R the inverse image h−1 (B) is NOT measurable.

solution:

Let f (x) : [0, 1] → [0, 1] be the Cantor-Lebesgue function and let g (x) = x + f (x) . It is
easy to see that g (x) : [0, 1] → [0, 2] is a strictly increasing continuous function. Hence g (x) is a
homeomorphism of [0, 1] onto [0, 2] . On each interval I1, I2, I3, ..., removed in the construction of
the Cantor set, say the interval I1 =

¡
1
3
, 2

3

¢
, the function g (x) becomes g (x) = x+ 1

2
. Hence g (x)

sends I1 onto an open interval with the same length. Using this observation one can see that¯̄̄̄
¯g

Ã ∞[
k=1

Ik

!¯̄̄̄
¯ =

¯̄̄̄
¯
∞[
k=1

g (Ik)

¯̄̄̄
¯ =

∞X
k=1

|g (Ik)| =
∞X
k=1

|Ik| = 1

which implies |g (C)| = 2−1 = 1, where C is the Cantor set. Since g (C) has positive measure, there
exists a non-measurable set A ⊂ g (C) . Now consider the set B = g−1 (A) ⊂ C. It has measure
zero, hence it is measurable. Let h = g−1. Then it is a measurable function and h−1 (B) = A is not
measurable. ¤

5. Let E be a measurable set in Rn with |E| <∞ and f is a measurable function on E. Let

En = {x ∈ E : |f (x)| ≥ n} , n = 0, 1, 2, 3....

Show that f ∈ L (E) if and only if
P∞

n=0 |En| <∞.

solution:

(=⇒) Assume f ∈ L (E) . Then f is finite a.e. in E (without loss of generality, we can assume
f is finite everywhere in E). It is not hard to see that

lim
λ→∞

Z
{|f |≥λ}

|f | = 0

which is like the case of an absolutely convergence sequence. This also implies (by Tchebyshev’s
inequality)

lim
n→∞

n |En| ≤ lim
n→∞

Z
{|f |≥n}

|f | = 0. (0.1)

By the relation E = E0 ⊃ E1 ⊃ E2 ⊃ · · ··, |E0| <∞, we can decompose E as

E = (E0 −E1) ∪̊ (E1 −E2) ∪̊ (E2 −E3) · · · (disjoint union)

and observe that

n · |En −En+1| ≤
Z
En−En+1

|f | ≤ (n+ 1) · |En −En+1| , n = 0, 1, 2, 3, ... (0.2)

Hence ∞X
n=0

n · |En − En+1| ≤
∞X
n=0

Z
En−En+1

|f | =
Z
E

|f |

where (in below we need to use the fact that |E| <∞, and so |En − En+1| = |En|− |En+1|) by (0.1)
we have

∞X
n=0

n · |En − En+1| = (|E1|− |E2|) + 2 (|E2|− |E3|) + 3 (|E3|− |E4|) + · · ·

= |E1|+ |E2|+ |E3|+ |E4|+ · · · · .
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Therefore
P∞

n=0 |En| <∞.

(⇐=) Conversely if
P∞

n=0 |En| <∞, then the set {x ∈ E : |f (x)| =∞} must have measure zero,
implying f is finite a.e. in E . Again we assume f is finite everywhere in E. Since f is bounded on
En −En+1, it is integrable on it. Note that

∞X
n=0

(n+ 1) · |En −En+1| = 2 (|E1|− |E2|) + 3 (|E2|− |E3|) + 4 (|E3|− |E4|) + · · ·

= 2 |E1|+ |E2|+ |E3|+ |E4|+ · · ·· <∞.

By (0.2) we know |f | must be integrable on E. Hence f is integrable on E. ¤

6. Assume h (x) is a differentiable function on R. Show that h0 (x) is a measurable function on
R.

solution:

Let

fn (x) =
h

¡
x+ 1

n

¢
− h (x)

1
n

, x ∈ R.

For each n = 1, 2, 3, ..., fn (x) is a finite measurable function on R with fn (x)→ h0 (x) for all x ∈ R.
Hence h0 (x) is a measurable function on R. ¤

7. In the Lebesgue Dominated Convergence Theorem (Theorem 5.36) if we replace the condition
“fk → f a.e. in E” by “fk → f in measure on E”, is the theorem still correct or not? Give
your reasons.

solution:

The theorem is still correct.

First note that by Theorem 4.22 there exists a subsequence fkj → f a.e. on E. This implies
that |f | ≤ ϕ a.e. in E and so f ∈ L (E) (since ϕ ∈ L (E)). By the usual Lebesgue Dominated
Convergence Theorem we have Z

E

fkj →
Z
E

f as j →∞. (0.3)

We then use contradiction argument to show that
R
E
fk →

R
E
f as k → ∞. Assume not. Then

there exists a subsequence of fk, still denote it as fkj , j = 1, 2, 3, ..., so that¯̄̄̄Z
E

fkj −
Z
E

f

¯̄̄̄
≥ ε > 0

for all j. But then this subsequence has a further subsequence so that (0.3) holds, a contradiction.¤
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