Real Analysis Homework 9, due 2007-11-21 in class

1. (10 points) Do Exercise 6 in p. 85.

Solution:

In this problem we assume %f(x,y) exists on I = [0,1] x [0,1]. we also know that it is a
bounded function on I. Let
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we see that for each fixed z, F), (x,y) is a sequence of bounded (use mean value theorem to see
this) measurable functions of y. By
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we know that for each fixed z, %f(x,y) is a measurable function of y. Now by the Bounded
Convergence Theorem, we obtain
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2. (10 points) Do Exercise 9 in p. 85.
Solution:
For any € > 0 we have
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due to the Tchebyshev inequality. Hence fi. converges to f in measure on E. o

3. (10 points) Do Exercise 10 in p. 85.

Solution:

By Exercise 9 we know that f, — f in measure. In particular, there exists a subsequence f;
such that it converges to f a.e. on E. Fatou’s lemma implies
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4. (10 points) Do Exercise 20 in p. 85.

Solution:

Casel: If f () = xg,, F1 C E, then LHS of the identity is |E1|, and the RHS of the identity
is given by 7 _ _
|det T| xgy (Tz)de = |detT|- T E; .
T-1E
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We see that the identity holds by Theorem 3.35.

Case2: Assume f > 0. Then there exists a sequence of simple functions 0 < s, / f on FE
where
Sn = a1Xp, * 0+ Apm)XE,ys K (n) depends on n.

Now by Casel
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and by the Monotone Convergence Theorem we obtain
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The conclusion follows.
For general f, use
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